Gautam Iyer

Associate Professor, Dept. of Math. Sci., Carnegie Mellon University.

gautam@math.cmu.edu. WEH 6121. 412 268 8419.

Research Interests

Mixing image

My research concerns "Theoretical Applied Math" using tools from partial differential equations and probability. More specifically, I've worked on a variety of problems related to anomalous diffusion, coagulation, fluid mechanics, homogenization, Q-tensors and mixing.

Awards, and Support Acknowledgement

All findings my own and do not necessarily reflect the views of respective funding agencies.

Publications

Recent Publications

  • G. Iyer, N. Leger, R. L. Pego, Coagulation and universal scaling limits for critical Galton-Watson processes. (2016).
  • G. Iyer, D. Spirn, A model for vortex nucleation in the Ginzburg-Landau equations, Journal of Nonlinear Science (2016).
  • M. Hairer, G. Iyer, L. Koralov, A. Novikov, Z. Pajor-Gyulai, A fractional kinetic process describing the intermediate time behaviour of cellular flows, Ann. Probab. (2016).
  • J. Ballew, G. Iyer, R. L. Pego, Bose-Einstein condensation in a Hyperbolic model for the Kompaneets Equation, SIAM J. Math. Anal. (2016).
  • G. Gie, C. Henderson, G. Iyer, L. Kavalie, J. P. Whitehead, Stability of vortex solutions to an extended Navier-Stokes system, Commun. Math. Sci. (2016).

All Publications

Partial Differential Equations

Probability

  • G. Iyer, N. Leger, R. L. Pego, Coagulation and universal scaling limits for critical Galton-Watson processes. (2016).
  • G. Iyer, D. Spirn, A model for vortex nucleation in the Ginzburg-Landau equations, Journal of Nonlinear Science (2016).
  • M. Hairer, G. Iyer, L. Koralov, A. Novikov, Z. Pajor-Gyulai, A fractional kinetic process describing the intermediate time behaviour of cellular flows, Ann. Probab. (2016).
  • G. Iyer, A. Novikov, Anomalous diffusion in fast cellular flows at intermediate time scales, Probab. Theory Related Fields (2015).
  • G. Iyer, N. Leger, R. L. Pego, Limit theorems for Smoluchowski dynamics associated with critical continuous-state branching processes, Ann. Appl. Probab. (2015).
  • P. Constantin, G. Iyer, A stochastic-Lagrangian approach to the Navier-Stokes equations in domains with boundary, Ann. Appl. Probab. (2011).
  • G. Iyer, A. Novikov, The regularizing effects of resetting in a particle system for the Burgers' equation, Ann. Probab. (2011).
  • G. Iyer, J. C. Mattingly, A stochastic-Lagrangian particle system for the Navier-Stokes equations, Nonlinearity (2008).
  • G. Iyer, A stochastic Lagrangian proof of global existence of the Navier-Stokes equations for flows with small Reynolds number, Ann. Inst. H. Poincaré Anal. Non Linéaire (2009).
  • P. Constantin, G. Iyer, Stochastic Lagrangian transport and generalized relative entropies, Commun. Math. Sci. (2006).
  • G. Iyer, A stochastic Lagrangian formulation of the incompressible Navier-Stokes and related transport equation, Ph.D. Thesis, University of Chicago (2006).
  • P. Constantin, G. Iyer, A stochastic Lagrangian representation of the $3$-dimensional incompressible Navier-Stokes equations, Comm. Pure Appl. Math. (2008).
  • G. Iyer, A Stochastic perturbation of inviscid flows, Comm. Math. Phys. (2006).

Coagulation

  • G. Iyer, N. Leger, R. L. Pego, Coagulation and universal scaling limits for critical Galton-Watson processes. (2016).
  • G. Iyer, N. Leger, R. L. Pego, Limit theorems for Smoluchowski dynamics associated with critical continuous-state branching processes, Ann. Appl. Probab. (2015).

Fluid Dynamics

Harmonic Analysis

Homogenization

Liquid Crystals

Mixing