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Abstract. In this paper we study the asymptotic behavior of Brownian
motion in both comb-shaped planar domains, and comb-shaped graphs. We
show convergence to a limiting process when both the spacing between the
teeth and the width of the teeth vanish at the same rate. The limiting process
exhibits an anomalous diffusive behavior and can be described as a Brownian
motion time-changed by the local time of an independent sticky Brownian
motion. In the two dimensional setting the main technical step is an oscillation
estimate for a Neumann problem, which we prove here using a probabilistic
argument. In the one dimensional setting we provide both a direct SDE proof,
and a proof using the trapped Brownian motion framework in Ben Arous et al.
(Ann. Probab. ’15).

1. Introduction.

Diffusion in comb-like structures arises in the study of several applications such
as the study of linear porous media, microscopically disordered fluids, transport
in dendrites and tissues (see for instance [You88,ADH90,SW91,BE07,DBMZ07]
and references therein). Our aim in this paper is to study idealized, periodic,
comb-shaped domains in R2 under scaling regimes where an anomalous diffusive
behavior is observed. We also study scaling limits of a skew Brownian motion on an
infinite comb-shaped graph. In both scenarios we show that under a certain scaling
the limiting process is a Brownian motion time-changed by the local time of an
independent sticky reflected Brownian motion. We describe each of these scenarios
separately in Sections 1.1 and 1.2 below.

1.1. Anomalous Diffusion in Comb-Shaped Domains. Let h0 ∈ (0,∞], and
α, ε > 0, and let Ωε ⊂ R2 be the fattened comb-shaped domain defined by

(1.1) Ωε = {(x, y) ∈ R2 | −ε < y < h01B(εZ,αε2/2)(x)} ,

where B(εZ, αε2/2) ⊆ R denotes the αε2/2 neighborhood of εZ, and 1 denotes the
indicator function. Figure 1 shows a picture of the domain Ωε. We refer to the
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region where −ε < y < 0 as the spine; Ωε also has teeth of height h0 and width αε2,
which are spaced ε apart.

αε2

ε

h0

ε

Figure 1. Image of the comb-shaped domain Ωε. The teeth have
width αε2 and height h0. The spine has width ε, and the teeth are
spaced a distance of ε apart.

Let Zε = (Xε, Y ε) be a Brownian motion in Ωε that is reflected normally on the
boundary ∂Ωε. Our aim is to study the limiting behavior of Zε as ε → 0. This
is an idealized, two dimensional, version of the arterial flow models considered by
Young [You88]. Note that the process Zε may travel large horizontal distances
when it is in the spine, but travels only negligible horizontal distances when it is
“trapped” inside the teeth. From the shape of Ωε, one expects that the chance Zε
wanders into the teeth from the spine is of order αε. Since the teeth are spaced
ε apart, the process Zε encounters O(1/ε) teeth after traveling an O(1) distance
horizontally. These balance, and after large horizontal distances, the process Zε
spends comparable amounts of time in the spine and in the teeth. This leads us
to expect that the limiting horizontal behavior of Zε should be described by a
Brownian motion that is time-changed so that it only moves when the process is in
the spine – this is our main result.

To state the result, we let Ω0
def= R× [0, h0], and let πε : Ωε → Ω0 be defined by

πε(x, y) = (x, y+), where y+ = max{y, 0} denotes the positive part of y. Given a
probability measure µε on Ωε, let π∗ε (µε) denote the push forward of µε, under the
map πε, to a probability measure on Ω0. We can now state the main result.
Theorem 1.1. Let Zε = (Xε, Y ε) be a normally reflected Brownian motion in Ωε
with initial distribution µε. If the sequence of measures (π∗ε(µε)) converges weakly
to a probability measure µ on Ω0, then the sequence of processes Zε,+ def= πε(Zε)
converges weakly as ε → 0. The limiting process, denoted by Z = (X,Y ), can be
described as follows. The initial distribution of Z is µ. The process Y is a Brownian
motion on (0, h0), which is normally reflected at h0 if h0 < ∞, and is stickily
reflected (with parameter 1/α) at 0. The process X is a time-changed Brownian
motion given by
(1.2) Xt = W̄ 2

αL
Y
t (0) ,

where W̄ is a Brownian motion on R that is independent of Y , and LY (0) is the
local time of Y at 0.
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To clarify notation, we follow the normalization convention of [KS91], and define
local time of Y at 0 by

LYt (0) = lim
δ→0

1
2δ

∫ t

0
1{06Ys6δ} d〈Y 〉s = lim

δ→0

1
2δ

∫ t

0
1{0<Ys6δ} ds .

In the second equality above we note that the strict inequality 0 < Ys in the
integrand is crucial, as the process Y spends a non-negligible time at 0. Indeed,
recall that the sticky reflection of the process Y at 0 is characterized by the local
time relation

2 dLYt (0) = α1{Yt=0} dt .

Such a process can be constructed explicitly by time changing a reflected Brownian
motion, or by using the Hille-Yosida theorem. We elaborate on this in Section 2,
below.

We remark that while the statement of Theorem 1.1 is intuitive, the proof
isn’t as simple. The broad outline of the proof follows techniques introduced by
Freidlin and Wentzell (see for instance Theorem 8.2.2 in [FW12]) and the structure
in [HKPG16,HIK+18]. However, the key step in establishing the required estimates
requires balancing the time spent by Zε in the spine with the local time at the
interface between the teeth and spine. In order to prove this, we require an oscillation
estimate on the solution to a certain Neumann problem (Proposition 3.8, below).

To the best of our knowledge, the oscillation estimate we require can not be
obtained by standard techniques for the following reasons: First, for the problem
at hand energy methods only provide estimates with domain dependent constants.
Since Ωε varies with ε these constants may degenerate as ε→ 0. Second, since we
impose Neumann boundary conditions on the entire boundary we may not easily
use techniques based on the comparison principle. We prove the oscillation estimate
here directly by using a probabilistic argument, and this comprises the bulk of the
proof of Theorem 1.1.

Notice that Theorem 1.1 immediately yields the behavior of the variance of the
horizontal displacement. This question has been studied by various authors (see
for instance [BDB14] and references therein), and is of interest as it is an easily
computable benchmark indicating anomalous diffusion.

Corollary 1.2. If h0 <∞ then

lim
t→0

lim
ε→0

1
t
E(x,0)|Xε

t − x|2 = 1 ,(1.3a)

lim
t→∞

lim
ε→0

1
t
E(x,0)|Xε

t − x|2 = 1
αh0 + 1 .(1.3b)

If h0 =∞, then (1.3a) still holds. However, instead of (1.3b) we have

(1.4) lim
t→∞

lim
ε→0

1√
t
E(x,0)|Xε

t − x|2 = 1
α

( 8
π

)1/2
.

Here we clarify that the notation E(x,0) refers to the expectation under the
probability measure P (x,0) under which (Xε

0 , Y
ε
0 ) = (x, 0) almost surely. Note that

when h0 < ∞, the variance is asymptotically linear with slope 1 at short time,
and asymptotically linear at long time with slope strictly smaller than 1. On the
other hand, when h0 =∞ the variance is asymptotically linear for short time, and
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asymptotically O(
√
t) for long time, indicating an anomalous sub-diffusive behavior

on long time scales. This was also previously observed by Young [You88].
In addition to the variance, another quantity of interest is the limiting behavior

of the probability density function. This is essentially a PDE homogenization
result that also follows quickly from Theorem 1.1. Explicitly, let uε represent the
concentration density of a scalar diffusing in the region Ωε. When the diffusivity is
normalized to be 1/2, and the boundaries are impermeable the time evolution of uε
is governed by the heat equation with Neumann boundary conditions:

∂tu
ε − 1

2∆uε = 0 in Ωε(1.5a)

∂νu
ε = 0 on ∂Ωε .(1.5b)

Using Theorem 1.1 we can show that uε converges as ε→ 0, and obtain effective
equations for the limit. The same equations were also obtained heuristically by
Young [You88].

Corollary 1.3. Let u0 : Ω0 → R be a bounded continuous function, and let uε be
the solution to (1.5a)–(1.5b) with initial data u0 ◦ πε. Let µε be a family of test
probability measures on Ωε such that (π∗ε(µε)) converges weakly to a probability
measure µ on Ω0. Then for any t > 0 we have

(1.6) lim
ε→0

∫
Ωε
uε(z, t) dµε(z) =

∫
Ω0

u(z, t) dµ(z) ,

where u : Ω0 → R is the unique solution of the system

∂tu−
1
2∂

2
yu = 0 , for t > 0, y ∈ (0, h0) ,(1.7a)

α∂yu+ ∂2
xu = ∂2

yu , when y = 0 ,(1.7b)
∂yu = 0 when y = h0 ,(1.7c)
u = u0 when t = 0 .(1.7d)

Since large scale transport only occurs in the x-direction, one is often only
interested in the limiting behavior in this direction. This can be obtained by taking
the slice of u at y = 0, leading to a self contained time fractional equation, similar to
the Basset equation [Bas87]. We remark that such time fractional PDEs associated
with the time-changed diffusions have been studied in more generality in [BMN09]
(see also [Coh18,MS15]), and we refer the reader to these papers for the details.

Proposition 1.4. Let v(x, t) = u(x, 0, t), where u is the solution of (1.7a)–(1.7d).
Then v satisfies

(1.8) ∂tv + α

2 ∂
w
t v −

1
2∂

2
xv = α

2 f ,

with initial data v(x, 0) = u0(x, 0). The operator ∂wt appearing above is a generalized
Caputo derivative defined by

∂wt v(x, t) def=
∫ t

0
w(t− s)∂tv(x, s) ds ,

where w is defined by

w(t) def= 2
h0

∞∑
k=0

exp
(
− (2k + 1)2π2t

8h2
0

)
.



ANOMALOUS DIFFUSION IN COMBS 5

The function f appearing on the right of (1.8) can be explicitly determined in terms
of u0 by the identity f = f(x, t) = ∂yg(x, 0, t), where g = g(x, y, t) solves

∂tg −
1
2∂

2
yg = 0 for t > 0, y ∈ (0, h0) ,

g(x, 0, t) = g(x, h0, t) = 0 for t > 0 ,
g(x, y, 0) = u0(x, y)− u0(x, 0) for y ∈ (0, h0), t = 0 .

Remark. As we will see later, the Laplace transform of w is given by

(1.9) Lw(s) =
∫ ∞

0
e−stw(t) dt = 2 tanh(h0

√
2s)√

2s
.

For h0 =∞,

w(t) =
( 2
πt

)1/2
, and Lw(s) =

(2
s

)1/2
.

In this case, ∂wt is precisely
√

2∂1/2
t , the standard Caputo derivative of order

1/2 (see for instance [Die10]), and equation (1.8) becomes the Basset differential
equation [Bas87].

Finally we conclude this section with two remarks on generalizations of Theo-
rem 1.1.

Remark 1.5 (Other scalings). The width of the spine and teeth may be scaled in
different ways to obtain the same limiting process as in Theorem 1.1. Explicitly, let

Ω̃ε = {(x, y) ∈ R2 | −wS(ε) < y < h01B(εZ,wT (ε)/2)(x)} ,

where wS(ε) and wT (ε) denote the width of the spine and teeth respectively. We
claim that Theorem 1.1 still holds (with the same limiting process), provided

(1.10) lim
ε→0

wT
εwS(ε) = α ∈ (0,∞) , and lim

ε→0
wS(ε) = 0 .

The proof of Theorem 1.1 needs to be modified slightly to account for this more
general statement. These modifications are described in Section 3.7, below.

In the degenerate case when α = 0, the process Zε rarely enters the teeth and
the limiting behavior is simply that of a horizontal Brownian motion. On the other
hand, if α = ∞, then the process Zε enters the teeth too often, and the limiting
behavior is simply that of a vertical, doubly reflected, Brownian motion.

Remark 1.6 (Higher dimensional models). Theorem 1.1 can also be extended to anal-
ogous higher-dimensional models. For example, let Ω′ε ⊆ R3 be a three dimensional
“brush”, defined by

Ω′ε
def=
⋃
k∈Z

(Qk ∪ Tk) .

Here Qk and Tk are defined by

Qk
def=
(
εk − ε

2 , εk + ε

2
)
×
(
−ε2 ,

ε

2
)
× [−ε, 0),

Tk
def=
{

(x1, x2, x3) ∈ R3 ∣∣ ((x1 − εk)2 + x2
2)1/2 6 rε3/2, x3 ∈ [0, h0)

}
.

In this case, the spine is the set ∪kQk, an infinite rectangular cylinder; the cylindrical
teeth Tk are spaced O(ε) apart and have radius rε3/2 > 0. If Zε is a Brownian
motion in this domain with normal reflection at the boundary, then one obtains an
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analogous scaling limit as ε→ 0. The O(ε3/2) scaling of the radius of the teeth is
chosen so that the ratio

2Vol(Qk)
Area(Qk ∩ Tk)

= 2
πr2

is independent of ε – this constant ratio plays the same role as the constant 2/α
in the comb-shaped domain Ωε. While our proof of Theorem 1.1 extends to this
higher-dimensional version in a straight-forward way, the added modifications are
technical. Thus, for simplicity and clarity of presentation, we only focus only on the
comb-shaped domain as defined above for Theorem 1.1.

1.2. Anomalous Diffusion in Comb-Shaped Graphs. We now turn our atten-
tion to comb-shaped graphs, with the intention of studying a simpler version of
the model in Section 1.1 and of relating it to other work on trapped random walks.
Related random walk models on comb-shaped discrete graphs have been studied by
several authors, including [BZ03,Ber06,CCFR09,CCFR11]. In each of these works,
a limit process is obtained which involves a Brownian motion time-changed by the
local time of an independent Brownian motion. One difference between these other
works and Theorem 1.7 below is that the limiting processes in our result involves
Brownian motion with sticky reflections, a consequence of the gluing condition
described below. More closely related to our model are the works [BAČ07,BAC+15],
especially Section 3.2 of [BAC+15], where the trapping and drift of the random
walk plays a role that is similar to our gluing condition. In Section 5.2 below, we
will use the framework in [BAC+15] for an alternate proof of our result in this sim-
pler setting, illuminating the relationship between these models. Nevertheless, the
analyses in these other works do not apply to the comb-shaped domains considered
in the previous Section 1.1, where the boundary local time of the diffusion process
(pre-limit) plays an essential role.

We consider the infinite connected comb-shaped graph, Cε ⊂ R2, be defined by

(1.11) Cε =
(
R× {0}

)
∪
(
εZ× [0, h0)

)
.

We think of R× {0} as the spine of Cε, and εZ× [0, h0) as the infinite collection of
teeth. The teeth meet the spine at the junction points Jε ⊆ Cε defined by

(1.12) Jε
def= (εZ)× {0} ,

and is depicted in Figure 2.

h0

ε

Figure 2. Image of the comb-shaped graph Cε. The teeth are
spaced ε apart and have height h0.
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Let Zε = (Xε, Y ε) be a diffusion on Cε such that away from the junction points Jε,
the process Zε is a standard Brownian motion. If h0 <∞, we reflect Zε at the ends
of the teeth. At the junction points, we specify a “gluing condition” which dictates
that Zε enters the teeth with probability αε/(2 + αε), and stays in the spine with
probability 2/(2 + αε), thus the rate of entering the teeth is O(ε) times the rate of
staying in the spine. One can formulate this precisely by requiring the local time
balance

LX
ε

t (Jε) = 2
2 + αε

LZ
ε

t (Jε) , LY
ε

t (Jε) = αε

2 + αε
LZ

ε

t (Jε) ,

at the junction points. As discussed further in Section 4, the particular form of these
coefficients corresponds to a simple flux balance condition (4.2a) at the junction
points. Alternately, one can make this gluing condition precise by using the excursion
decomposition of Zε, and we do this in Section 5.

Clearly the mechanics of the above diffusion on the comb-shaped graph Cε shows
that it is a simplified model of the diffusion on the comb-shaped domain Ωε. Our
main result in this section shows convergence of Zε to the same limit process as
that in Theorem 1.1.

Theorem 1.7. Let (µε) be sequence of probability measures on Cε which converge
weakly to a probability measure µ on Ω0

def= R× [0, h0]. Let Zε be the above graph
diffusion with initial distribution µε. Then, as ε → 0, the processes Zε converge
weakly to the same limit process Z = (X,Y ) defined in Theorem 1.1.

The proof of Theorem 1.7 is technically and conceptually much simpler than that
of Theorem 1.1, and is presented in Section 4. Moreover, the excursion decomposition
of Zε on the comb-shaped graph Cε allows for an elegant proof using time changes and
the trapped Brownian motion framework in [BAC+15]. We present this approach
in Section 5.

The process Zε on the comb-shaped graph Cε is closely related to a model of
fluid flow in fissured media, where trapping in microscopic regions of low per-
meability yields a macroscopic anomalous diffusive effect. Explicitly, consider
medium composed of two materials: a set of blocks, where the permeability is
relatively low, and fissures where the permeability is relatively high (see for in-
stance [ADH90,SW91,BLM96]). Assuming that the region occupied by the fissures
is connected and that the blocks are arranged periodically, the fluid flow in this
situation is modeled by the equation

∂tu
ε −∇ ·

(
aε∇uε

)
= f , aε(x) = 1F

(x
ε

)
a
(x
ε

)
+ ε21B

(x
ε

)
A
(x
ε

)
.

Here a,A are uniformly elliptic matrices representing the permeability in the fissures
and blocks respectively, and F,B denote the region occupied by the blocks and
fissures respectively. For this linear model, Clark [Cla98] proved that as ε→ 0, the
functions uε two-scale converges to a function U = U(x, y, t) that satisfies a coupled
system, called the double-porosity model, in which the fluid in the fissures is driven
in a non-local manner by the fluid in the blocks.

To understand this model probabilistically, one could study a diffusion Z̃ε whose
generator is ∇·aε∇. Inside the fissures, the process Z̃ε diffuses freely until it hits the
boundary of a block. Upon hitting a block boundary, the contrast between the block
and fissure permeabilities dictates that Z̃ε enters the blocks with probability O(ε),
and remains in the fissures with probability 1−O(ε). Since the blocks have diameter
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O(ε), and the permeability there is O(ε2), the excursions of Z̃ε into the blocks
take O(1) amount of time. These characteristic features are exactly captured by
the above comb model: the spine plays the role of the fissures and the teeth play
the role of the blocks (rescaled to have size 1), and our gluing condition dictates
that Zε enters the teeth with probability O(ε).

Plan of this paper. The rest of the paper is organized as follows. We begin by
describing the limit process Z, and study its basic properties in Section 2. Next,
in Section 3 we prove Theorem 1.1 and all the required lemmas. In Section 4 we
prove Theorem 1.7 on the comb-shaped graph Cε. The proof is similar to that
of Theorem 1.1, but the technicalities are much simpler. Finally, in Section 4 we
provide an alternate proof of Theorem 1.7 using the trapped Brownian motion
framework in [BAC+15].

2. The Limit Process.

Before proving our main results in this paper, we give a more thorough description
of the limit process Z = (X,Y ). There are two canonical constructions of this
process. The first, relatively well-known construction involves directly writing Y as
a time-changed Brownian motion, and this is presented in Section 2.1. The second
construction involves a characterization using the generator. While the technicalities
using this second approach are more involved, they relate to the PDE analogue and
immediately yield Corollary 1.3.

Remark 2.1. The process Z depends on the parameters α > 0, and h0 ∈ (0,∞]. To
simplify the presentation, we will subsequently assume h0 = 1. The case h0 =∞
may be handled by replacing the normal reflection at 1 with a diffusion on the
semi-infinite interval (0,∞).

2.1. Construction via Time Changes. We begin by constructing the limit pro-
cess Z using a time-changed Brownian motion. To construct the process Y , let B̄t
be a standard doubly reflected Brownian motion on the interval (0, 1). (Recall that
in Remark 2.1 we assumed h0 = 1 for simplicity.) Let LB̄s (0) be the local time of B̄
at 0, and define

ϕ(s) def= s+ 2
α
LB̄s (0), s > 0 .

Let T , defined by

(2.1) T (t) = Tt
def= ϕ−1(t) = inf{s > 0 | ϕ(s) > t} ,

denote the inverse of ϕ. Since ϕ is strictly increasing, note that T is continuous.
Thus the process Y , defined by

(2.2a) Yt
def= B̄Tt ,

is a continuous process on [0, 1]. Clearly, on any interval of time where Y remains
inside the interval (0, 1], trajectories of Y and B̄ are identical. When Y hits 0,
however, the trajectories are slowed down on account of the time change T . The
behavior at 0 is known as a sticky reflection with parameter 1/α at 0, and we refer
the reader to [IM74, 14, §5.7] or the original papers of Feller [Fel52,Fel54] for more
details.
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Clearly once the process Y is known, the process X can be recovered using (1.2),
reproduced here for convenience:

(2.2b) Xt
def= W̄ 2

αL
Y
t (0) .

Here W̄ is standard one dimensional Brownian motion that is independent of B̄.
Intuitively, we think of R× {0} as the spine of the limiting comb, and R× (0, h0] as
the continuum of teeth. The process Tt may be interpreted as the time accumulated
in the teeth, and 2

αL
Y
t (0) is the time accumulated in the spine.

2.2. The SDE Description. We now describe the process Z = (X,Y ) via a system
of SDEs. Let W and B be two independent standard one dimensional Brownian
motions. We claim that the process Z can be characterized as the solution of the
system of SDEs

dXt = 1{Yt=0} dWt ,(2.3a)
dYt = 1{Yt 6=0} dBt − dLYt (1) + dLYt (0) ,(2.3b)

α1{Yt=0} dt = 2 dLYt (0) ,(2.3c)
with initial distribution µ. Existence of a process Z satisfying (2.3a)–(2.3c) can be
shown abstractly using the Hille-Yosida theorem, and we refer the reader to [Coh18]
for the details. Instead, we will show existence by showing that the process Z
constructed in the previous section is a solution to (2.3a)–(2.3c).

Lemma 2.2. The process Z = (X,Y ) defined by (2.2a)–(2.2b) is a weak solution
to the system (2.3a)–(2.3c).

The proof of Lemma 2.2 boils down to an SDE characterization of sticky Brownian
motion that was recently shown by Engelbert and Peskir [EP14]. We remark that
in [EP14] the authors also show weak uniqueness of the appropriate SDE. While we
present the proof of existence below, we refer the reader to [EP14] for the proof of
uniqueness.

Proof. By the Tanaka formula we have

(2.4) B̄t = B∗t + LB̄t (0)− LB̄t (1) ,
where B∗ is a Brownian motion. Since Tt is a continuous and increasing time change,
B∗Tt is still a continuous martingale, LYt (0) = LB̄Tt(0) and LYt (1) = LB̄Tt(1). Note first

(2.5) α

∫ t

0
1{Ys=0} ds = α

∫ t

0
1{B̄Ts=0} dϕ(Ts) = α

∫ Tt

0
1{B̄s=0} dϕ(s).

Then since {t | B̄t = 0} has Lebesgue measure 0 and LB̄t only increases on this set,
we decompose αϕ(s) = αs+ 2LB̄s to obtain

(2.6) α

∫ Tt

0
1{B̄s=0} dϕ(s) = 2

∫ Tt

0
1{B̄s=0}dL

B̄
s (0) = 2LB̄Tt(0) = 2LYt (0) ,

which implies (2.3c). Notice that since (2/α)LYt (0) is independent of W̄ , Xt is a
martingale with quadratic variation

(2.7) 〈X〉t = 2
α
LYt (0) .

In addition we have
〈B∗T 〉t = Tt .
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Thus, for the process B defined by

(2.8) Bt
def= B∗Tt + W̄ 2

αL
Y
t (0) ,

we have 〈B〉t = t. For the filtration, we let

Gt = σ
(
N ∪ F B̄Tt ∪ F

X
t

)
where N denotes the collection of all F (B̄,W̄ )

∞ -null sets. Since B̄ and W̄ are indepen-
dent, it is easy to see that for all s > 0, Xt−Xs is independent of Gs, and both B∗Tt
and Xt are G-martingales. Thus, B is also a G-martingale, and by Lévy’s criterion
must be a Brownian motion.

Now (2.3a)–(2.3b) follow from (2.3c), (2.8) and the fact that∫ t

0
1{Ys=0} dB

∗
Ts = 0 and

∫ t

0
1{Ys 6=0} dXs = 0 . �

2.3. Computing the Generator (Lemma 2.3). We now compute the generator
of Z. In the teeth (when y > 0) this is a standard calculation with Itô’s formula. In
the spine (when y = 0), however, one needs to estimate the time spent in the spine.
We state this precisely and carry out the details here.

Lemma 2.3. Let Ω0 = R× [0, 1), and define the operator A by

(2.9) A
def= 1

2∂
2
y .

Define the domain of A, denoted by D(A), to be the set of all functions g ∈
C0(Ω0) ∩ C2

b (Ω0) such that

(2.10) ∂yg(x, 1) = 0 , and ∂2
xg(x, 0) + α∂yg(x, 0) = ∂2

yg(x, 0) .
The generator of the process Z (defined by (2.2a)–(2.2b)) is the operator A with
domain D(A).

Proof. Choose g ∈ D(A) and apply Itô’s formula to obtain

g(Xt, Yt) = g(X0, Y0) +
∫ t

0
∂xg(Xs, Ys)dXs +

∫ t

0
∂yg(Xs, Ys) dYs

+ 1
α

∫ t

0
∂2
xg(Xs, Ys) dLYs (0) + 1

2

∫ t

0
∂2
yg(Xs, Ys) dTs .

Taking expectations gives

(2.11) E(x,y)
[
g(Xt, Yt)− g(x, y)

]
= E(x,y)

[∫ t

0
∂yg(Xs, Ys) dYs

]
+ E(x,y)

[ 1
α

∫ t

0
∂2
xg(Xs, Ys) dLYs (0) + 1

2

∫ t

0
∂2
yg(Xs, Ys) dTs

]
.

Now for y ∈ (0, 1) we know Y is a Brownian motion before it first hits 0 or 1,
and hence limt→0 P y(LYt (0) 6= 0) = 0. Moreover by definition of T , we know Tt = t
when {LYt = 0}. Consequently

lim
t→0

E(x,y)
[g(Xt, Yt)− g(x, y)

t

]
= 1

2∂
2
yg(x, y) .

For y = 1 we note
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(2.12) lim
t→0

E(x,1)
[g(Xt, Yt)− g(x, y)

t

]
= 1

2∂
2
yg(x, 1) + lim

t→0
E(x,1)

[1
t

∫ t

0
∂yg(Xs, Ys) dYs

]
.

By (2.4) we know E(x,1)LYt (1) = O(
√
t), and hence the right hand side of (2.12) is

finite if and only if ∂yg(x, 1) = 0.
Finally, we compute the generator on the spine y = 0. First we show that if we

start Y at 0 then for a short time it spends “most” of the time at 0. More precisely
we claim

(2.13) lim
t→0

E0
[Tt
t

]
= 0 .

Here we clarify that the 0 superscript on E refers to the initial distribution of the
process B̄, where as the double superscript E(x,y), or measure superscript Eµ used
earlier refers to the initial distribution of the joint process Z = (X,Y ).

Let Mt be the running maximum of B̃. Note that since LB̄ = LB̃ on {Mt < 1},
we have

P 0
(
LB̄t (0) 6 r

)
6 P 0

(
LB
∗

t (0) 6 r
)

+ P 0
(
Mt > 1

)
= 1− 2P 0

(
r < B∗t < 1

)
6

√
2
π

( r√
t

+
√
te−

1
2t

)
.

Thus,

E0
[Tt
t

]
=
∫ 1

0
P 0
(
Tt > st

)
ds =

∫ 1

0
P 0
(
st+ 2LB̄st(0) 6 t

)
ds

=
∫ 1

0
P 0
(
LB̄st(0) 6 (1− s)t

2

)
ds 6

∫ 1

0

√
2
π

(2(1− s)√
s

√
t+
√
st e−1/2st

)
ds

6 C
√
t .

With this estimate, we can now compute generator on the spine. Using equation
(2.13) we see

(2.14) E0
[
LYt (0)
t

]
= E0

[
LB̄Tt(0)
t

]
= α

2 E0
[
t− Tt
t

]
t→0−−−→ α

2 .

Using (2.4) we have,

E0
[
Yt
t

]
= E0

[
B̄Tt
t

]
= E0

[
B̃Tt + LB̄Tt(0)− LB̄Tt(1)

t

]
.

Since Tt 6 t, the third term tends to 0 and using the modulus of continuity for
Brownian motion the first term does as well. Therefore we also have

(2.15) E0
[
Yt
t

]
t→0−−−→ α

2 .

Thus using (2.13), (2.14) and (2.15) in equation (2.11) gives

lim
t→0

1
t
E(x,y)

[
g(Xt, Yt)− g(x, y)

]
= α

2 ∂yg(x, 0) + 1
2∂

2
xg(x, 0) + 0 ,

finishing the proof. �
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2.4. PDE Homogenization (Corollaries 1.2, 1.3, and Proposition 1.4).
Once the generator of Z is known, the behavior of the variance (Corollary 1.2) and
PDE homogenization result (Corollary 1.3) can be deduced quickly.

Proof of Corollary 1.2. We first assume h0 = 1 as in Remark 2.1. Using Theorem 1.1
and (2.7) we see

(2.16) lim
ε→0

E(x,0)|Xε
t − x|2 = E(x,0)|Xt − x|2 = 2

α
E0LYt (0) .

Now equation (1.3a) follows from (2.14).
For the long time limit (when h0 = 1) we note that by ergodicity of B̄, we know

that E0|LB̄t /t− 1/2| → 0 as t→∞. Thus using (2.1) we must have

lim
t→∞

E0
∣∣∣T (t)
t
− α

α+ 1

∣∣∣ = 0 .

Consequently,

E0
(LYt (0)

t

)
= E0

(LB̄Tt
t

)
= α

2 E0
( t− Tt

t

)
t→∞−−−→ α

2(α+ 1) ,

and together with (2.16) this implies (1.3b). This finishes the proof of (1.3a)
and (1.3b) when h0 = 1. The case for arbitrary finite h0 is similar.

When h0 =∞, the process Y is a sticky Brownian motion on the half line, and the
distribution of LYt (0) can be computed explicitly. Namely (see for instance [How07])
we have

2
α
LYt (0) =

∫ t

0
1{Ys=0} ds ∼

2|N |
α

(
t+ N2

α2

)1/2
− 2N2

α2 ,(2.17)

where N is the standard normal. Taking expectations and using (2.16) immediately
yields (1.3a) and (1.4), finishing the proof. �

Proof of Corollary 1.3. By the Kolmogorov backward equation [Fri75, §5.6] we
known that the function uε (defined by (1.5a)–(1.5b)) satisfies

uε(z, t) = Ezu0(Zεt ) .
Consequently ∫

Ωε
uε(z, t) dµε(z) = Eµεu0(Zεt ) ε→0−−−→= Eµu0(Zt) ,

by Theorem 1.1. Thus, if we set
(2.18) u(z, t) = Ezu0(Zt) ,
we see that (1.6) holds.

It only remains to verify that u satisfies (1.7a)–(1.7d) hold. To see this, recall
that the function u defined by (2.18) belongs to C(0,∞;D(A)) and satisfies the
Kolmogorov equations

∂tu−Au = 0 t > 0 ,
u(·, t) = u0 when t = 0 .

The first equation above implies (1.7a) by definition of A (equation (2.9)). Equa-
tions (1.7b) and (1.7c) follow from the fact that u(·, t) ∈ D(A) for all t > 0, and
equation (1.7d) follows from the second equation above. �
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We now obtain evolution equations for the slice of u at y = 0, as stated in
Proposition 1.4.

Proof of Proposition 1.4. Let u1 = u− g, and observe that u1 satisfies (1.7a) with
initial data u1(x, y, 0) = u0(x, 0) = v0(x), and boundary conditions

(2.19) u1(x, 0, t) = u(x, 0, t) = v(x, t) and ∂yu1(x, 1, t) = 0 .

(Recall that in Remark 2.1 we have already set h0 = 1 for simplicity.) We now
treat x as a parameter, and solve (1.7a) using separation of variables (in y, t) with
boundary conditions (2.19). A direct calculation shows

(2.20) ∂yu1(x, 0, t) = −∂wt v ,

and hence

(2.21) ∂yu(x, 0, t) = −∂wt v(x, t) + ∂yg(x, 0, t) .

Now for t > 0 using equation (1.7a) and (1.7b) and continuity of second derivatives
of u up to y = 0 we see

(2.22) ∂tv(x, t) = α

2 ∂yu(x, 0, t) + 1
2∂

2
xv(x, t) .

Using (2.21) and (2.22) yields (1.8) as claimed. �

Remark 2.4. For brevity, we have suppressed the explicit separation of variables
calculation deriving (2.20). One can avoid this calculation by using the Laplace
transform as follows. Following standard convention, we will denote the Laplace
transform of a function using an upper case letter using the variable s, instead of t.
Explicitly, given a function f , we define its Laplace transform, denoted by F or Lf ,
by

F (s) def= Lf(s) =
∫ ∞

0
e−stf(t) dt .

For functions that depend on both space and time variables, the Laplace transform
will only be with respect to the time variable.

Taking the Laplace transform of u1 yields the ODE in the variable y

sU1 − v0 −
1
2∂

2
yU1 = 0 ,

with boundary conditions U1(x, 0, s) = V (x, s), and ∂yU1(x, 1, s) = 0. Solving this
ODE yields

U1(x, y, s) = v0

s
+
( 1

1 + e2
√

2s

)(
V − v0

s

)[
ey
√

2s + e
√

2s(2−y)
]
,

and hence

∂yU1(x, 0, s) = −
√

2s
(
V − v0

s

)
tanh

√
2s = −2 tanh

√
2s√

2s

(
sV − v0

)
.

Choosing w to be a function with Laplace transform (1.9), implies (2.20) as claimed.
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3. Comb-Shaped Domains (Theorem 1.1).

We now turn to the proof of Theorem 1.1. Recall that Zε,+t = πε(Zεt ) =
(Xε

t ,max(Y εt , 0)). The main ingredients in the proof are the following lemmas.

Lemma 3.1. Let Zε = (Xε, Y ε) be the reflected Brownian motion on the comb-
shaped domain Ωε, as described in Theorem 1.1. Then, for any T > 0, the family of
processes Zε is tight in C([0, T ];R2).

Lemma 3.2. Let A be the generator defined in (2.9), with domain D(A). Weak
uniqueness holds for the martingale problem for A.

Lemma 3.3. If f ∈ D(A), and K ⊂ Ω0 is compact, then

(3.1) lim
ε→0

sup
z∈K∩Ωε

Ez
(
f(Zε,+t )− f(Zε,+0 )−

∫ t

0
Af(Zε,+s ) ds

)
= 0 .

Momentarily postponing the proof of these lemmas, we prove Theorem 1.1.

Proof of Theorem 1.1. Suppose first Zε,+ → Z ′ weakly along some subsequence.
We claim Z ′ should be a solution of the martingale problem for A with initial
distribution µ. To see this set

Mε
t = f(Zε,+t )− f(Zε,+0 )−

∫ t

0
Af(Zε,+r ) dr

and observe
Eµε

(
Mε
t

∣∣ Fs) = Mε
s + EZεs (Mε

t−s) ,
by the Markov property. Using Lemma 3.3, and taking limits along this subsequence,
the last term on the right vanishes. Since this holds for all f ∈ D(A) and D(A)
is dense in C0(Ω0), Z ′ must be a solution of the martingale problem for A. Since
Zε,+ → Z ′ weakly and π∗ε(µε)→ µ weakly by assumption, we have Z(0) ∼ µ. By
uniqueness of solutions to the martingale problem for A (Lemma 3.2), the above
argument shows uniqueness of subsequential limits of Zε,+. Combined with tightness
(Lemma 3.1), and the fact that Z is a solution to the martingale problem for A
(Lemma 2.3), this gives weak convergence as desired. �

It remains to prove Lemmas 3.1–3.3. We do this in Sections 3.1, 3.2 and 3.3,
below.

3.1. Proof of Tightness (Lemma 3.1). To prove tightness, we need an auxiliary
lemma comparing the oscillation of trajectories in the spine to that of Brownian
motion. This will also be used in the proof of Lemma 3.3.

Lemma 3.4. Let W ′ be a standard Brownian motion on R with W ′(0) = 0. For
any T > 0, ε ∈ (0, 1/2], z ∈ Ωε, and any a, δ > 0, we have

(3.2) P z
(

sup
r,t∈[0,T ]
|t−r|6δ

|Xε(t)−Xε(r)| > a
)
6 P

(
sup

r,t∈[0,T ]
|t−r|6δ

4|W ′(t)−W ′(r)| > a− 2ε
)
.

Proof. Let
τ0 = inf

{
t > 0

∣∣Xε(t) ∈ ε
(
Z + 1

2
)}
,

and inductively define
τk+1 = inf

{
t > τk

∣∣ |Xε(t)−Xε(τk)| = ε
}
,
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for k > 0. By symmetry of the domain, observe that k 7→ Xε(τk) defines a simple
random walk on the discrete points ε(Z + 1/2). Next, define

τ ′k = inf{t > τk | |Xε(t)−Xε(τk)| = ε/4}, k > 0.
In particular, τk < τ ′k < τk+1. At time τk, Xε(τk) is in the spine, at the midpoint
between two adjacent teeth. For t ∈ [τk, τ ′k], Xε(t) is in the spine and cannot enter
the teeth, because |Xε(t) − x| 6 ε/4 where x = Xε(τk) ∈ ε(Z + 1

2 ). Define the
increments ∆kX

ε = Xε(τk+1)−Xε(τk) ∈ {−ε,+ε}. By the strong Markov property
and symmetry of the domain, the random variables {(τ ′k − τk)}k ∪ {∆Xε

k}k are
independent. That is, {(τ ′k − τk)}k are independent, {∆Xε

k}k are independent, and
the {(τ ′k − τk)}k are independent of the {∆Xε

k}k.
Now, suppose thatW ′(t) is an independent Brownian motion on R, withW ′(0) =

0. Define another set of stopping times inductively by σ0 = 0 and
σk+1 = inf{t > σk | |W ′(t)−W ′(σk)| = ε/4}, k > 0.

Let ∆σk = σk+1 − σk, and ∆kW
′ = W ′(σk+1) −W ′(σk) ∈ {−ε/4, ε/4}. Observe

that the family of random variables
{(σk+1 − σk), 4∆W ′k}k>0

has the same law as the family
{(τ ′k − τk),∆Xε

k}k>0.

Next, define
K(t) = max{k > 0 | τk 6 t},

and observe that if |t−r| 6 δ and 0 6 r 6 t 6 T , then we must have τK(t)−τK(r)+1 6
δ and thus

K(t)−1∑
j=K(r)+1

(τ ′j − τj) 6 δ, and
K(t)−1∑
j=0

(τ ′j − τj) 6 T.

In this case,
|Xε(t)−Xε(r)| 6 2ε+ |Xε(K(t))−Xε(K(r) + 1)|

= 2ε+
∣∣∣ K(t)−1∑
j=K(r)+1

∆Xε
j

∣∣∣
6 2ε+ sup

06`6m

∣∣∣ m−1∑
j=`+1

∆Xε
j

∣∣∣1{∑m−1
j=`+1

(τ ′
j
−τj)6δ

}1{∑m−1
j=0

(τ ′
j
−τj)6T

} .
This last supremum has the same law as

sup
06`6m

∣∣∣ m−1∑
j=`+1

4∆W ′j
∣∣∣1{∑m−1

j=`+1
(σj+1−σj)6δ

}1{∑m−1
j=0

(σj+1−σj)6T
}

= sup
06`6m

4|W ′(σm)−W ′(σ`+1)|1{σm−σ`+16δ} 1{σm−σ06T} .

Since the right hand side of the above is bounded by
sup

r,t∈[0,T ]
|t−r|6δ

4|W ′(t)−W ′(r)| ,
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we obtain (3.2). �

We now prove Lemma 3.1.

Proof of Lemma 3.1. Note first that Lemma 3.4 immediately implies that the pro-
cesses Xε are tight. Indeed, by (3.2) we see

(3.3) lim
δ→0

lim sup
ε→0

P µε
(

sup
r,t∈[0,T ]
|t−r|6δ

|Xε(t)−Xε(r)| > a
)

= 0 .

Moreover, since µε converge weakly to the probability measure µ, the distributions
of Xε

0 are tight. This implies implies tightness of the processes Xε.
For tightness of Y ε, we note as above that the distributions of Y ε0 are already

tight. In order to control the time oscillations, fix T > 0, and let

dZε = dBt + dL∂Ωε
t ,

be the semi-martingale decomposition of Zε (see for instance [SV71]). Here B =
(B1, B2) is a standard Brownian motion and L∂Ωε is the local time of Zε on ∂Ωε.
Let ω(δ) = ωT (δ), defined by

ω(δ) = sup
s,t∈[0,T ]
|t−s|6δ

|B2(t)−B2(s)| ,

be the modulus of continuity for B2 over [0, T ]. Let [s, t] ⊂ [0, T ] with |t− s| 6 δ.
If 0 < Y εr < 1 for all r ∈ (s, t), then we must have

|Y ε(t)− Y ε(s)| = |B2(t)−B2(s)| 6 ω(δ) .

Otherwise, for some r ∈ (s, t) either Yr = 0 or Yr = 1. Let Gδ be the event that
ω(δ) < 1/2; on this event Y cannot hit both 0 and 1 on the interval [s, t]. Define

η− = inf{r > s | Y εr ∈ {0, 1}} , and η+ = sup{r < t | Y εr ∈ {0, 1}} .

In this case we have

|Y εt − Y εs | 6 max(|Y ε(η−)− Y ε(s)| , |Y ε(t)− Y ε(η+)|) + 1Gc
δ

+ ε2

= max(|B(η−)−B(s)| , |B(t)−B(η+)|) + 1Gc
δ

+ ε2 6 ω(δ) + 1Gc
δ

+ ε2.

Combining the two cases, we see that for any z ∈ Ωε,

P z
(

sup
s,t∈[0,T ]
|t−s|6δ

|Y ε(t)− Y ε(s)| > a
)
6 P (ω(δ) > a− ε2) + P (Gcδ).

Since the right hand side is independent of z, integrating over z with respect to µε
implies

lim
δ→0

lim sup
ε→0

P µε
(

sup
s,t∈[0,T ]
|t−s|6δ

|Y ε(t)− Y ε(s)| > a
)

= 0

holds for any a > 0. This shows tightness of Y ε in C([0, T ]), finishing the proof of
Lemma 3.1. �
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3.2. Uniqueness for the Martingale Problem (Lemma 3.2). The proof of
Lemma 3.2 relies on the existence of regular solutions to the corresponding parabolic
equation. We state this result next.

Lemma 3.5. For all f ∈ D(A), there exists a solution to

(3.4) ∂tu−Au = 0 , u(·, 0) = f , with u(·, t) ∈ D(A) .

Given Lemma 3.5, the proof of Lemma 3.2 is standard (see for instance [RW00,
EK86]). For the readers convenience, we describe it briefly here.

Proof of Lemma 3.2. Suppose Z,Z ′ are two processes satisfying the martingale
problem for A. Let f ∈ D(A) be any test function, and u be the solution in D(A)
of ∂tu − Au = 0 with initial data f . Then for any z ∈ Ω0, and fixed T > 0, the
processes u(Zt, T − t) and u(Z ′t, T − t) are both martingales under the measure P z.
Hence

Eµf(ZT ) =
∫

Ω0

Ezf(ZT )µ(dz) =
∫

Ω0

Ezu(Zt, T − t)µ(dz) =
∫

Ω0

u(z, T )µ(dz)

=
∫

Ω0

Ezu(Z ′t, T − t)µ(dz) =
∫

Ω0

Ezf(Z ′T )µ(dz) = Eµf(Z ′T ) .

Since D(A) is dense in C0(Ω0) this implies Z and Z ′ have the same one dimensional
distributions. By the Markov property, this in turn implies that the laws of Z and
Z ′ are the same. �

It remains to prove Lemma 3.5.

Proof of Lemma 3.5. Let v(x, t) = u(x, 0, t). Since (3.4) is equivalent to (1.7a)–
(1.7c), Proposition 1.41 implies that v satisfies the Basset type equation (1.8). For
the homogeneous equation associated with (1.8), existence and uniqueness is proved
in [Che17]. The inhomogeneous equation can be solved using an analog of Duhamel’s
principle [Uma12,US06]. Explicitly, for s > 0, let ṽs be a solution to the equation

∂tṽs(x, t) + α

2 ∂
w
t ṽs(x, t)−

1
2∂

2
xṽs(x, t) = 0 , for t > s ,(3.5a)

ṽs(x, s) =
(
I + α

2 I
w
s

)−1αf(x, ·)
2 .(3.5b)

Here Iw· is the integral operator with kernel w defined by

Iwt h =
∫ t

0
w(t− s)h(s) ds ,

for any function h : (0,∞) → R. Since Iw is a compact operator, the operator
(I + (α/2)Iw) is invertible, ensuring the initial condition (3.5b) can be satisfied. For
convenience, define ṽs(x, r) = ṽs(x, s) when r < s. Now, one can directly check that
the function v defined by

v(x, t) def=
∫ t

0
ṽs(x, t) ds ,

is a strong solution to the inhomogeneous equation (1.8).

1We remark that the proof of Proposition 1.4 is self contained, and does not rely on Theorem 1.1.
Thus its use here is valid and does not lead to circular logic loop.
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Since u satisfies the heat equation for y ∈ (0, 1) we can write u in terms of v and
f using the heat kernel. Explicitly, we have

u(x, y, t) = α

2

∫ 1

0
K ′′t (y, z)f(z) dz + κ

∫ t

0
∂zK

′′
t−s(y, 0)v(x, s) ds ,

where K ′′ is the heat kernel on (0, 1) with Dirichlet boundary conditions at y = 0
and Neumann boundary conditions at y = 1. Since v is C2,1 this immediately implies
u ∈ C2,1. Thus to show u(·, t) ∈ D(A) we only need to verify the flux condition (2.10).
This, however, follows immediately from the fact that ∂2

yu(x, 0, t) = 2∂tu(x, 0, t) =
2∂tv(x, t) and equation (2.22). �

3.3. Generator Estimate (Lemma 3.3). The main idea behind the proof of
Lemma 3.3 is to balance the local time Zε spends at the “gate” between the spine
and teeth, and the time spent in the spine. Explicitly, let S def= R× (−ε, 0) denote
the spine of Ωε, and T , defined by

T
def=
⋃
k∈εZ

{
(x, y)

∣∣ |x− εk| < αε2

2 , y ∈ (0, 1)
}
,

denote the collection of the teeth (see (1.1) and Figure 1). Let the “gate” G, defined
by

G
def= ∂T ∩ ∂S =

⋃
k∈εZ

{
(x, 0)

∣∣ |x− εk| 6 αε2

2
}
,

denote the union of short segments connecting the spine and teeth. Let LGt denote
the local time of Zεt at the set G. Now the required local time balance can be stated
as follows.

Lemma 3.6. For every g ∈ C1
b (R) and K ⊆ Ω0 compact we have

(3.6) lim
ε→0

sup
z∈K∩Ωε

Ez
(
α

∫ t

0
g(Xε

s )1{Y εs <0} ds− 2
∫ t

0
g(Xε

s )dLGs
)

= 0 .

Next, we will also need to show that the local times on the left edges and right
edges of the teeth balance. Explicitly, let ∂T−, ∂T+ defined by

∂T−
def=
{

(x, y) ∈ Zε
∣∣ x ∈ εZ− αε2

2 , y > 0
}
,

and ∂T+ def=
{

(x, y) ∈ Zε
∣∣ x ∈ εZ + αε2

2 , y > 0
}
.

denote the left and right edges of the teeth respectively. Let L+ and L− be the
local times of Zε about ∂T− and ∂T+ respectively, and let L± denote the difference

L± = L− − L+ .

The balance on the teeth boundaries we require is as follows.

Lemma 3.7. For every f ∈ D(A) and K ⊆ Ω0 compact, we have

(3.7) lim
ε→0

sup
z∈K∩Ωε

Ez
(∫ t

0

1
2∂

2
xf(Zε,+s )1{Y εs >0} ds+

∫ t

0
∂xf(Zε,+s ) dL±s

)
= 0 .

Momentarily postponing the proofs of Lemmas 3.6 and 3.7, we prove Lemma 3.3.
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Proof of Lemma 3.3. Given f ∈ D(A), we define fε : Ωε → R by

fε(x, y) def= f(x, y+) .

Thus, f(Zε,+t ) = fε(Zεt ), and (3.1) reduces to showing

lim
ε→0

sup
z∈K∩Ωε

Ez
(
fε(Zεt )− fε(Zε0)−

∫ t

0

1
2∂

2
yf

ε(Zεs ) ds
)

= 0 .

Since f ∈ D(A), we have ∂2
xf(x, 0) + α∂yf(x, 0) = ∂2

yf(x, 0) and ∂yf(x, 1) = 0.
Therefore, the extension fε satisfies ∂2

xf
ε(x, y) = ∂2

yf
ε(x, 0+) − α∂yfε(x, 0+) for

(x, y) ∈ S, as well as ∂yfε = 0 for (x, y) ∈ S. Notice that ∂yfε may be discontinuous
across G. Using these facts and Itô’s formula, we compute

Ez
(
fε(Zεt )− fε(Zεs )

)
= Ez

(∫ t

0

1
2
(
∂2
yf(Zε,+s ) + ∂2

xf(Zε,+s )
)

1{Y εs >0} ds
)

+ Ez
(∫ t

0

1
2∂

2
xf(Xε

s , 0+)1{Y εs <0} ds
)

+ Ez
(∫ t

0
∂yf(Xε

s , 0+) dLGs +
∫ t

0
∂xf(Zε,+s ) dL±s

)
= Ez

(∫ t

0

1
2
(
∂2
yf(Zε,+s ) + ∂2

xf(Zε,+s )
)

1{Y εs >0} ds
)

+ Ez
(1

2

∫ t

0

(
∂2
yf(Xε

s , 0+)− α∂yf(Xε
s , 0+)

)
1{Y εs <0} ds

)
+ Ez

(∫ t

0
∂yf(Xε

s , 0+) dLGs +
∫ t

0
∂xf(Zε,+s ) dL±s

)
,

and hence

Ez
(
fε(Zεt )− fε(Zε0)−

∫ t

0

1
2∂

2
yf

ε(Zεs ) ds
)

= Ez
(∫ t

0

1
2∂

2
xf(Zε,+s )1{Y εs >0} ds+

∫ t

0
∂xf(Zε,+s ) dL±s

)
− 1

2Ez
(∫ t

0
α∂yf(Xε

s , 0+)1{Y εs <0} ds− 2
∫ t

0
∂yf(Xε

s , 0+)dLGs
)
.

Using Lemmas 3.6 and 3.7 we see that the supremum over z ∈ Ωε ∩K of the right
hand side of the above vanishes as ε→ 0. This proves Lemma 3.3. �

It remains to prove Lemmas 3.6 and 3.7, and we do this in Sections 3.4 and 3.6
respectively.

3.4. Local Time at the Gate (Lemma 3.6). The crux in the proof of Lemma 3.6
is an oscillation estimate on the solution to a specific Poisson equation with Neu-
mann boundary conditions (Proposition 3.8, below). We state this when it is first
encountered, and prove it in the next subsection.

Proof of Lemma 3.6. The expectation in (3.6) can be written as

(3.8) Ez
(∫ t

0
αg(Xε

s )1{Y εs <0} ds− 2
∫ t

0
g(Xε

s ) dLGs
)
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=
∑
k∈Z

g(εk)Ez
(
α

∫ t

0
1{Y εs <0}1{|Xεs−εk|<ε/2} ds− 2

∫ t

0
1{|Xεs−εk|<ε/2} dL

G
s

)
+Rε

where the remainder term Rε is given by

Rε
def= α

∑
k∈Z

Ez
(∫ t

0
(g(Xε

s )− g(εk))1{Y εs <0}1{|Xεs−εk|<ε/2} ds
)

− 2Ez
(∫ t

0
(g(Xε

s )− g(εk))1{|Xεs−εk|<ε/2}dL
G
s

)
def= Rε1 +Rε2 .

To estimate Rε, for any δ > 0 we choose sufficiently large M > 0 such that

(3.9) sup
(x,y)∈K

E
(∫ t

0
1{|x|+4|Ws|+2>M} ds

)
<

δ

‖g‖∞
,

where W is a standard Brownian motion in R. Here we write P and E (without
superscripts) to denote the probability measure and expected value for a standard
Brownian motion. By Lemma 3.4, we have

P z(|Xε
s |+ 1 >M) 6 P (x+ 4|Ws|+ 2 >M) ,

where z = (x, y) and so the above estimate can be applied for Xε independent of
ε ∈ (0, 1/2]. Since g is continuous and hence uniformly continuous on [−M,M ], for
any δ > 0 we can choose ε > 0 such that if x1, x2 ∈ [−M,M ] with |x1 − x2| < ε
then |g(x1)− g(x2)| < δ. For such ε and for integers k ∈ ε−1[−M,M ] we have

(3.10) E(x,y)
∫ t

0
|g(εk)− g(Xε

s )|1{Y εs <0, |Xεs−εk|<ε/2} ds

6 δ
∫ t

0
P z
(
|Xε

s − εk| < ε/2
)
ds .

Combining the above with (3.9), gives the following estimate of Rε1

|Rε1| 6 α

(
δ

∑
k∈Z

εk∈[−M,M ]

∫ t

0
P z
(
|Xε

s − εk| <
ε

2

)
ds

+ 2‖g‖∞
∑
|εk|>M

∫ t

0
P z
(
|Xε

s − εk| <
ε

2

)
ds

)
6 α(t+ 2)δ .

Since δ > 0 was arbitrary this proves Rε1 → 0 as ε→ 0. An estimate for Rε2 can be
obtained in the same manner. Namely,

|Rε2| 6 2
(
δEz

(
LGt
)

+ 2‖g‖∞
∑
k∈Z
|εk|>M

Ez
(∫ t

0
1{|Xεs−εk|<ε/2} dL

G
s

))

6 c(t)δ + 2‖g‖∞Ex
(∫ t

0
1{|Xεs |+1>M} dL

G
s

)
.
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Let τ = inf{t | |Xε
t |+ 1 >M} and note that by the Markov property

Ez
(∫ t

0
1{|Xεs |+1>M} dL

G
s

)
6 Ez

(
EXετ

(
LGt−t∧τ

))
6
(

sup
z′

Ez′
(
LGt
))

P z(τ < t) .

Applying Itô’s formula to w(Zε), where

w(x, y) def=


1
2(1− y)2 , y ∈ [0, 1] ,

0, otherwise,
shows
(3.11) Ez(LGt ) = O(1) as t→ 0 .
By choosing M larger, if necessary, we have

sup
z∈K

P z(τ < t) < δ

for all ε ∈ (0, 1/2]. Since δ > 0 is arbitrary, this shows that Rε2 → 0 as ε→ 0.
Next, we need a PDE estimate to control the expression

Ez
(
α

∫ t

0
1{Y εs <0}1{|Xs−εk|<ε/2} ds− 2

∫ t

0
1{|Xs−εk|<ε/2}dL

G
s

)
.

from (3.8). To this end, let Q be a region of width ε directly below the tooth
at x = 0, and G0 be the component of G contained in [−ε/2, ε/2]× R. Explicitly,
let

(3.12) Q
def=
[
−ε2 ,

ε

2

]
×
[
−ε, 0

]
and G0 =

{
(x, 0)

∣∣∣−αε2

2 < x <
αε2

2

}
.

Let µε denote the one dimensional Hausdorff measure supported on G0 (i.e. a
measure supported on G0).

Proposition 3.8. Let the function uε : Ωε → R be the solution of
−∆uε = α1Q − µε in Ωε(3.13)

∂νu
ε = 0 on ∂Ωε ,(3.14)

with the normalization condition
(3.15) inf

Ωε
uε = 0 .

Then there exists a constant C > 0, independent of ε such that
(3.16) sup

Ωε
uε(z) 6 Cε2|ln ε| .

Remark. Existence of a solution to (3.13)–(3.14) can be proved by using [Dro00, Thm.
2.2] and a standard approximation argument to deal with the unbounded domain.
See also [Gri85, Thm. 2.2.1.3].

Throughout the remainder of this proof and the section, we will use the convention
that C > 0 is a constant that is independent of ε. We apply Itô’s formula to the
function uε defined in Proposition 3.8 to obtain

2Ez(uε(Zεt )− uε(Zε0)) = −Ez
(
α

∫ t

0
1Q(Zεs ) ds− 2LG0

t

)
.
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= Ez
(
α

∫ t

0
1{Y εs <0}1{|Xs|<ε/2} ds− 2

∫ t

0
1{|Xs|<ε/2}dL

G
s

)
.

The oscillation bound (3.16) now implies∣∣∣∣Ez
(
α

∫ t

0
1{Y εs <0}1{|Xs−εk|<ε/2} ds− 2

∫ t

0
1{|Xs−εk|<ε/2}dL

G
s

)∣∣∣∣ 6 Cε2| log ε|

holds for all k and x ∈ R. Because of (3.9), we can restrict the sum in (3.8) to
k ∈ Z for which ε|k| 6M (i.e. only O(ε−1) terms in the sum). Therefore,∑

k∈Z
ε|k|6M

Ez
(
α

∫ t

0
1{Y εs <0}1{|Xεs−εk|<ε/2} ds− 2

∫ t

0
1{|Xεs−εk|<ε/2}dL

G
s

)
6 O(ε| log(ε)|).

Combining this with the above estimates, we conclude that (3.6) holds. �

To complete the proof of Lemma 3.6, it remains to prove Proposition 3.8. We do
this in the next subsection.

3.5. An Oscillation Estimate for the Neumann Problem (Proposition 3.8).
The proof of Proposition 3.8 involves a “geometric series” argument using the
probabilistic representation. Explicitly, we obtain the desired oscillation estimate
by estimating the probabilities of successive visits of Zε between two segments.
The key step in the proof involves the so called narrow escape problem (see for
instance [HS14]), which guarantees that the probability that Brownian motion exists
from a given interval on the boundary of a domain vanishes logarithmically with the
interval size. In our specific scenario, however, we can not directly use the results
of [HS14] and we prove the required estimates here.

Proof of Proposition 3.8. Note first that∫
Ωε

(
α1Q − µε

)
dz = 0 ,

and hence a bounded solution to (3.13)–(3.14) exists. Moreover, because the measure
α1Q(z)− µε is supported in Q̄, the function uε is harmonic in Ωε − Q̄. Thus, by
the maximum principle,

sup
Ωε

uε 6 sup
Q
uε .

Define Q′ ⊇ Q to be the region that enlarges Q by ε2 on the top, and ε/4 on the
sides. Precisely, let

Q′
def= Ωε

⋂([
−3ε

4 ,
3ε
4
]
×
[
−ε, ε2]) .

The first step is to estimate the oscillation of uε on the top and side portion of Q′.
Let A′ and D′, defined by

(3.17) A′
def=
[
−αε

2

2 ,
αε2

2

]
×
{
αε2} and D′

def=
{
±3ε

4

}
×
[
−ε, 0

]
denotes the top and sides of Q′ respectively. We aim to show

sup
a,d∈A′∪D′

|uε(a)− uε(d)| 6 Cε2|ln ε| .(3.18)
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Q

G0

A′

D′ D′D D

Figure 3. Image of one period of Ωε.

Let τ0 be the first time at which the process Zεt hits the gate G0 (defined in (3.12)).
The stopping time τ0 is finite almost surely, but has infinite expectation. We claim
that the distribution of Zετ0 on G is bounded below by a constant multiple of the
Hausdorff measure, uniformly over all initial points in A′ ∪D′.

Lemma 3.9. For any z ∈ A′ ∪D′, let ρ(z, ·), defined by
ρ(z, r) = P z(Zετ0 ∈ dr) ,

denote the density of the random variable Zετ0 on G0. Then, there exists δ > 0 such
that

(3.19) ρ(z, r) > δ

αε2 ,

for all z ∈ A′ ∪D′ and r ∈ G0.

Momentarily postponing the proof of this lemma, we note that for any a, d ∈
A′ ∪D′, we have

Eauε(Zετ0)−Eduε(Zετ0) =
∫
G0

ρ(a, r)uε(r) dr −
∫
G0

ρ(d, r)uε(r) dr

=
∫
G0

(
ρ(a, r)− δ

αε2

)
uε(r) dr −

∫
G0

(
ρ(d, r)− δ

αε2

)
uε(r) dr

6 (1− δ)
(

sup
G0

uε − inf
G0
uε
)
6 (1− δ)

(
sup

r1,r2∈G0

|uε(r1)− uε(r2)|
)
.

To obtain the second last inequality above we used the fact that

(3.20) ρ(z, r)− δ

αε2 > 0 ,

which is guaranteed by Lemma 3.9.
Now by Itô’s formula,

uε(a)− uε(d) = Eauε(Zετ0)−Eduε(Zετ0)− 1
2Ea

(
2LG

+
0

τ0 − α
∫ τ0

0
1Q(Zεs ) ds

)
+ 1

2Ed
(

2LG
+
0

τ0 − α
∫ τ0

0
1Q(Zεs ) ds

)
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6 (1− δ) sup
r1,r2∈G0

|uε(r1)− uε(r2)| − 1
2Ea

(
2LG

+
0

τ0 − α
∫ τ0

0
1Q(Zεs ) ds

)
+ 1

2Ed
(

2LG
+
0

τ0 − α
∫ τ0

0
1Q(Zεs ) ds

)
(3.21)

Note that by definition of τ0 we have we have LG
+
0

τ0 = 0 for all a, d ∈ A′ ∪D′. Also,
if a ∈ A′, then Y εs > 0 for all s ∈ [0, τ0] with probability one. Hence

(3.22) sup
a,d∈A′∪D′

∣∣∣−1
2Ea

(
2LG

+
0

τ0 − α
∫ τ0

0
1Q(Zεs ) ds

)
+ 1

2Ed
(

2LG
+
0

τ0 − α
∫ τ0

0
1Q(Zεs ) ds

)∣∣∣ 6 α sup
d∈D′

Ed

∫ τ0

0
1Q(Zεs ) ds .

We claim that the term on the right is bounded by Cε2|ln ε|. To avoid distracting
from the main proof, we single this out as a lemma and postpone the proof.

Lemma 3.10. With the above notation,

sup
d∈D′

Ed

∫ τ0

0
1Q(Zεs ) ds 6 Cε2|ln ε| .

Using Lemma 3.10 and (3.22) in (3.21) we conclude
sup

a,d∈A′∪D′
|uε(a)− uε(d)| 6 (1− δ) sup

r1,r2∈G0

|uε(r1)− uε(r2)|+ Cε2|ln ε| .(3.23)

To finish proving (3.18), we will now have to control the oscillation of uε on G0 in
terms of the oscillation of uε on A′ ∪D′.

For this, given Zε0 ∈ G0, let τ ′0 be the first time that Zεt hits A′ ∪D′. By Itô’s
formula again, we have for all r1, r2 ∈ G0:

(3.24) uε(r1)− uε(r2) 6 sup
a′,d′∈A′∪D′

(uε(a′)− uε(d′))

− 1
2Er1

(
2LG0

τ ′0
− α

∫ τ ′0

0
1Q ds

)
+ 1

2Er2
(

2LG0
τ ′0
− α

∫ τ ′0

0
1Q ds

)
.

We claim that the last two terms above are O(ε2). For clarity of presentation we
single this out as a Lemma and postpone the proof.

Lemma 3.11. With the above notation

sup
r∈G0

∣∣∣Er
(

2LG0
τ ′0
− α

∫ τ ′0

0
1Q(Zεs ) ds

)∣∣∣ 6 Cε2 .

Using (3.24) and Lemma 3.11, we see
sup

r1,r2∈G0

|uε(r1)− uε(r2)| 6 sup
a,d∈A′∪D′

|uε(a)− uε(d)|+ Cε2 .(3.25)

Combining this with (3.23), we obtain

sup
a,d∈A′∪D′

|uε(a)− uε(d)| 6 (1− δ)
(

sup
a,d∈A′∪D′

|uε(a)− uε(d)|+ Cε2|ln ε|
)

+ Cε2 .

and hence

sup
a,d∈A′∪D′

|uε(a)− uε(d)| 6 C
(1− δ

δ

)
ε2|ln ε|+ C

δ
ε2 .(3.26)

This proves (3.18) as desired.
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Now we turn this into an oscillation bound on uε over the interior. Observe that
for any z ∈ Ωε,

uε(z) = Ez[uε(Zετ ′0)] + 1
2Ez

(
2LY

ε

τ ′0
(0+)− α

∫ τ ′0

0
1{Y εs 60} ds

)
(3.27)

These last terms can be estimated with the same argument used in Lemma 3.11,
leading to

sup
z∈Ωε
|uε(z)−Ezuε(Zετ ′0)| 6 Cε2 .

The combination of this and (3.26) implies that
sup

z1,z2∈Ωε
|uε(z1)−uε(z2)| 6 sup

z1,z2∈Ωε
|Ez1uε(Zετ ′0)−Ez2uε(Zετ ′0)|+Cε2 6 Cε2(|ln ε|+1) .

This implies (3.16), concluding the proof. �

For the proof of Lemma 3.9 we will use a standard large deviation estimate for
Brownian motion. We state the result we need below.

Lemma 3.12. Let Wt be a standard Brownian motion in Rd. Let γ ∈ C([0, T ];Rd)
be absolutely continuous with S(γ) =

∫ T
0 |γ

′(s)|2 ds <∞. Then

P

(
sup
t∈[0,T ]

|W (t)− γ(t)| 6 δ
)
>

P (K)
2 e−

1
2S(γ)−

√
2S(γ)/P (K)

where K is the event {supt∈[0,T ] |W (t)| 6 δ}.

The proof of Lemma 3.12 is standard – it follows from a change of measure, as in
the proof of Theorem 3.2.1 of [FW12], for example. For convenience we provide a
proof at the end of this section, and prove Lemmas 3.9, 3.10 and 3.11 next.

Proof of Lemma 3.9. We need to show that for an interval [r1, r2] ⊂ [−αε2/2, αε2/2],

inf
z∈A′∪D′

P z
(
Zετ0 ∈ [r1, r2]× {0}

)
> C
|r2 − r1|
αε2 .

Suppose z ∈ D′ (the case z ∈ A′ is similar but less complicated by the domain
geometry). In order to hit G0, the process must first hit the boundary of B(0, αε2)
which is a ball of radius αε2, centered at the origin (0, 0), since G0 ⊂ B(0, αε2). So,
by the strong Markov property, it suffices to show that

inf
z∈B(0,ε2)

P z
(
Zετ0 ∈ [r1, r2]× {0}

)
> C
|r2 − r1|
αε2 .

Suppose that [r1, r2] = [r0 − κ, r0 + κ]. Let ` = {r0} × [−ε2, 0) be the vertical
line segment of length ε2 below the desired exit interval. Let T = ε4, δ = ε2/4,
and let γ be a curve parametrized by arc-length such that γ(0) = z and the event
supt∈[0,T ] |Zε(t)− γ(t)| 6 δ implies that Zε hits ` before G0 (one example of such a
curve is shown in Figure 4). We can choose such a curve γ for which |γ′| 6 O(ε−2),
so that the quantity S(γ) in Lemma 3.12 is bounded independent of ε and of
z = γ(0) ∈ B(0, ε2). Notice also that the set K from Lemma 3.12 satisfies

P (K) = P
(

sup
t∈[0,T ]

|W (t)| 6 δ
)

= P
(

sup
t∈[0,1]

|W (t)| 6 δ√
T

)
by Brownian scaling. Then since δ/

√
T is constant, this probability is bounded

below and Lemma 3.12 states the probability that Zεt hits ` before G0 is bounded
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γ(T ) γ

G0

(r0, 0)

κ

`
z

δ

Figure 4. The curve γ starts on ∂B(0, ε2), goes through the line
` while keeping a distance δ from the gate G0.

below (away from zero), independent of ε. By the Markov property it now suffices
to finish the proof assuming z0 ∈ `. Then consider the unique circle with center at
z0 ∈ ` such that the circle intersects G0 at the points (r0 − κ, 0) and (r0 + κ, 0). By
symmetry of Brownian motion, the exit distribution on the circle is uniform. The
probability that Zετ0 ∈ [r0 − κ, r0 + κ] is at least the probability of exiting this circle
along the arc above G0, which is the ratio of the arc length to the circumference.
This probability is bounded below by 2κ/(αε2) & |r1 − r2|/(αε2). �

Proof of Lemma 3.10. By the Markov property, Lemma 3.10 will follow from the
estimate

(3.28) sup
z∈Q

Ez

∫ τ0

0
1Q(Zεs ) ds 6 Cε2|ln ε| .

Let D = {±ε/2}× [−ε, 0] be the sides of Q, and recall D′ (defined in (3.17)) denotes
the sides of Q′. We consider two sequences of stopping times, ζi, ηi, denoting
successive visits of of Zε to G0 ∪ D′ and D respectively. Precisely, let η0 = 0,
inductively define

ζi = inf{s > ηi−1 | Zεs ∈ G0 ∪D′}
ηi = inf{s > ζi | Zεs ∈ D} ,

for i ∈ {1, 2, . . .}, and let
M = min{n ∈ N | Zεζn ∈ G0} .

Notice that ζM = τ0. Using the strong Markov property, and the fact that Zεs /∈ Q
for s ∈ (ζi, ηi) for all i < M , we obtain

Ez

∫ τ0

0
1Q(Zεs ) ds = Ez

M∑
i=1

∫ ζi

ηi−1

1Q(Zεs ) ds = Ez
M∑
i=1

E
Zεηi−1

∫ ζ1

0
1Q(Zεs ) ds

6 (EzM)
(

sup
d∈D

Ed

∫ ζ1

0
1Q(Zεs ) ds

)
.(3.29)
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Since ζ1 is bounded by the exit time of a one dimensional Brownian motion (the
first coordinate of Zε) from an interval of length 3ε/2, we know

sup
d∈D

Edζ1 6 Cε
2 .

Using this in (3.29) shows

(3.30) Ez

∫ τ0

0
1Q(Zεs ) ds 6 Cε2EzM .

We now estimate EzM . Notice that
P z(M > n) = P z(Zεζ1 6∈ G0, Z

ε
ζ2 6∈ G0, . . . , Z

ε
ζn 6∈ G0)

= Ez
(

1{Zε
ζ1
6∈G0, Zεζ2

6∈G0, ..., Zεζn−1
6∈G0}P

Zεηn−1 (Zεζ1 6∈ G0)
)

6 P z(Zεζ1 6∈ G0, Z
ε
ζ2 6∈ G0, . . . , Z

ε
ζn−1

6∈ G0)
(

sup
d∈D

P d(Zεζ1 6∈ G0)
)

= P z(M > n− 1)
(

sup
d∈D

P d(Zεζ1 6∈ G0)
)
.

Thus, by induction

P z(M > n) 6
(

sup
d∈D

P d(Zεζ1 6∈ G0)
)n

.

Now we claim that there exist a constant c0 > 0, independent of ε, such that

(3.31) sup
d∈D

P d
(
Zεζ1 6∈ G0

)
< 1− c0

|ln ε| .

This is the key step in the proof. Once established, it implies

EzM =
∞∑
n=1

P z(M > n) 6
∞∑
n=1

(
1− c0
|ln ε|

)n−1
= |ln ε|

c0
,

which when combined with with (3.30) yields

(3.32) sup
z∈D

Ez

∫ τ1

0
1Q(Zεs ) ds 6 Cε2|ln ε|

c0
.

This proves (3.28) and finishes the proof of Lemma 3.10.
Thus it only remains to prove (3.31). We will prove it by showing

(3.33) inf
z∈D

P z
(
Zεζ1 ∈ G0

)
>

c0
|ln ε| .

We will prove this in three stages. First, by scaling, it is easy to see that the
probability that starting from D the process Zε hits B(0, ε/4) before D′ with
probability c0 > 0. Next, using the explicit Greens function in an annulus we
show that the probability that starting from B(0, ε/4), the process Zε hits B(0, αε2)
before exiting B(0, ε/2) with probability c0/|ln ε|. Finally, by scaling, it again follows
that that starting from B(0, αε2) the process Zε hits G0 before exiting B(0, 2αε2)
with probability c0 > 0.

For the first stage, consider the stopping times

σε/4 = inf
{
t > 0

∣∣∣ Zεt ∈ B(0, ε4

)}
,

σD′ = inf{t > 0 | Zεt ∈ D′} .



28 COHN, IYER, NOLEN, AND PEGO

By rescaling, it immediately follows that
(3.34) inf

z∈D
P (σε/4 < σD′ | Zε0 = z) > p1 ,

for some p1 > 0, independent of ε.
For the second stage suppose for Zε0 ∈ ∂B(0, ε/4). Consider the stopping

times σαε2 and σε/2 defined by

σαε2 = inf{t > 0 | Zεt ∈ ∂B(0, ε2)} ,
σε/2 = inf{t > 0 | Zεt ∈ ∂B(0, ε/2)} .

The function
f(z) = ln(2|z|/ε)

ln(2αε)
is harmonic in B(0, ε/2)−B(0, αε2) and satisfies f = 1 on ∂B(0, αε2), and f = 0
on ∂B(0, ε/2). This implies that for all z ∈ B(0, ε/4) we have

(3.35) P z(σαε2 < σε/2) = f(z) = ln(1/2)
ln(2ε) .

Finally, for the last stage, let σ2αε2 be the first time Zε exits B(0, 2αε2). By
scaling, it immediately follows that for all z ∈ ∂B(0, αε2)
(3.36) P z(τ0 < σ2αε2) > p2 ,

for some constant p2 > 0, independent of ε.
The strong Markov property and (3.34), (3.35), and (3.36) imply

inf
z∈D

P (Zεζ1 ∈ G0 | Zε0 = z) > p1 ·
ln(1/2)
ln(2αε) · p2 .

By the time-homogeneity of the Markov process Zε, this establishes (3.33), finishing
the proof. �

Proof of Lemma 3.11. To estimate the local time term, consider the function

w(x, y) =
{
αε2 − y , y ∈ [0, αε2] ,
αε2, otherwise,

which satisfies ∂yw(x, 0+)− ∂yw(x, 0−) = −1 for x ∈ [−αε2/2, αε2/2]. Let τA′ be
the first hitting time to the set A′, where we know w = 0. Using Itô’s formula we
obtain

EzLG0
τA′

= w(z), z ∈ G0.

Clearly τA′ > τ ′0, and so
sup
z∈G0

EzLG0
τ ′0
6 sup
z∈G0

EzLG0
τA′

= αε2 .

Next, we estimate the term

(3.37) sup
z∈G0

Ez

∫ τ ′0

0
1Q(Zεs ) ds .

Let τD′ = inf{t > 0 | Zεt ∈ D′}, so that τD′ > τ ′0. Let H = {(x, y) ∈ R2 | y = −ε}
denote the bottom boundary of Ω0, and let H ′ = [−3ε/4, 3ε/4]×{−ε} = Q̄′∩H. We
now consider repeated visits to H ′ before hitting D′. For this, define the stopping
times {ζk}∞k=0 inductively by

ζ0 = inf{t > 0 | Zεt ∈ H} ,
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ζk = inf{t > ζk−1 + ε2 | Zεt ∈ H} , for k = 1, 2, 3, . . . ,
and define

M = min{k ∈ N | Zεζk ∈ H −H
′} .

Observe that if Zε0 ∈ G0, then τD′ 6 ζM . Indeed, since ZεζM ∈ H − H ′ and
trajectories of process Zε is continuous, they must must have passed through the
set D′ at some time before ζM .

Now, to bound (3.37) we observe∫ τ ′0

0
1Q(Zεs ) ds 6

∫ ζ0

0
1Q(Zεs ) ds+

M∑
k=1

∫ ζk

ζk−1

1Q(Zεs ) ds.(3.38)

On the event {M > k − 1} we must have Zεζk−1
∈ H ′. Using this observation, the

strong Markov property, and the time-homogeneity of the process, we see that for
any z ∈ G0 we have

Ez

∫ τ ′0

0
1Q(Zεs ) ds 6 Ez

∫ ζ0

0
1Q(Zεs ) ds+ Ez

M∑
k=1

∫ ζk

ζk−1

1Q(Zεs ) ds

= Ez

∫ ζ0

0
1Q(Zεs ) ds+ Ez

M∑
k=1

E
Zεζk−1

∫ ζ1

ζ0

1Q(Zεs ) ds

6 Ez

∫ ζ0

0
1Q(Zεs ) ds+ Ez

M∑
k=1

sup
z′∈H′

Ez′
∫ ζ1

ζ0

1Q(Zεs ) ds

= Ez

∫ ζ0

0
1Q(Zεs ) ds+ (EzM) sup

z′∈H′
Ez′

∫ ζ1

ζ0

1Q(Zεs ) ds .(3.39)

We now bound the right hand side of (3.39). Note

(3.40) EzM =
∞∑
j=1

P z(M > j) =
∞∑
j=1

P z(Zεζ0 ∈ H
′, Zεζ1 ∈ H

′, . . . , Zεζj−1
∈ H ′) .

By the Markov property

P z
(
Zεζi+1

∈ H ′, Zεζi ∈ H
′) = Ez

(
1Zε

ζi
∈H′P

Zεζi (Zεζ1 ∈ H
′)
)

6
(

sup
z′∈H′

P z′(Zεζ1 ∈ H
′)
)

P z(Zεζi ∈ H
′)(3.41)

Now using Lemma 3.12 and the fact that ζ1 > ε2, one can show that

sup
z′∈H′

P z′(Zεζ1 ∈ H
′) 6 1− c0 ,

for some constant c0 > 0, independent of ε. Combining this with (3.41) and using
induction we obtain

∞∑
j=1

P z(Zεζ0 ∈ H
′, Zεζ1 ∈ H

′, . . . , Zεζj−1
∈ H ′) 6

∞∑
j=1

(1− c0)j−1 .

Thus, using (3.40) we see

EzM 6
1
c0
.
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Using this in (3.39) we have

Ez

∫ τ ′0

0
1Q(Zεs ) ds 6 Ez

∫ ζ0

0
1Q(Zεs ) ds+ 1

c0
sup
z′∈H′

Ez′
∫ ζ1

ζ0

1Q(Zεs ) ds

6 Ez

∫ ζ0

0
1Q(Zεs ) ds+ 1

c0

(
ε2 + sup

z′∈Ω
Ez′

∫ ζ0

0
1Q(Zεs ) ds

)
.(3.42)

To bound this, consider the function

v(x, y) =
{ 1

2 (ε2 − y2) , y ∈ [−ε, 0] ,
1
2ε

2 , y > 0 .

and observe that for any z ∈ Ωε,

Ez

∫ ζ0

0
1Q(Zεs ) ds 6 Ezζ0 = v(z) 6 ε2

2 .

Substituting this in (3.42) shows

Ez

∫ τ ′0

0
1Q(Zεs ) ds 6

(1
2 + 3

2c0

)
ε2 ,

completing the proof. �

Finally, for completeness we prove Lemma 3.12. The proof is a standard argument
using the Girsanov theorem, and can for instance be found in [FW12] (see Theorem
3.2.1, therein).

Proof of Lemma 3.12. Define Y (t) = W (t) − γ(t). Let B(t) be an independent
Brownian motion in R with respect to measure P . Let define a new measure Q by

dQ

dP
= e
−
∫ T

0
γ′(s) dB(s)− 1

2

∫ T
0
|γ′(s)|2 ds

Let K̃ be the event K̃ = K̃T,δ = {supt∈[0,T ] |B(t)| 6 δ}. Let S(γ) =
∫ T

0 |γ
′(s)|2 ds.

According to the Girsanov theorem,

P ( sup
t∈[0,T ]

|Y (t)| 6 δ) = Q(K̃)

= EP

[
1K̃e

−
∫ T

0
γ′(s) dB(s)− 1

2

∫ T
0
|γ′(s)|2 ds

]
= e−

1
2S(γ)EP

[
1K̃e

−
∫ T

0
γ′(s) dB(s)

]
Now, by Chebychev and the Itô isometry,

P

(∫ T

0
γ′(s) dB(s) > α

√
S(γ)

)
6

1
α2

So, if 1
α2 6 1

2P (K̃), we have

P

(
sup
t∈[0,T ]

|Y (t)| 6 δ
)
> e−

1
2S(γ)−α

√
S(γ))1

2P (K̃)
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In particular, by choosing α =
√

2/P (K̃) > 0, we have

P

(
sup
t∈[0,T ]

|Y (t)| 6 δ
)
> e−

1
2S(γ)−

√
2S(γ)/P (K̃) 1

2P (K̃)

Note that P (K̃) = P (K) since B and W have the same law under P . �

3.6. Local Time on Teeth Boundaries (Lemma 3.7). The last remaining
lemma to prove is Lemma 3.7 which is the local time balance within the teeth.
We again use the symmetry and geometric series arguments as in the proof of
Proposition 3.8.

Proof of Lemma 3.7. As with (3.6), we will estimate

(3.43) Ik
def= Ez

(∫ t

0

1
2∂

2
xf(Zεs )1{Y εs >0}1{|Xεs−εk|<ε/2} ds

+
∫ t

0
∂xf(Zεs )1{|Xεs−εk|<ε/2} dL

±
s

)
for any z ∈ K ∩ Ωε. As before, Lemma 3.7 will follow if we can show that for any
finite M ,

∑
ε|k|<M Ik vanishes as ε→ 0. Since there are O(1/ε) terms in the sum,

it suffices to bound each Ik by o(ε). Without loss of generality, assume k = 0 and
let T0 = [−αε2/2, αε2/2] × [0, 1] denote the tooth centered at k = 0. Define the
function f̃ : T0 → R by

f̃(x, y) def= f(x, y)− f(0, y)− x∂xf(0, y) ,

Note that for all (x, y) ∈ T0 we have

f̃(0, y) = 0 , ∂xf̃(0, y) = 0 , and ∂2
xf̃(x, y) = ∂2

xf(x, y) .

and hence ‖f̃‖∞ = O(ε4). Moreover,

∂2
y f̃(x, y) = ∂2

yf(x, y)− ∂2
yf(0, y)− x∂x∂2

yf(0, y) = O(ε4),

assuming ∂2
yf ∈ C1, and ∂y f̃(x, 0) = O(ε4) for x ∈ [−αε2/2, αε2/2].

We now extend the definition of f̃ continuously outside of T0 (into the spine) to
a O(ε2) neighborhood of G as follows. Let η(x, y) be a smooth, radially-symmetric
cutoff function, vanishing outside of B2(0, 0) and such that η(z) = 1 for |z| 6 1.
Then, for y 6 0 (i.e. outside the tooth T0), define

f̃(x, y) def= η
( x

αε2 ,
y

αε2

)(
f(x, 0)− f(0, 0)− x∂xf(0, 0)

)
.

In this way, f̃ has the additional properties that
(1) f̃ vanishes outside of T0 ∪B2αε2(0, 0),
(2) ∂y f̃ = 0 on (∂Q)−G,
(3) The jump in ∂y f̃ across G is O(ε4),
(4) ∆f̃ = O(1) in the region B−2αε2 = {y 6 0} ∩B2αε2(0, 0).

This last point stems from the fact that |f(x, 0)− f(0, 0)− x∂xf(0, 0)| = O(ε4). In
view of this construction, we see that

I0 = Ez
(∫ t

0

1
2(∂2

xf̃ + ∂2
y f̃)(Zεs )1{Zεs∈T0} ds−

∫ t

0
∂xf̃(Zεs )1{Zεs∈T0}dL

+
s

)



32 COHN, IYER, NOLEN, AND PEGO

+ Ez
(∫ t

0
∂xf(0, Y εs )d(L−s − L+

s )
)

+O(ε2)t

= R1 +R2 +O(ε2)t .

Notice how we have introduced the ∂2
y f̃ term for the price of O(ε2)t. We also still

have ∂y f̃(x, 1) = 0 on the top boundary of the tooth. By Itô’s formula applied to f̃ ,
we have

R1 = Ez[f̃(Zεt )− f̃(Zε0)] + Ez
(∫ t

0
∂y f̃(Xε

s , 0)dLG
)

+ Ez
(∫ t

0
O(1)1B2αε2

(Zs) ds
)

= O(ε4) +O(ε2)Ez
(
LGt

)
+O(1)Ez

(∫ t

0
1B−

2αε2
(Zs) ds

)
= O(ε4) +O(ε2) +O(1)R3,

by since EzLGt = O(1) by (3.11).
We now estimate the term R2. By symmetry with respect to reflection in the y

coordinate, we note that

Ez′
(∫ t

0
∂xf(0, Y εs )d(L−s − L+

s )
)

= 0

for any z′ = (0, y) on the axis of the tooth T0. Thus by symmetry and the Markov
property, it suffices to estimate

Ez
(∫ τ

0
∂xf(0, Y εs ) dL+

s

)
,

where τ = inf{t |Xε
t = 0} is the first time that Zεt reaches this x-axis {0} × R, and

z is to the right of the y-axis. Clearly this is bounded by ‖∂xf‖∞EzL+
τ . Moreover,

using x ∧ αε2/2 as a test function, we immediately see EzL+
τ 6 αε

2/2. This shows
R2 = O(ε2) as desired.

Finally, we estimate the term

R3 = Ez
(∫ t

0
1B−

2αε2
(Zs) ds

)
,

where B−2αε2 = {y 6 0} ∩ B2ε2(0, 0). The geometry of the domain Ωε makes this
estimate a little tedious. Since the proof is very similar to the arguments used in
the proof of Proposition 3.8, we do not spell out all the details here.

We will show that R3 6 O(ε3| log(ε)|). For this, we first claim

sup
z∈Ωε∩K

Ez
(∫ τ4αε2

0
1B−

2αε2
(Zs) ds

)
6 O(ε4)

where τ4αε2 = inf{t | Zεt ∈ D−4ε2}, and D−4αε2 = {y 6 0} ∩ ∂B4αε2(0, 0). This
follows by directly applying Itô’s formula with a function f satisfying ∆f 6 0 in
{y 6 0} ∩B4αε2(0, 0)}, with ∆f 6 −c < 0 in B−2αε2 .

Next, we claim that there is C > 0 such that

inf
z∈D−

4αε2

P z
(
σε/2 6 τ2αε2

)
>

C

|log(ε)| ,

where σε/2 = inf{t | |Xε
t | = ε/2} and τ2αε2 = inf{t |Zεt ∈ B−2αε2}. This is the narrow

escape asymptotics [HS14], and follows from a direct calculation with the Greens
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function in a manner similar to the proof of (3.31). Finally, we claim that for any
t > 0, there is C > 0 such that

inf
{|x|=ε/2}

P z(τ2αε2 > t) > Cε.

This follows from comparison between Xε
t and a standard Brownian motion on R,

via Lemma 3.4. Thus, starting from z ∈ D−4αε2 , with probability at least Cε/| log(ε)|
the process Zt will make a long excursion such that it doesn’t return to B−2αε2 before
time t. Using the same geometric series argument as in the proof of Lemma 3.10,
we have

R3 6 C(log(ε)/ε) sup
z

Ez
(∫ τ4αε2

0
1B−

2αε2
(Zs) ds

)
= O(ε3| log(ε)|) ,

as claimed.
Finally, combining all these estimates we conclude that for any k, Ik (defined

in (3.43)) is at most O(ε2). Consequently
∑
ε|k|<M Ik → 0 as ε→ 0, concluding the

proof. �

3.7. Remarks About Other Scalings. Consider a comb-shaped domain with
the general scaling described in Remark 1.5. For clarity, let us suppose that

wS(ε) = εσ , and wT (ε) = αε1+σ

2 ,

for some σ > 0. Theorem 1.1, which we have proved already, pertains to the
case σ = 1. In the cases σ < 1 and σ > 1, the same arguments may be applied,
showing that the limit process is the same as with σ = 1. Only a minor modification
of Proposition 3.8 and its supporting lemmas are required, and we sketch those
modifications here.

Analogous to the previous definition (3.12), we define the sets

(3.44) Q =
[
−ε2 ,

ε

2
]
×
[
−εσ, 0

]
and G0 =

{
(x, 0)

∣∣∣−αε1+σ

2 < x < α
ε1+σ

2

}
.

Notice that Q is no longer a square if σ 6= 1. In the case σ > 1, the bound
0 6 uε 6 Cε2| ln ε| in Proposition 3.8 remains unchanged. The proofs of Lemma 3.9,
Lemma 3.10, and Lemma 3.11, extend in a straightforward way. In particular, the
lower bound in Lemma 3.9 becomes ρ(z, r) > δ/(αε1+σ). In the proof of (3.33)
within Lemma 3.10, the balls B(0, εσ/4) and B(0, αε1+σ) fill the roles of B(0, ε/4)
and B(0, αε2) in the previous proof.

In the case σ ∈ (0, 1), the bound on uε in Proposition 3.8 becomes 0 6 uε 6
Cε1+σ| ln ε|. Nevertheless, this bound is still o(ε), so that the rest of the argument
for the proof of Lemma 3.3 proceeds as before. To prove this modification of
Proposition 3.8, we can modify Lemma 3.9, Lemma 3.10, and Lemma 3.11, as
follows. First, A′ and D′ are defined to be the sets

A′
def=
[
−αε

1+σ

2 , α
ε1+σ

2

]
× {αε1+σ} and D′

def= {±εσ} × [−εσ, 0].

With these definitions, the lower bound of Lemma 3.9 becomes ρ(z, r) > δ
αε1+σ . In

Lemma 3.10, the analogous bound becomes O(ε1+σ| ln(ε|). Here, the logarithmic
factor arises in the same way as before. The ε1+σ factor comes from the fact that
for a Brownian motion on R, the expected time spent in [−ε, ε] before hitting ±εσ
is O(ε1+σ). Similarly, the bound in Lemma 3.11 is O(ε1+σ). Together these imply
the O(ε1+σ| ln ε|) upper bound in Proposition 3.8.
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4. Comb-Shaped Graphs (Theorem 1.7).

4.1. An SDE Description of Zε. We begin by constructing the graph diffusion
Zε on the comb Cε. Following the approach of Freidlin and Sheu [FS00], let Lε be
the linear operator defined by

(4.1) Lεf =


1
2∂

2
yf if (x, y) ∈ εZ× (0, 1) ,

1
2∂

2
xf if (x, y) ∈ R× {0} .

Let the domain, denoted by D(Lε), be the set of all functions
f ∈ C0(Ωε) ∩ C2

b (Ωε − Jε)
such that Lεf ∈ C0(Ωε) and

αε∂yf(x, 0) + ∂+
x f(x, 0)− ∂−x f(x, 0) = 0 for x ∈ εZ ,(4.2a)

∂yf(x, 1) = 0 for x ∈ εZ(4.2b)

The general theory in [EK86, §4.1–4.2] (see also [FW93, Theorem 3.1]) can be used
to show the existence of a continuous Fellerian Markov process Zε = (Xε, Y ε) that
has generator Lε.

In the teeth, and in between the nodes, it is clear that Zε is simply a Brownian
motion. The flux conditions (4.2a)–(4.2b) introduce local time terms at junction
points and ends of the teeth. This can be stated precisely in terms of an Itô formula
as in the following Lemma.

Lemma 4.1. Let F be the set of all functions f ∈ C(Cε) such that f is smooth
on Cε − Jε and all one sided derivatives exist at the junction points Jε. There is a
Brownian motion W such that for any for any f ∈ F we have

df(Zεt ) = 1{Y εt =0}∂xf(Zεt ) dWt + 1
21{Y εt =0}∂

2
xf(Zεt ) dt

+ 1{Y εt >0}∂yf(Zεt ) dWt + 1
21{Y εt >0}∂

2
yf(Zεt ) dt

1
2 + αε

(
∂+
x f(Zεt )− ∂−x f(Zεt ) + αε∂yf(Zεt )

)
d`t .

Here ` defined by
(4.3) `t = LZ

ε

t (Jε)
is the local time of the joint process Zεt = (Xε

t , Y
ε
t ) about the junction points εZ×{0}.

Remark 4.2. The coefficients of each of ∂−x , ∂+
x and ∂y in the local time term above

can heuristically be interpreted the chance that Zε enters the teeth.

Proof. We refer the reader to Section 2 (and specifically Lemma 2.3) in Freidlin and
Sheu [FS00] where stochastic calculus for graph diffusions is developed in a general
setting. �

Notice that choosing f(x, y) = x and f(x, y) = y in Lemma 4.1 yields the
following SDEs:

dXε
t = 1{Y εt =0} dWt ,(4.4a)

dY εt = 1{Y εt >0} dWt + αε

2 + αε
d`t − dLY

ε

t (1)(4.4b)
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Note that (4.4a) and (4.4b) are coupled through the local time term d`, which is the
local time of the joint process Zε = (Xε, Y ε) at the junction points Jε. We claim
that with the additional assumption that the process spends 0 time in junctions,
weak uniqueness holds for (4.4a)–(4.4b), and thus this system can in fact be used
to characterize the process Zε. Since this will not be used in this paper, we refer
the reader to Engelbert and Peskir [EP14] for the proof of similar results.

4.2. Proof of Convergence (Theorem 1.7). We now prove Theorem 1.7. As
with the proof of Theorem 1.1, we need to prove tightness and a “generator estimate”.
We state the results we require as the following two lemmas.

Lemma 4.3. Let Zε = (Xε, Y ε) be the process on the comb-shaped graph Cε,
as defined above. Then for any T > 0, the family of processes Zε is tight on
C([0, T ];R2).

Lemma 4.4. Let A be the generator (2.9). If f ∈ D(A), and K ⊆ Ω0 is compact
as a subset of R2, then

lim
ε→0

sup
z∈K∩Cε

Ez
(
f(Zεt )− f(Z0)−

∫ t

0
Af(Zεs ) ds

)
= 0

Proof of Theorem 1.7. Using Lemmas 4.3 and 4.4 as replacements for Lemmas 3.1
and 3.3 respectively, the proof of Theorem 1.7 is identical to that of Theorem 1.1. �

The remainder of this section is devoted to proving Lemmas 4.3 and 4.4.

Proof of Lemma 4.3. We write both Xε and Y ε as time-changed Brownian motions
as follows. Let S(t) =

∫ t
0 1{Y εs =0} ds. Then letting S−1(t) be the right-continuous

inverse, by the Dambis-Dubins-Schwartz time change theorem (see for instance [KS91,
Section 3.4.B]), W̄t = Xε

S−1(t) is a Brownian motion and Xε
t = W̄S(t). Similarly

we can time change Y ε using R(t) =
∫ t

0 1{Y εt >0} ds. Equation (4.4b) tells us that
B̄t = Y εR−1(t) satisfies

dB̄t = dB∗t + dLB̄t (0)− dLB̄t (1) .

where B∗t is a Brownian motion and hence B̄t is a doubly-reflected Brownian motion
on [0, 1] such that Y εt = B̄R(t). Since S(t)− S(s) 6 t− s and R(t)−R(s) 6 t− s
holds with probability one, the moduli of continuity of Xε and Y ε over [0, T ] are no
more than those of W̄ and B̄ over [0, T ], respectively. This implies tightness. �

Proof of Lemma 4.4. We claim for any k ∈ N we have

LZ
ε

(εk, 0) = LX
ε

(εk, 0) + LY
ε

(εk, 0) , and LY
ε

(εk, 0) = αε

2 LX
ε

(εk, 0) .

The first equality is immediate from the definition, and the second equality is proved
in [FS00]. (The second equality can also be deduced the independent excursion
construction in Section 5, below). Consequently

(4.5) LZ
ε

(εk, 0) = 2 + αε

2 LX
ε

(εk, 0) = 2 + αε

αε
LY

ε

(εk, 0) .

For any f ∈ D(A), Lemma 4.1 gives

(4.6) f(Zεt )− f(Zε0) =
∫ t

0
∂yf(Zεs )1{Y εs >0} dY

ε
s +

∫ t

0
∂xf(Zεs )1{Y εs =0} dX

ε
s
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+
∫ t

0

1
2∂

2
yf(Zεs )1{Y εs >0} + 1

2∂
2
xf(Zεs )1{Y εs =0} ds

+
∑
k∈Z

( αε

2 + αε
∂yf(εk, 0) + 1

2 + αε

(
∂+
x f(εk, 0)− ∂−x f(εk, 0)

))
LZ

ε

t (εk, 0) .

The first integral on the right of equation (4.6) can be rewritten as∫ t

0
∂yf(Zεs )1{Y εs >0} dY

ε
s =

∫ t

0
∂yf(Zεs )1{Y εs >0} dWs −

∫ t

0
∂yf(Xε

s , 1) dLY
ε

s (1)

=
∫ t

0
∂yf(Zεs )1{Y εs >0} dWs .

Here we used the fact that ∂yf(x, 1) = 0 for any f ∈ D(A).
Returning to (4.6), we note that f ∈ C2(R×{0}) implies ∂+

x f(εk, 0) = ∂−x f(εk, 0).
Thus for (x, y) ∈ K ∩ Cε, taking expectations on both sides and using (4.5) gives

E(x,y)
(
f(Zεt )− f(Zε0)−

∫ t

0
Af(Zεs ) ds

)
= 1

2E(x,y)
(∫ t

0
∂2
yf(Zεs )1{Y εs >0} + ∂2

xf(Zεs )1{Y εs =0} − ∂2
yf(Zεs ) ds

+ ε
∑
k∈Z

∂yf(εk, 0)LX
ε

t (εk, 0)
)

= α

2 E(x,y)
(
−
∫ t

0
∂yf(Xε

s , 0)1{Y εs =0} ds+ ε
∑
k∈Z

∂yf(εk, 0)LX
ε

t (εk, 0)
)

= I + II ,
where

I
def= α

2
∑
k∈Z

E(x,y)
∫ t

0

(
∂yf(εk, 0)− ∂yf(Xε

s , 0)
)
1{Y εs =0, |Xεs−εk|< ε

2} ds ,

II def= α

2
∑
k∈Z

∂yf(εk, 0)E(x,y)
(
εLX

ε

t −
∫ t

0
1{Y εs =0, |Xεs−εk|< ε

2} ds
)
.

Note that there exists Brownian motion W such that Xε
t = WS(t) where S(t),

defined by

S(t) def=
∫ t

0
1{Y ε(s)=0} ds ,

is the amount of time the joint process spends on the spine of the comb up to time t.
To estimate I, for any δ > 0 we choose sufficiently large compact set C ⊂ R such
that

sup
(x,y)∈K

Ex
(∫ t

0
1{Ws /∈C} ds

)
<

δ

‖∂yf‖∞
.

Then since S(s) 6 s, it follows that
P x(Xε

s /∈ C) 6 P x(Ws /∈ C)
and so the above estimate can be applied for Xε independent of ε. Then use uniform
continuity of ∂yf in C along with the above estimate.

In order to estimate II , we again use the above representation to see
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(4.7) E(x,y)
∣∣∣εLXεt (εk, 0)−

∫ t

0
1{Y εs =0, |Xεs−εk|< ε

2} ds
∣∣∣

= Ex
∣∣∣εLWS(t)(εk)−

∫ S(t)

0
1{|Ws−εk|< ε

2} ds
∣∣∣ ,

where S(t), defined by

S(t) def=
∫ t

0
1{Y ε(s)=0} ds ,

is the amount of time the joint process spends on the spine of the comb up to time t.
Thus to show II → 0, it suffices to estimate the right hand side of (4.7) as ε→ 0.
Also, by shifting the indices of the sum to compensate, we can assume that x = 0.

To this end, let fε be defined by

fε(x) def=


ε(εk − x)− ε2

4 if x < εk − ε

2 ,

(x− εk)2 if εk − ε

2 6 x 6 εk + ε

2 ,

ε(x− εk)− ε2

4 if x > εk + ε

2 .

By Ito’s formula we have,

fε(Wt)− ε|Wt − εk| − (fε(W0)− ε|W0 − εk|)

=
∫ t

0
(f ′ε(Ws)− ε sign(Ws − εk)) dWs +

∫ t

0
1{|Ws−εk|< ε

2} ds− εL
W
t (εk) .

Using the Itô isometry and the inequalities∣∣fε(x)− ε|x− εk|
∣∣ 6 ε2

4 ,

|f ′ε(x)− ε sign(x− εk)| 6 ε1[εk− ε2 ,εk+ ε
2 ] ,

we obtain

E0
∣∣∣εLWt (εk)−

∫ t

0
1{|Ws−εk|< ε

2} ds
∣∣∣ 6 ε2

4 + ε

(
E0
∫ t

0
1{|Ws−εk|< ε

2} ds

) 1
2

6 c(t)ε 3
2 ,

since

E0
∫ t

0
1{|Ws−εk|< ε

2} ds =
∫ t

0
P 0
(
|Ws − εk| <

ε

2

)
ds 6 c

∫ t

0

ε√
s
ds = 2cε

√
t .

We break up the sum in II and estimate as follows,

II 6 ‖∂yf‖∞
( ∑
|k|>N/ε

E0[εLX
ε

t (εk, 0)] +
∫ t

0
P 0(|Xε

s | > N − ε

2
)
ds+ 2N

ε
c(t)ε 3

2

)
.

We can again use that Xε has the same distribution as a Brownian motion with a
time change S(t) 6 t to replace Xε with W , i.e.

II 6 ‖∂yf‖∞
( ∑
|k|>N/ε

E0[εLWt (εk)] +
∫ t

0
P 0(|Ws| > N − ε

2
)
ds+Nc(t)ε 1

2

)
.
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Setting N sufficiently large and then sending ε→ 0 gives us II → 0 as ε→ 0. This
completes the proof. �

5. Excursion Description on the Comb Graph.

In this section we describe the how diffusion Zε on the comb-shaped graph Cε
(defined in Section 1.2) can be constructed from the point of view of Itô’s excursion
theory (c.f. [Itô72,PY07]). We identify the components of Zε as a trapped Brownian
motion in the framework of Ben Arous et al. [BAC+15], and use this to provide an
alternate description of the limiting behavior as ε→ 0.

5.1. The Excursion Decomposition of Zε. The trajectories of Zε can be de-
composed as a sequence of excursions where each excursion starts and ends at the
junction points Jε = εZ× {0}, and travels entirely in the teeth, or entirely in the
spine. The excursions into the teeth of the comb (excursions of Y ε into (0, 1] while
Xε ∈ εZ) should be those of a reflected Brownian motion on [0, 1]. The excursions
into the spine (excursions of Xε into R − εZ with Y ε = 0) should be those of a
standard Brownian motion on R between the points εZ. Thus one expects that that
by starting with a standard Brownian motion X̄ on R and an independent reflected
Brownian motion Ȳ on [0, 1], we can glue excursions of X̄ and Ȳ appropriately and
obtain the diffusion Zε on the comb-shaped graph Cε. We describe this precisely as
follows.

Let X̄ be a standard Brownian motion on R and let LX̄t (x) denote its local time
at x ∈ R. Let LX̄t (εZ), defined by

LX̄t (εZ) def=
∑
k∈Z

LX̄t (εk) = lim
δ→0

1
2δ

∫ t

0

∑
k∈Z

1(εk−δ,εk+δ)(X̄s) ds ,

denote the local time of X̄ at the junction points εZ. Let τ X̄,ε be the right-continuous
inverse of LX̄t (εZ) defined by

τ X̄,ε(`) = inf
{
t > 0

∣∣ LX̄t (εZ) > `
}
, ` > 0.

Notice that the functions t 7→ LX̄t and ` 7→ τ X̄,ε(`) are both non-decreasing.
Let Ȳ be a reflected Brownian motion on [0, 1] which is independent of X̄. As

above, let LȲ (0) be the local time of Ȳ about 0, and let τ Ȳ , defined by

τ Ȳ (`) = inf
{
t > 0

∣∣ LȲt (0) > `
}
,

be its right-continuous inverse. Given α ∈ (0, 1), we define the random time-changes
ψX̄,ε and ψȲ ,ε by

(5.1) ψX̄,ε(t) = inf
{
s > 0

∣∣ s+ τ Ȳ
(αε

2 LX̄s (εZ)
)
> t
}
,

and

(5.2) ψȲ ,ε(t) = inf
{
s > 0

∣∣ s+ τ X̄,ε
( 2
αε
LȲs (0)

)
> t
}
.

Note both ψX̄,ε and ψȲ ,ε are continuous and non-decreasing functions of time.

Proposition 5.1. The time-changed process Zε defined by

Zε(t) def=
(
X̄(ψX̄,ε(t)), Ȳ (ψȲ ,ε(t))

)
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is the same process Zε in Theorem 1.7. Namely it is a Markov process with generator
Lε (defined in equation (4.1)), and is a weak solution of the system (4.4a)–(4.4b).

This gives an alternate and natural representation of Zε = (Xε, Y ε). One can view
this time-change representation as the pre-limit analogue of the representation (2.2a)
for the limit system (2.3a) – (2.3c). For clarity of presentation, we postpone the
proof of Proposition 5.1 to Section 5.4.

Remark 5.2. For simplicity, throughout this section we assume the initial distribution
of Zε is δ(0,0), and denote expectations using the symbol E without any superscript.
The main results here (in particular Theorem 5.7, below) can directly be adapted
to the situation for more general initial distributions as in Theorem 1.7.

5.2. Description as a Trapped Brownian Motion. We now show how this
representation can be explained in the framework of trapped Brownian motions as
defined by Ben Arous, et al. [BAC+15] (see Definition 4.11 therein). Recall that a
trapped Brownian motion, denoted by B[µ], is a process of the form B(ψ(t)) where
B(t) is a standard Brownian motion and the time-change ψ has the form

ψ(t) = inf
{
s > 0

∣∣ φ[µ,B]s > t
}
,

where
φ[µ,B]s = µ

(
{(x, `) ∈ R× [0,∞) | LB(x, s) > `}

)
,

and µ is a (random) measure on R× [0,∞) called the trap measure. For example,
when µ is the Lebesgue measure on R × [0,∞), then φ[µ,B] = t, and ψ(t) = t.
Alternately, if µ has an atom at (x, `) of mass r > 0, then B(ψ(t)) is trapped at x
for a time r at the moment its local time at x exceeds `.

To use this framework in our scenario, we need to identify a trap measure under
which Xε is a trapped Brownian motion. We do this as follows. First note that the
process τ Ȳ` , appearing in the time change (5.1), is a Lévy subordinator. Thus, there
exists a function ηȲ (s) : (0,∞)→ (0,∞), and a Poisson random measure N Ȳ on
[0,∞)× [0,∞) with intensity measure d`× ηȲ (s) ds, such that

τ Ȳ` =
∫

[0,`]

∫
[0,∞)

sN Ȳ (d`× ds) .(5.3)

In the definition of ψX̄,ε(t) above, we have

τ Ȳ
(αε

2 LX̄s (εZ)
)

= τ Ȳ
(∑
k∈Z

αε

2 LX̄s (εk)
)
.

Because τ Ȳ` has stationary, independent increments, this is equal in law to

τ Ȳ
(αε

2 LX̄s (εZ)
)
d=
∑
k∈Z

τ Ȳk
(αε

2 LX̄s (εk)
)
,

where {Ȳk}k∈Z are a family of independent reflected Brownian motions on [0, 1].
That is, the time change ψX̄,ε(t) has the same law as

ψ̃X̄,ε(t) = inf
{
s > 0

∣∣ s+
∑
k∈Z

τ Ȳk
(αε

2 LX̄s (εk)
)
> t
}
.(5.4)
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Each of the processes τ Ȳk can be represented as in (5.3) with independent Poisson
random measures N Ȳk :

τ Ȳk` =
∫

[0,`]

∫
[0,∞)

sN Ȳk(d`× ds).(5.5)

Since each of the random measures N Ȳk is atomic, we may define {(`j,k, sj,k)}∞j=1

to be the random atoms of N Ȳk by

N Ȳk =
∞∑
j=1

δ(`j,k,sj,k).(5.6)

Then define a random measure on R× [0,∞):

µX̄,ε = dx× d`+
∑
k∈Z

∞∑
j=1

sj,kδ(εk,(2/(αε))`j,k)(5.7)

Returning to (5.4), we now have the representation

s+
∑
k∈Z

τ Ȳk
(αε

2 LX̄s (εk)
)

= µX̄,ε
(
{(x, `) ∈ R× [0,∞) | ` 6 LX̄s (x)}

)
.

It is easy to check that µX̄ defines a Lévy trap measure, in the sense of [BAC+15],
Definition 4.10. This proves the following:

Proposition 5.3. Let X̄ be a standard Brownian motion on R and let X̄[µX̄,ε] be
the trapped Brownian motion (see Definition 4.11 of [BAC+15]) with trap measure
µX̄,ε defined by (5.7). Then the law of Xε coincides with the law of X̄[µX̄,ε].

The process Y ε admits a similar representation as a trapped (reflected) Brownian
motion. To this end, we first note that τ X̄,ε` is also a Lévy subordinator which and
can be written as

τ X̄,ε` =
∫

[0,`]

∫
[0,∞)

sN X̄,ε(d`× ds),(5.8)

where N X̄,ε is a Poisson random measure on [0,∞)× [0,∞) with intensity measure
d`× ηX̄,ε(s)ds.

Lemma 5.4. The excursion length measure ηX̄,ε satisfies the scaling relation,

ηX̄,ε(s) = ε−3ηX̄,1(ε−2s), s > 0.

Proof. This follows in directly from the standard scaling properties of Brownian
motion and its local time, and we omit the details. �

Letting {(sj , `j)}∞j=1 denote the atoms of N X̄,ε we then define a random measure
on [0, 1]× [0,∞) by

µȲ ,ε = dy × d`+
∞∑
j=1

sjδ(0,(αε/2)`j) .(5.9)

This also is a Lévy Trap Measure in the sense of [BAC+15] (replacing R by [0, 1]),
and one can easily see that the associated trapped Brownian motion is precisely the
process Y ε.
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Proposition 5.5. Let Ȳ be a reflected Brownian motion on [0, 1], and let Ȳ [µȲ ,ε]
be the trapped Brownian motion with trap measure µȲ ,ε defined by (5.9). Then the
law of Y ε coincides with the law of Ȳ [µȲ ,ε].

5.3. Convergence as ε → 0. We now use Theorem 6.2 of [BAC+15] to study
convergence of Xε and Y ε as ε→ 0. The key step is to establish convergence of the
trap measures, as in the following lemma.

Lemma 5.6. Let N Ȳ
∗ be a Poisson random measure on R× [0,∞)× [0,∞) with

intensity measure dx × d` × 1
2η
Ȳ (s) ds. As ε → 0, the random measures µX̄,ε on

R× [0,∞), defined in (5.7), converge vaguely in distribution to the random measure
µX∗ defined by

µX∗ (A) =
∫
R

∫ ∞
0

1A(x, `)dx d`+ α

2

∫
R

∫ ∞
0

∫ ∞
0

1A(x, `)sN Ȳ
∗ (dx× d`× ds) ,

for all A ∈ B(R × [0,∞)). The random measures µȲ ,ε on [0, 1] × [0,∞), defined
in (5.9), converge vaguely in distribution to the measure µY∗ defined by

µY∗ (A) =
∫ 1

0

∫ ∞
0

1A(y, `)dy d`+ 2
α

∫ ∞
0

1A(0, `) d` A ∈ B([0, 1]× [0,∞)) .

Momentarily postponing the proof of Lemma 5.6, we state the main convergence
result in this section.

Theorem 5.7. Let R(t) be a Brownian motion on [0, 1] reflected at both endpoints
x = 0, 1, and B be a standard Brownian motion on R.

(1) As ε → 0, we have Y ε → Y vaguely in distribution on D([0,∞)). Here
Y = R[µȲ∗ ] is a reflected Brownian motion that is sticky at 0.

(2) As ε→ 0, we have Xε → B[µX̄∗ ] vaguely in distribution on D([0,∞)). The
limit process here may also be written as B((2/α)LYt (0)).

Remark 5.8. Using the SDE methods in Section 4 we are able to obtain joint
convergence of the pair (Xε, Y ε) (Theorem 1.7). The trapped Brownian motion
framework here, however, only provides convergence of the processes Xε and Y ε
individually.

Proof of Theorem 5.7. The convergence of Y ε to R[µȲ∗ ] is an immediate consequence
of Theorem 6.2 of [BAC+15], Lemma 5.6 above, and the properties of Poisson
random measures. To identify the limiting process R[µȲ∗ ] as a sticky Brownian
motion, observe that the time change has the form

µȲ∗
({

(y, `) ∈ [0, 1]× [0,∞)
∣∣ LR(y, s) > `

})
= s+ 2

α
LR(0, s) .

Thus, the limit process is Y (t) = R(ψ(t)) where

ψ(t) = inf{s > 0 | s+ 2
α
LR(0, s) > t} .

This is precisely a sticky Brownian motion (see Lemma 2.2).
For the second assertion of the Theorem, the convergence of Xε to B[µX̄∗ ] is again

an immediate consequence of Theorem 6.2 of [BAC+15] and Lemma 5.6 above.
Thus we only need to show that the trapped Brownian motion B[µX̄∗ ] has the same
law as the process Xt from Theorem 1.7. To compare the two processes, we first
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write them in a similar form. Let LB̄t (0) is the local time of B̄ at 0, and let τ B̄` be
the inverse

τ B̄` = inf{t > 0 | LB̄t (0) > `}.
Then, we have

Xt = W̄ 2
αL

B̄
T (t)

= W̄ (h−1(t))

where
h−1(t) = inf{r > 0 | r + τ B̄rα/2 > t}

The fact that (2/α)LB̄T (t) = h−1(t) follows from the definition of T (t), which implies
(2/α)LB̄T (t) + T (t) = t.

Therefore, the two processes are

B[µX̄∗ ] = B(φ−1(t)) Xt = W̄ (h−1(t))

where φ is:

φ(r) = φ[µ∗, B]r = µ∗
(
{(x, `) ∈ R× [0,∞) | LB(x, r) > `}

)
If ABr = {(x, `) ∈ R× [0,∞) | LB(x, r) > `}, then by definition of the trap measure
µ∗,

φ(r) = r + α

2

∫
ABr ×[0,∞)

sN Ȳ
∗ (dx× d`× ds)(5.10)

The last integral has the same law as τ B̄rα/2. Hence, h and φ have the same law.
Notice that h is independent of W̄ . We claim that φ is also independent of B.

To see this observe that the distribution of φ(r) only depends on B through the
volume of ABr , which equals r almost surely. This shows φ is independent of B, and
thus B(φ−1(t)) and W̄ (h−1(t)) have the same law. �

It remains to prove Lemma 5.6.

Proof of Lemma 5.6. It suffices to show for rectangles A = [x0, x1]× [`0, `1] that

µX̄,ε(A)→ µX∗ (A)

in distribution. We calculate the characteristic function using [Kyp06, Thm 2.7],

E[eiβµ
X̄,ε(A)] = exp

(
iβ|A|+

∑
εk∈[x0,x1]

∫ ε
2 `1

ε
2 `0

∫ ∞
0

(1− eiβs)ηȲ (s) ds
)

= exp
(
iβ|A|+

(⌊x1

ε

⌋
−
⌈x0

ε

⌉)ε(`1 − `0)
2

∫ ∞
0

(1− eiβs)ηȲ (s) ds
)

→ exp
(
iβ|A|+ |A|2

∫ ∞
0

(1− eiβs)ηȲ (s) ds
)

as ε→ 0. We note that this last formula is the characteristic function for µX? (A).
The calculation for µȲ ,ε(A) uses Lemma 5.4 and a change of variables as follows

E[eiβµ
Ȳ ,ε(A)] = exp

(
iβ|A|+ 1[y0,y1](0)

∫ 2
ε `1

2
ε `0

∫ ∞
0

(1− eiβs)ηX̄,ε(s) ds
)

= exp
(
iβ|A|+ 1[y0,y1](0)2(`1 − `0)

ε4

∫ ∞
0

(1− eiε
2βs)ηX̄,1(ε−2s) ds

)
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= exp
(
iβ|A|+ 1[y0,y1](0)2(`1 − `0)

ε2

∫ ∞
0

(1− eiε
2βs)ηX̄,1(s) ds

)
.

Notice that by switching the integrals, we find
1
ε2

∫ ∞
0

(1− eiβε
2s)ηX̄,1(s) ds = 1

ε2

∫ ∞
0

(−βiε2
∫ s

0
eiβε

2r dr)ηX̄,1(s) ds

=
∫ ∞

0
eiβε

2r

∫ ∞
r

ηX̄,1(s) ds dr .

Since ηX̄,1 has exponential tails, we can send ε → 0, use dominated convergence
and switch the integrals again to find

lim
ε→0

1
ε2

∫ ∞
0

(1− eiβε
2s)ηX̄,1(s) ds =

∫ ∞
0

sηX̄,1(s) ds = 1

and hence
E[eiβµ

Ȳ ,ε(A)]→ E[eiβµ
Y
∗ (A)] . �

5.4. Proof of the Excursion Decomposition (Proposition 5.1). To abbrevi-
ate the notation, we will now write LX̄t and LȲt for LX̄t (εZ) and LȲt (0), respectively.
Notice that LX̄t depends on ε while LȲt does not. Let Xε(t) = X̄(ψX̄,ε(t)) and
Y ε(t) = Ȳ (ψȲ ,ε(t)). The proof of Proposition 5.1 follows quickly from Itô’s formula,
and the following two lemmas:

Lemma 5.9. For every t > 0, we have

(5.11) LX
ε

t = 2
αε
LY

ε

t .

Lemma 5.10. The joint quadratic variation of Xε and Y ε is 0.

Momentarily postponing the proof of these lemmas, we prove Proposition 5.1.

Proof of Proposition 5.1. For any f ∈ D(Lε), Itô’s formula gives

Ef(Zεt )− f(Zε0) = 1
2E

∫ ψX̄,ε(t)

0
∂2
xf(X̄s, Ȳs)1X̄s 6∈εZ ds

+ 1
2E

∫ t

0

(
∂xf((Xε

s )+, Y εs )− ∂xf((Xε
s )−, Y εs )

)
dLX

ε

s (εZ)

+ 1
2E

∫ ψȲ ,ε(t)

0
∂2
yf(X̄s, Ȳs)1Ȳs∈(0,1) ds+ E

∫ t

0
∂yf(Xε

s , (Y εs )+) dLY
ε

s (0) .

Here we used the fact that 〈Xε, Y ε〉 = 0 (Lemma 5.10) and ∂yf(x, 1) = 0 (which is
guaranteed by the assumption f ∈ D(Lε)). Using (5.11) this simplifies to

Ef(Zεt )− f(Zε0) = E

∫ ψX̄,ε(t)

0
∂2
xf(X̄s, Ȳs)1X̄s 6∈εZ ds

+ E

∫ ψȲ ,ε(t)

0
∂2
yf(X̄s, Ȳs)1Ȳs∈(0,1) ds

+ 1
2E

∫ t

0

(
∂xf((Xε

s )+, Y εs )− ∂xf((Xε
s )−, Y εs ) + αε∂yf(Xε

s , (Y εs )+)
)
dLX

ε

s (εZ) .
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Since f ∈ D(Lε) and LXε only increases when Y ε = 0 and Xε ∈ εZ, the last integral
above vanishes. Consequently,

lim
t→0

1
t
E
(
f(Zεt )− f(Zε0)

)
= Lεf(0, 0)

showing that the generator of Zε is Lε as claimed. The fact that Zε satisfies (4.4a)
and (4.4b) follows immediately by choosing f(x, y) = x and f(x, y) = y respectively.

�

It remains to prove Lemmas 5.9 and 5.10.

Proof of Lemma 5.9. We first claim that for any t > 0, we have

(5.12) ψX̄,ε(t) + ψȲ ,ε(t) = t .

To see this, define the non-decreasing, right continuous function

H(t) def= τ Ȳ
(αε

2 LX̄t (εZ)
)
.

Using the properties of τ Ȳ , LX̄ , τ X̄,ε, and LȲ , it is easy to check that the right
continuous inverse of H is

H−1(t) = inf{s > 0 | H(s) > t} = τ X̄,ε
(

2
αε
LȲs (0)

)
.

Therefore, ψX̄,ε and ψȲ ,ε are the right continuous inverse functions of t 7→ t+H(t)
and t 7→ t+H−1(t), respectively, meaning that

ψX̄,ε(t) = inf {s | s+H(s) > t} ,

ψȲ ,ε(t) = inf
{
r | r +H−1(r) > t

}
.

In general, H(H−1(r)) > r and H−1(H(s)) > s must hold, but equality may not
hold due to possible discontinuities in H and H−1.

Fix t > 0, and let [t0, t1] be the maximal interval such that t ∈ [t0, t1] and
ψX̄,ε is constant on the interval [t0, t1]. Possibly t0 = t1 = t, but let us first
suppose that the interval has non-empty interior, t0 < t1. This implies that H(s)
has a jump discontinuity at a point s = ψX̄,ε(t1) such that s + H(s−) = t0 and
s+H(s+) = s+H(s) = t1. Also, H−1(H(s)) = s must hold for such a value of s.
So, for ` = H(s) = H(ψX̄,ε(t1)) we have

`+H−1(`) = H(s) + s = t1.

Therefore, ψȲ ,ε(t1) = `, since

ψȲ ,ε(t1) = inf
{
r | r +H−1(r) > t1

}
.

This means that ψȲ ,ε(t1) = H(s). Therefore,

ψȲ ,ε(t1) + ψX̄,ε(t1) = H(s) + s = t1

must hold. Now let extend the equality to the rest of the interval [t0, t1]. By
assumption, ψX̄,ε(t) = ψX̄,ε(t1) for all t ∈ [t0, t1]. Since H has a jump discontinuity
at s, this means H−1(r) is constant on the interval [H(s−), H(s)]. Hence, the
function r+H−1(r) is affine with slope 1 on the interval [H(s−), H(s)] = [ψȲ ,ε(t1)−
(t1 − t0), ψȲ ,ε(t1)]. Therefore, for all t ∈ [t0, t1], we must have

ψȲ ,ε(t) = ψȲ ,ε(t1) + t− t1.
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This shows that for all t ∈ [t0, t1], we have

ψX̄,ε(t) + ψȲ ,ε(t) = ψX̄,ε(t1) + ψȲ ,ε(t1) + t− t1 = t.

Applying the same argument with the roles of ψX̄,ε, ψȲ ,ε, H and H−1 reversed,
we conclude that ψX̄,ε(t) + ψȲ ,ε(t) = t must hold if either ψX̄,ε or ψȲ ,ε is constant
on an interval containing t which has non-empty interior. The only other possibility
is that both ψX̄,ε and ψȲ ,ε are strictly increasing through t. In this case, H
must be continuous at ψX̄,ε(t) and H−1 must be continuous at ψȲ ,ε(t). Thus,
H−1(H(ψX̄,ε(t))) = ψX̄,ε(t) and H(H−1(ψȲ ,ε(t))) = ψȲ ,ε(t) holds. The rest of the
argument is the same as in the previous case. This proves (5.12).

Now, since Xε and Y ε are time changes of X̄ and Ȳ respectively, we know that
the local times are given by

LX
ε

t
def= LX

ε

(εZ) = LX̄
ψX̄,ε(t) , and LY

ε

t
def= LY

ε

(0) = LȲ
ψȲ ,ε(t) .

By definition of ψX̄,ε, we know

t = ψX̄,ε(t) + τ Ȳ
(αε

2 LX̄(ψX̄,ε(t))
)
.

Using (5.12) this gives

ψȲ ,ε(t) = τ Ȳ
(αε

2 LX̄(ψX̄,ε(t))
)
,

and using the fact that τ Ȳ is the inverse of LȲ , we get (5.11) as desired. �

Proof of Lemma 5.10. Fix δ > 0, and define a sequence of stopping times 0 = σ0 <
θ1 < σ1 < θ2 < σ2 < . . . inductively, by

σ0 = 0
θk+1 = inf {t > σk | either Y εt = δ or d(Xε

t , εZ) = δ} , k = 0, 1, 2, 3, . . .
σk+1 = inf {t > θk | Yt = 0 and Xε

t ∈ εZ} , k = 0, 1, 2, 3, . . .
Then for T > 0, we decompose the joint quadratic variation over [0, T ] as

〈Xε, Y ε〉[0,T ] =
∑
k>0
〈Xε, Y ε〉[σk∧T,θk+1∧T ] + 〈Xε, Y ε〉[θk+1∧T,σk+1∧T ].

We claim that for all k,
(5.13) 〈Xε, Y ε〉[θk+1∧T,σk+1∧T ] = 0
holds with probability one. Hence,∣∣〈Xε, Y ε〉[0,T ]

∣∣ 6∑
k>0

∣∣〈Xε, Y ε〉[σk∧T,θk+1∧T ]
∣∣

6
∑
k>0

1
2 〈X

ε, Xε〉[σk∧T,θk+1∧T ] + 1
2 〈Y

ε, Y ε〉[σk∧T,θk+1∧T ]

6
∑
k>0
|(θk+1 ∧ T )− (σk ∧ T )|

6
∣∣{t ∈ [0, T ] | |Ȳt| 6 δ, and d(X̄t, εZ) 6 δ

}∣∣ .(5.14)
As δ → 0, the latter converges to 0 almost surely, which proves that 〈Xε, Y ε〉 = 0.

To establish the claim (5.13), we may assume θk < T , for otherwise, the statement
is trivial. At time θk, we have either Xε

θk
/∈ εZ or Yθk = δ. In the former case,
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we must have Xt /∈ εZ for all t ∈ [θk, σk). Hence, ψȲ ,ε(t) and Y εt are constant for
all t ∈ [θk, σk). In the other case, Yt > 0 for all t ∈ [θk, σk) while Xt is constant
on [θk, σk]. In either case, this implies that 〈Xε, Y ε〉[θk∧T,σk∧T ] = 0 holds with
probability one. �

References
[ADH90] T. Arbogast, J. Douglas, Jr., and U. Hornung. Derivation of the double porosity model

of single phase flow via homogenization theory. SIAM J. Math. Anal., 21(4):823–836,
1990. doi:10.1137/0521046.

[BAC+15] G. Ben Arous, M. Cabezas, J. Černý, and R. Royfman. Randomly trapped random
walks. Ann. Probab., 43(5):2405–2457, 09 2015. doi:10.1214/14-AOP939.

[BAČ07] G. Ben Arous and J. Černý. Scaling limit for trap models on Zd. Ann. Probab.,
35(6):2356–2384, 2007. doi:10.1214/009117907000000024.

[Bas87] A. B. Basset. On the motion of two spheres in a liquid, and allied problems. Proc.
Lond. Math. Soc., 18:369–377, 1886/87. doi:10.1112/plms/s1-18.1.369.

[BDB14] A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov. From normal to anomalous
diffusion in comb-like structures in three dimensions. The Journal of Chemical Physics,
141(5):054907, 2014. doi:10.1063/1.4891566.

[BE07] P. C. Bressloff and B. A. Earnshaw. Diffusion-trapping model of receptor trafficking in
dendrites. Phys. Rev. E, 75:041915, Apr 2007. doi:10.1103/PhysRevE.75.041915.

[Ber06] D. Bertacchi. Asymptotic behaviour of the simple random walk on the 2-dimensional
comb. Electron. J. Probab., 11:no. 45, 1184–1203, 2006. doi:10.1214/EJP.v11-377.

[BLM96] A. Bourgeat, S. Luckhaus, and A. Mikelić. Convergence of the homogenization process
for a double-porosity model of immiscible two-phase flow. SIAM J. Math. Anal.,
27(6):1520–1543, 1996. doi:10.1137/S0036141094276457.

[BMN09] B. Baeumer, M. M. Meerschaert, and E. Nane. Brownian subordinators and fractional
Cauchy problems. Trans. Amer. Math. Soc., 361(7):3915–3930, 2009. doi:10.1090/S0002-
9947-09-04678-9.

[BZ03] D. Bertacchi and F. Zucca. Uniform asymptotic estimates of transition probabilities on
combs. J. Aust. Math. Soc., 75(3):325–353, 2003. doi:10.1017/S1446788700008144.

[CCFR09] E. Csáki, M. Csörgő, A. Földes, and P. Révész. Strong limit theorems for a simple
random walk on the 2-dimensional comb. Electron. J. Probab., 14:no. 82, 2371–2390,
2009. doi:10.1214/EJP.v14-710.

[CCFR11] E. Csáki, M. Csörgő, A. Földes, and P. Révész. On the local time of random
walk on the 2-dimensional comb. Stochastic Process. Appl., 121(6):1290–1314, 2011.
doi:10.1016/j.spa.2011.01.009.

[Che17] Z.-Q. Chen. Time fractional equations and probabilistic representation. Chaos Solitons
Fractals, 102:168–174, 2017. doi:10.1016/j.chaos.2017.04.029.

[Cla98] G. W. Clark. Derivation of microstructure models of fluid flow by homogenization. J.
Math. Anal. Appl., 226(2):364–376, 1998. doi:10.1006/jmaa.1998.6085.

[Coh18] S. Cohn. On the Homogenization of Diffusions in Periodic Comb-Like Structures.
ProQuest LLC, Ann Arbor, MI, 2018. Thesis (Ph.D.)–Carnegie Mellon University.

[DBMZ07] L. Dagdug, A. M. Berezhkovskii, Y. A. Makhnovskii, and V. Y. Zitserman. Transient
diffusion in a tube with dead ends. The Journal of Chemical Physics, 127(22):224712,
2007. doi:10.1063/1.2805068.

[Die10] K. Diethelm. The analysis of fractional differential equations, volume 2004 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 2010. doi:10.1007/978-3-642-14574-2.

[Dro00] J. Droniou. Solving convection-diffusion equations with mixed, Neumann and Fourier
boundary conditions and measures as data, by a duality method. Adv. Differential
Equations, 5(10-12):1341–1396, 2000.

[EK86] S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence.
Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical
Statistics. John Wiley & Sons, Inc., New York, 1986. doi:10.1002/9780470316658.

[EP14] H.-J. Engelbert and G. Peskir. Stochastic differential equations for sticky Brownian
motion. Stochastics, 86(6):993–1021, 2014. doi:10.1080/17442508.2014.899600.

[Fel52] W. Feller. The parabolic differential equations and the associated semi-groups of
transformations. Ann. of Math. (2), 55:468–519, 1952. doi:10.2307/1969644.

http://dx.doi.org/10.1137/0521046
http://dx.doi.org/10.1214/14-AOP939
http://dx.doi.org/10.1214/009117907000000024
http://dx.doi.org/10.1112/plms/s1-18.1.369
http://dx.doi.org/10.1063/1.4891566
http://dx.doi.org/10.1103/PhysRevE.75.041915
http://dx.doi.org/10.1214/EJP.v11-377
http://dx.doi.org/10.1137/S0036141094276457
http://dx.doi.org/10.1090/S0002-9947-09-04678-9
http://dx.doi.org/10.1090/S0002-9947-09-04678-9
http://dx.doi.org/10.1017/S1446788700008144
http://dx.doi.org/10.1214/EJP.v14-710
http://dx.doi.org/10.1016/j.spa.2011.01.009
http://dx.doi.org/10.1016/j.chaos.2017.04.029
http://dx.doi.org/10.1006/jmaa.1998.6085
http://dx.doi.org/10.1063/1.2805068
http://dx.doi.org/10.1007/978-3-642-14574-2
http://dx.doi.org/10.1002/9780470316658
http://dx.doi.org/10.1080/17442508.2014.899600
http://dx.doi.org/10.2307/1969644


ANOMALOUS DIFFUSION IN COMBS 47

[Fel54] W. Feller. Diffusion processes in one dimension. Trans. Amer. Math. Soc., 77:1–31,
1954. doi:10.2307/1990677.

[Fri75] A. Friedman. Stochastic differential equations and applications. Vol. 1. Academic Press
[Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Probability and
Mathematical Statistics, Vol. 28.

[FS00] M. Freidlin and S.-J. Sheu. Diffusion processes on graphs: stochastic differential
equations, large deviation principle. Probab. Theory Related Fields, 116(2):181–220,
2000. doi:10.1007/PL00008726.

[FW93] M. I. Freidlin and A. D. Wentzell. Diffusion processes on graphs and the averaging
principle. Ann. Probab., 21(4):2215–2245, 1993. doi:10.1214/aop/1176989018.

[FW12] M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems, volume
260 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer, Heidelberg, third edition, 2012. doi:10.1007/978-3-
642-25847-3. Translated from the 1979 Russian original by Joseph Szücs.

[Gri85] P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and
Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.

[HIK+18] M. Hairer, G. Iyer, L. Koralov, A. Novikov, and Z. Pajor-Gyulai. A fractional kinetic
process describing the intermediate time behaviour of cellular flows. Ann. Probab.,
46(2):897–955, 2018. doi:10.1214/17-AOP1196.

[HKPG16] M. Hairer, L. Koralov, and Z. Pajor-Gyulai. From averaging to homogenization in
cellular flows—an exact description of the transition. Ann. Inst. Henri Poincaré Probab.
Stat., 52(4):1592–1613, 2016. doi:10.1214/15-AIHP690.

[How07] C. J. Howitt. Stochastic flows and sticky brownian motion. August 2007. URL http:
//wrap.warwick.ac.uk/56226/.

[HS14] D. Holcman and Z. Schuss. The narrow escape problem. SIAM Rev., 56(2):213–257,
2014. doi:10.1137/120898395.

[IM74] K. Itô and H. P. McKean, Jr. Diffusion processes and their sample paths. Springer-
Verlag, Berlin-New York, 1974. Second printing, corrected, Die Grundlehren der
mathematischen Wissenschaften, Band 125.

[Itô72] K. Itô. Poisson point processes attached to Markov processes. In Proceedings of
the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ.
California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pages 225–239.
Univ. California Press, Berkeley, Calif., 1972.

[KS91] I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, volume 113
of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
doi:10.1007/978-1-4612-0949-2.

[Kyp06] A. E. Kyprianou. Introductory lectures on fluctuations of Lévy processes with applica-
tions. Universitext. Springer-Verlag, Berlin, 2006.

[MS15] M. Magdziarz and R. L. Schilling. Asymptotic properties of Brownian motion de-
layed by inverse subordinators. Proc. Amer. Math. Soc., 143(10):4485–4501, 2015.
doi:10.1090/proc/12588.

[PY07] J. Pitman and M. Yor. Itô’s excursion theory and its applications. Jpn. J. Math.,
2(1):83–96, 2007. doi:10.1007/s11537-007-0661-z.

[RW00] L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol.
2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000.
doi:10.1017/CBO9781107590120. Itô calculus, Reprint of the second (1994) edition.

[SV71] D. W. Stroock and S. R. S. Varadhan. Diffusion processes with boundary conditions.
Comm. Pure Appl. Math., 24:147–225, 1971. doi:10.1002/cpa.3160240206.

[SW91] R. E. Showalter and N. J. Walkington. Diffusion of fluid in a fissured medium with
microstructure. SIAM J. Math. Anal., 22(6):1702–1722, 1991. doi:10.1137/0522105.

[Uma12] S. Umarov. On fractional Duhamel’s principle and its applications. J. Differential
Equations, 252(10):5217–5234, 2012. doi:10.1016/j.jde.2012.01.029.

[US06] S. Umarov and E. Saydamatov. A fractional analog of the Duhamel principle. Fract.
Calc. Appl. Anal., 9(1):57–70, 2006.

[You88] W. R. Young. Arrested shear dispersion and other models of anomalous diffusion. J.
Fluid Mech., 193:129–149, Aug 1988. doi:10.1017/S0022112088002083.

http://dx.doi.org/10.2307/1990677
http://dx.doi.org/10.1007/PL00008726
http://dx.doi.org/10.1214/aop/1176989018
http://dx.doi.org/10.1007/978-3-642-25847-3
http://dx.doi.org/10.1007/978-3-642-25847-3
http://dx.doi.org/10.1214/17-AOP1196
http://dx.doi.org/10.1214/15-AIHP690
http://wrap.warwick.ac.uk/56226/
http://wrap.warwick.ac.uk/56226/
http://dx.doi.org/10.1137/120898395
http://dx.doi.org/10.1007/978-1-4612-0949-2
http://dx.doi.org/10.1090/proc/12588
http://dx.doi.org/10.1007/s11537-007-0661-z
http://dx.doi.org/10.1017/CBO9781107590120
http://dx.doi.org/10.1002/cpa.3160240206
http://dx.doi.org/10.1137/0522105
http://dx.doi.org/10.1016/j.jde.2012.01.029
http://dx.doi.org/10.1017/S0022112088002083

	1. Introduction.
	1.1. Anomalous Diffusion in Comb-Shaped Domains.
	1.2. Anomalous Diffusion in Comb-Shaped Graphs.
	Plan of this paper

	2. The Limit Process.
	2.1. Construction via Time Changes.
	2.2. The SDE Description.
	2.3. Computing the Generator (Lemma 2.3).
	2.4. PDE Homogenization (Corollaries 1.2, 1.3, and Proposition 1.4).

	3. Comb-Shaped Domains (Theorem 1.1).
	3.1. Proof of Tightness (Lemma 3.1).
	3.2. Uniqueness for the Martingale Problem (Lemma 3.2)
	3.3. Generator Estimate (Lemma 3.3).
	3.4. Local Time at the Gate (Lemma 3.6).
	3.5. An Oscillation Estimate for the Neumann Problem (Proposition 3.8).
	3.6. Local Time on Teeth Boundaries (Lemma 3.7).
	3.7. Remarks About Other Scalings.

	4. Comb-Shaped Graphs (Theorem 1.7).
	4.1. An SDE Description of Z-epsilon.
	4.2. Proof of Convergence (Theorem 1.7).

	5. Excursion Description on the Comb Graph.
	5.1. The Excursion Decomposition of Z-epsilon.
	5.2. Description as a Trapped Brownian Motion.
	5.3. Convergence as epsilon to 0.
	5.4. Proof of the Excursion Decomposition (Proposition 5.1).

	References

