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Abstract. In this paper we study the effect of the addition of a
convective term, and of the resulting increased dissipation rate, on
the growth of solutions to a general class of non-linear parabolic
PDEs. In particular, we show that blow-up in these models can
always be prevented if the added drift has a small enough dissipation
time. We also prove a general result relating the dissipation time
and the effective diffusivity of stationary cellular flows, which allows
us to obtain examples of simple incompressible flows with arbitrarily
small dissipation times.

As an application, we show that blow-up in the Keller-Segel
model of chemotaxis can always be prevented if the velocity field
of the ambient fluid has a sufficiently small dissipation time. We
also study reaction-diffusion equations with ignition-type nonlin-
earities, and show that the reaction can always be quenched by
the addition of a convective term with a small enough dissipation
time, provided the average initial temperature is initially below the
ignition threshold.

1. Introduction and main results
The question of growth and blow-up of solutions to non-linear para-

bolic PDEs is of widespread interest, and arises in their applications to
areas such as fluid dynamics, population dynamics, combustion, and
cosmology. Convection is often included in the relevant models, and its
presence may have two diametrically opposite effects on the solution
dynamics. While, on the one hand, it does have the ability to promote
formation of singular structures, in this paper we concentrate on the
opposite, stabilizing effect of convection.
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The ability of strong (incompressible) drifts to slow down growth of
solutions to non-linear PDEs, and even prevent their blow-up, has been
studied by many authors (see for instance [FKR06, BKNR10, KX16,
BH17,He18,HT19]). Many of the results focus on the study of special
convective motions with certain mixing properties, and their ability to
prevent singularity formation in specific models. While such flows are
good candidates for this purpose, there are various other (often much
simpler) flows that can be used to control singularities.

Indeed, our first main result shows that addition of flows that simply
enhance dissipation to a certain degree is sufficient to keep solutions
regular. This, of course, includes many strong mixing flows, whose
dissipation-enhancing properties have recently been studied (see, e.g.,
[CKRZ08,Zla10,CZDE18,FI19]). But our results apply to general flows,
and the simplicity of the relevant hypotheses allows us to apply them
to a wide class of non-linear parabolic PDEs.

Suppression of blow-up in general non-linear PDEs. In order to
keep the presentation simple, we restrict our attention to the spatially
periodic setting. We hence study the PDE
(1.1) ∂tθ + u · ∇θ = ∆θ +N(θ)
on the d-dimensional torus Td and with initial data θ0 ∈ L2

0(Td), where
Lp

0(Td) is the space of all mean-zero functions in Lp(Td). The velocity
u in the convection term is a prescribed (i.e. independent of θ) time-
dependent Lipschitz divergence-free vector field. The non-linear operator
N : H1(Td) → L2

0(Td) is measurable, and its target space being L2
0(Td)

means that solutions to (1.1) remain mean-zero. Finally, N satisfies
the following crucial hypotheses:
(H1) There exists ε0 ∈ (0, 1] and an increasing continuous function

F : [0,∞) → [0,∞) such that for every φ ∈ H1(Td) we have⃓⃓⃓⃓∫︂
Td
φN(φ) dx

⃓⃓⃓⃓
⩽ (1 − ε0)∥∇φ∥2

L2 + F (∥φ∥L2).

(H2) There exists C0 < ∞ and an increasing continuous function
G : [0,∞) → [0,∞) such that for every φ ∈ H1(Td) we have

∥N(φ)∥L2 ⩽ C0∥∇φ∥2
L2 +G(∥φ∥L2) .

Under hypotheses (H1)–(H2), our main result shows that for any
mean-zero initial data θ0, the corresponding solution to (1.1) is uni-
formly bounded in L2(Td) on its time interval of existence, provided
the dissipation time of u is sufficiently small. The latter is a measure
of the dissipation rate enhancement provided by the convection term,
defined as follows (see also [FW03,Zla10,FI19]).
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Definition 1.1. Let u ∈ L∞((0,∞) × Td) be a divergence-free vector
field, and let Ss,t be the solution operator to the advection-diffusion
equation
(1.2) ∂tφ+ u · ∇φ = ∆φ

on (0,∞) ×Td. That is, φt
def= Ss,tf solves (1.2) with initial data φs = f .

The dissipation time of u is

τ∗(u) def= inf
{︃
t ⩾ 0

⃓⃓⃓⃓
∥Ss,s+t∥L2

0→L2
0
⩽

1
2 for all s ⩾ 0

}︃
.

Here, and throughout this paper, φt
def= φ(t, ·) denotes the slice of the

function φ at time t. Note also that since the L2-norm of solutions
to (1.2) is non-decreasing, ∥Ss,s+t∥L2

0→L2
0
⩽ 1

2 implies ∥Ss,s+t′∥L2
0→L2

0
⩽ 1

2
for all t′ ⩾ t.

We can now state our first main result. Recall that θ satisfying (1.3)
is a mild solution to (1.1) with initial data θ0 if

θt = S0,tθ0 +
∫︂ t

0
Ss,tN(θs) ds .

We note that mild solutions are also weak (see Section 2 below).

Theorem 1.2. Assume that N satisfies hypotheses (H1)–(H2) and
(1.3) θ ∈ L2

loc((0, T ), H1(Td)) ∩ C([0, T ), L2
0(Td))

is a mild solution to (1.1) with u ∈ L∞((0,∞) × Td) a divergence-free
vector field. There is τ0 = τ0(∥θ0∥L2 , N) such that if τ∗(u) ⩽ τ0, then

sup
t∈[0,T )

∥θt∥L2 ⩽ 2∥θ0∥L2 + 1 .

If the functions F and G from hypotheses (H1) and (H2) also satisfy

(1.4) lim sup
y→0+

√︂
F (y) +G(y)

y
< ∞

and T = ∞, then ∥θt∥L2 → 0 exponentially as t → ∞.

Remark. While (1.4) guarantees N(0) = 0, (H1)–(H2) alone do not. One
therefore cannot expect limt→∞ θt = 0 in general without assuming (1.4).

We note that the time τ0 can be computed explicitly in terms of F , G,
C0, ε0 and ∥θ0∥L2 . It is given by T0(∥θ0∥L2) from Proposition 2.1 below
for the first claim, and by T1(∥θ0∥L2) from Proposition 2.2 below for
the second claim. A lower bound on the exponential decay rate when
(1.4) holds can also be obtained from Proposition 2.2, and is discussed
in Remark 2.3 below.
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Finally, this result and its proof easily extend to the PDEs obtained
from (1.1) and (1.2) by replacing ∆ by −(−∆)γ for any γ > 0, provided
one also replaces Ḣ±1(Td) by Ḣ±γ(Td), and ∥∇φ∥L2 in (H1) and (H2)
by ∥(−∆)γ/2φ∥L2 .

Cellular flows with small dissipation times. In order to apply The-
orem 1.2, we need to construct flows with arbitrarily small dissipation
times. One construction of such flows is through appropriate rescaling
of mixing flows. Indeed, the action of mixing flows transfers energy from
lower to higher frequencies; the faster this happens, the faster solutions
to (1.2) dissipate energy and the smaller τ∗(u) becomes. This principle
has previously been used to obtain rigorous bounds on the dissipation
time. In [CKRZ08] (see also [BHN05,KSZ08]) the authors show that for
time-independent velocity fields u = u(x) we have limA→∞ τ∗(Au) = 0
if and only if the operator u · ∇ on Td has no eigenfunctions in H1(Td)
other than constants. In particular, if the flow of u is weakly mixing
(i.e., the spectrum of u · ∇ is continuous), then τ∗(Au) must vanish as
the flow amplitude A → ∞. Moreover, in [FI19,CZDE18] the authors
obtain explicit bounds on τ∗(u) from the (appropriately defined) mixing
rate of u. As a result, if u generates an exponentially mixing flow, then
τ∗(Au(At, ·)) ⩽ c

A
(lnA)2 for some constant c > 0.

The disadvantage of constructing flows with small dissipation times
in this manner is that known examples of strongly mixing flows are
either quite complicated or not very regular (see for instance [CKRZ08,
YZ17, EZ19, ACM19]). There are, however, many flows that are far
from mixing in any sense but still have small dissipation times. While
these times cannot vanish as the amplitude of the flow is increased,
such flows are still sufficient for our purposes.

Here we construct flows with arbitrarily small dissipation times by
rescaling a general class of smooth (time-independent) cellular flows. A
prototypical example of a 2D cellular flow is given by

(1.5) u(x) = ∇⊥ sin(2πx1) sin(2πx2) = 2π
(︄

− sin(2πx1) cos(2πx2)
cos(2πx1) sin(2πx2)

)︄
.

In two dimensions, all cellular flows have closed trajectories and are
therefore not mixing.

Nevertheless, we will show that by rescaling both the cell size and the
flow amplitude, the dissipation time of such flows can be made arbitrarily
small. We will achieve this by establishing a relation between their
dissipation time and their (direction-dependent) effective diffusivity.
The latter, denoted De(u) for any e ∈ Sd−1, is the asymptotic long-time
mean square displacement in direction e of the stochastic process on
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Rd associated to the operator ∆ − u · ∇, normalized by the factor 1
2t

(a
precise definition can be found at beginning of Section 5 below). If we
let D(u) def= min{De1(u), . . . , Den(u)} be the minimum of the effective
diffusivities of the flow u in each of the coordinate directions, then we
have the following result.

Theorem 1.3. For each n ∈ N, let un ∈ W 1,∞(Td) be a mean-zero
divergence-free vector field that is symmetric in all coordinates (i.e., it
satisfies (5.5) below). If limn→∞ D(un) = ∞, then there exists νn ∈ N
such that the rescaled velocity fields vn(x) def= −νnun(νnx) on Td satisfy

lim
n→∞

τ∗(vn) = 0 .

In particular, for d ∈ {2, 3} and any T > 0, there exists a smooth
cellular flow u on Td such that τ∗(u) ⩽ T .

We will in fact provide an upper bound on the minimal required νn

(with cell size of vn being ν−1
n times the cell size of un), and further

show that with our choice of νn one has
τ∗(vn) ⩽ C D(un)−α ln(1 +D(un)) ,

for some constant C and some explicit α > 0. The precise details are
in Remark 5.6 in Section 5 below.

We note that effective diffusivity of cellular flows has been extensively
studied by many authors (see for instance [CS89,FP94,Kor04,RZ07]),
particularly in two dimensions. In fact, typical 2D cellular flows (includ-
ing the one in (1.5)) satisfy D(Au) ∼ A1/2 as A → ∞ (see Example 5.7
below). While the asymptotic behavior of D(Au) is not as well un-
derstood in three dimensions, a large class of 3D cellular flows still
has limA→∞ D(Au) = ∞ (see, e.g., Example 5.8 below). Thus, in
both two and three dimensions, we can apply Theorem 1.3 by choosing
un(x) = nu(nx) for some cellular flow u.

We end this introduction by discussing applications of the above ideas
and results to specific non-linear models.

Suppression of blow-up in the Keller-Segel system. Chemotaxis
is the movement of organisms in response to chemical stimuli, and arises
in many contexts such as the movement of bacteria towards food sources
and sperm towards eggs, as well as migration of neurons and leukocytes.
The mathematical study of chemotaxis was initiated by Patlak [Pat53],
and Keller and Segel [KS70, KS71] who modelled the process as a
coupled parabolic system. Here, we study a simplified, parabolic-elliptic
version of this system introduced by Jäger and Luckhaus [JL92] (see
also [Hor03,Hor04,Per07]). If ρ ⩾ 0 represents the bacterial population
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density and c ⩾ 0 represents the concentration of a chemoattractant
produced by the bacteria, then the evolution of ρ and c is governed by

∂tρ− ∆ρ = −∇ ·
(︂
ρχ∇c

)︂
,(1.6a)

−∆c = ρ− ρ̄ ,(1.6b)

ρ̄ =
∫︂
Td
ρ dx ,(1.6c)

which we consider on Td. Here χ > 0 is a sensitivity parameter and we
will assume that the dimension d is either 2 or 3. This model stipulates
that bacterial diffusion is biased in the direction of the gradient of
the concentration of a chemoattractant that is emitted by the bacteria
themselves, and that the chemoattractant diffuses much faster than the
bacteria do.

It is proved in [JL92] that if d = 2 and the initial data is below
a certain critical threshold, solutions to (1.6a)–(1.6c) are regular for
all positive time. Above this threshold, [JL92] constructs solutions
that blow up in finite time by concentrating positive mass at a single
point. In three dimensions, similar results were proved by Herrero et
al. [HMV97,HMV98,Her00] (see also [Hor03,Per07]).

We now consider the Keller-Segel system in the presence of a drift,
generated by the movement of the ambient fluid. If u is a divergence-free
vector field representing the fluid velocity, then (1.6a) is replaced by

∂tρ+ u · ∇ρ = ∆ρ− ∇ ·
(︂
ρχ∇c

)︂
.(1.6a′)

This model was studied previously by Kiselev and Xu in [KX16], where
they show that for any initial population distribution, there exists an
ambient velocity field u that ensures the solution to (1.6a′) remains
regular for all positive time. They prove this showing that two families of
velocity fields u, the relaxation-enhancing flows from [CKRZ08] and the
(initial-data-dependent and time-dependent) exponentially mixing flows
from [YZ17], can be used to prevent a blow-up in solutions to (1.6a′).

Both these types of flows have fairly complicated geometries. In
contrast, our results above allow us to prove a result similar to that
in [KX16], using general flows that have sufficiently small dissipation
times. This of course includes the flows considered in [KX16], but also
the much simpler fast cellular flows with small cells.

Theorem 1.4. Let d ∈ {2, 3} and ρ0 ∈ C∞(Td) be any non-negative
function. There exists τ0 = τ0(∥ρ0∥L2 , χ) > 0, such that if for some
divergence-free Lipschitz u we have τ∗(u) ⩽ τ0, then the unique solution
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ρ to (1.6a′), (1.6b), (1.6c) with initial data ρ0 is globally regular and

(1.7) lim
t→∞

∥ρt − ρ̄∥L2 = 0 .

In particular, for each such ρ0, there is a time-independent smooth
cellular flow u on Td that prevents singularity formation in (1.6a′),
(1.6b), (1.6c).

We note that there are other flows with a simple structure and large
amplitudes (but not small dissipation times), namely shear flows, that
have been used to a similar effect in the recent work of Bedrossian
and He on (1.6a′), (1.6b), (1.6c) [BH17]. Obviously, our results apply
to general flows with small dissipation times, not just the cellular
ones, as well as to more general models than Keller-Segel. But even
when it comes to the Keller-Segel model, it is noteworthy to mention
certain differences between blow-up supression via cellular and shear
flows. Strong shear flows quickly extend any confined regions with high
initial densities into channels that stretch throughout the domain, and
essentially remove one dimension from the dynamics (note that the
flows on T2 from [KX16] essentially remove both dimensions). Thanks
to this, [BH17] was able to obtain no blow-up for general solutions on
T2, but such a result on T3 only holds for initial data with small enough
total mass.

Since streamlines of cellular flows with small cell sizes are very con-
fined, it is more difficult to obtain fast spreading of confined high-density
regions (this requires the advection and diffusion to cooperate), but then
this fast spreading happens throughout the whole domain (as in [KX16]
on T2), rather than only across quasi-one-dimensional channels. This
allows us to prevent blow-up for general initial data on T3 as well.

In addition, while we state all our results on the domain Td, it is
not too difficult to extend them to cubes [0, 1]d (with homogeneous
Neumann or Dirichlet boundary conditions), with the same cellular
flows providing the necessary small dissipation times (note that such
an extension seems not possible for the flows on T2 from [KX16], or
the shear flows on Td). This is important for applications in real-world
settings because unlike Td, the cube [0, 1]d is actually a subset of Rd.

It is also worthwhile to point out a difference between Theorem 1.4
and results on domains of infinite volume, where strong convection may
easily increase dissipation by simply spreading even large L1 initial data
across large regions (see, e.g., [KZ06,HT19] for such results on the plane
involving chemotaxis as well as quenching of reactions from the next
subsection). This is clearly not possible bounded domains, the case
considered here.
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Quenching in models of combustion. Reaction-diffusion equations
with ignition type nonlinearities are a well established model used to
study the temperature of a combusting substance. It is well known
that if, on a bounded domain, the average temperature is above the
ignition threshold initially, then the fuel eventually burns completely.
However, when the average temperature is below the ignition threshold,
the fuel may or may not burn completely, and it is possible for the
reaction to be quenched. We will show in Theorem 4.1 in Section 4
below that, in fact, the reaction can always be quenched in this case by
the addition of any convective term with a sufficiently small dissipation
time. The proof does not use Theorem 1.2 but instead involves showing
that ∥S0,T ∥L1

0→L∞
0

(for any fixed T > 0) can be made arbitrarily small
by making the dissipation time of the advecting velocity field small
enough.

Organization of the paper. We prove Theorem 1.2 in Section 2,
Theorem 1.4 in Section 3, and discuss applications to fluid dynamics
and combustion models in Sections 4 and 5, respectively. Theorem 1.3
is proved in Section 6, along with some results concerning asymptotic
mean displacement of stochastic processes corresponding to (1.2) on Rd

with periodic flows.

Acknowledgements. We thank Alexander Kiselev and Bruce Driver
for helpful discussions. We also thank Theo Drivas, Franco Flandoli and
the anonymous referees for pointing out an error in an earlier version
of this paper.

2. Uniform energy bounds for general PDEs
In this section we prove Theorem 1.2, which is an immediate corollary

of the following two results.

Proposition 2.1. Assume that N satisfies hypotheses (H1)–(H2), u ∈
L∞([0,∞)×Td) is a divergence-free vector field, and θ is a mild solution
to (1.1) such that (1.3) holds. For any B ⩾ 0, let

T0(B) def= min
{︃∫︂ 2B+1

B

y

F (y) dy ,
B

2C0ε
−1
0 F (2B + 1) + 2G(2B + 1)

}︃
.

If for some t0 ⩾ 0 we have τ∗(u) ⩽ T0(∥θt0∥L2), then

∥θt0+nτ∗(u))∥L2 ⩽ ∥θt0∥L2 for every n ∈ N ,(2.1a)
∥θt∥L2 ⩽ 2∥θt0∥L2 + 1 for every t > t0 .(2.1b)
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Proposition 2.2. Assume the hypotheses of Proposition 2.1 as well as
(1.4). Let T1(0) def= ∞, and for any B > 0 let

T1(B) def= inf
b∈(0,B]

min
{︃∫︂ 2b

b

y

F (y) dy,
b

4C0ε
−1
0 F (2b) + 4G(2b)

}︃
.

If for some t0 ⩾ 0 we have τ∗(u) ⩽ T1(∥θt0∥L2), then
(2.2) ∥θt∥L2 ⩽ 2Ψ⌊(t−t0)/τ∗(u)⌋ (∥θt0∥L2) for every t ⩾ t0 ,

where Ψ(B) def= B − min{ B
16 ,

ε0
8C0

} and Ψn def= Ψ ◦ Ψn−1 for n ⩾ 2.

Remark. Hypothesis (1.4) ensures that T1(B) > 0 for every B > 0,
because

∫︁ 2b
b

y
yα dy is uniformly bounded in all small b > 0 when α ⩽ 2.

Remark 2.3. The time decay obtained in (2.2) is exponential. The
exponential decay rate is τ∗(u)−1| ln(1 − r)|, where r is initially

min
{︃ 1

16 ,
ε0

8C0∥θt0∥L2

}︃
,

and once t becomes large enough, r changes to 1
16 . By optimizing the

proof further, this number can be increased to any number smaller than
1
2 − lim

B→0+

τ∗(u)
4T1(B) .

Before proving these results, let us note that our mild solutions
are also weak solutions. We say that θ is a weak solution to (1.1) on
(0, T ) ×Td if it is a distributional solution to the PDE, and the equality
in (1.1) holds in H−1(Td) at almost every t ∈ (0, T ).

If now θ as in (1.3) is a mild solution to (1.1) on (0, T ) × Td, then
standard smoothing properties of Ss,t when t− s is uniformly positive
show that

θδ
t

def= S0,tθ0 +
∫︂ t−δ

0
Ss,tN(θs) ds

is a strong and therefore also distributional solution to (1.1) with N(θt)
replaced by St−δ,tN(θt−δ), on (δ, T )×Td. Taking δ → 0 in the definition
of distributional solutions, and using (1.3), (H2), and measurability of
N (which yield N(θ) ∈ L1

loc((0, T ), L2(Td))), as well as ∥Ss,t∥Lp→Lp ≤ 1,
now shows that θ is a distributional solution to (1.1) on (0, T ) × Td.

Since (1.3) and u ∈ L∞((0,∞)×Td) yield ∆θ ∈ L2
loc((0, T ), H−1(Td))

and u · ∇θ,N(θ) ∈ L1
loc((0, T ), L2(Td)), it follows that

(2.3) ∂tθ ∈ L2
loc((0, T ), H−1(Td)) + L1

loc((0, T ), L2(Td)) .
Hence, the equality in (1.1) holds at almost every t ∈ (0, T ) in H−1(Td),
so θ is indeed a weak solution to (1.1) on (0, T ) × Td.
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Proof of Proposition 2.1. Without loss of generality, we assume t0 = 0.
For notational convenience let B def= ∥θ0∥L2 and τ∗ = τ∗(u).

Let us now assume that ∥θs∥L2 ⩽ B for some s ⩾ 0 (which holds for
s = 0). Note that similarly to [Eva98, Theorem 5.9.3], one can use (2.3)
and (1.3) to show that ∥θt∥2

L2 is a locally absolutely continuous function
of t, whose derivative equals 2

∫︁
Td ∂tθt θt dx (the integral representing a

pairing of elements fromH−1(Td) andH1(Td)) at almost every t ∈ (0, T ).
Hence, multiplying (1.1) by θt ∈ H1(Td) and integrating in space yields

1
2∂t∥θt∥2

L2 + ∥∇θt∥2
L2 ⩽

⃓⃓⃓⃓∫︂
Td
θtN(θt) dx

⃓⃓⃓⃓
⩽ (1 − ε0)∥∇θt∥2

L2 + F (∥θt∥L2)(2.4)
for almost every t ∈ (0, T ), so for these t we have
(2.5) ∂t∥θt∥L2∥θt∥L2 ⩽ F (∥θt∥L2) .
Thus, for almost every t ∈ (0, T ) we have

∂t

∫︂ ∥θt∥L2

B

y

F (y)dy = ∂t∥θt∥L2∥θt∥L2

F (∥θt∥L2) ⩽ 1.

Since
∫︁ ∥θs∥L2

B
y

F (y)dy ⩽ 0, it follows that for all t ∈ [s, s+T0(B)] we have

(2.6)
∫︂ ∥θt∥L2

B

y

F (y)dy ⩽ t− s ⩽ T0(B) ⩽
∫︂ 2B+1

B

y

F (y) dy ,

which forces ∥θt∥L2 ⩽ 2B + 1 for all t ∈ [s, s+ T0(B)].
Next, integrating (2.4) in time yields

(2.7) ∥θs+τ∗∥2
L2 −∥θs∥2

L2 ⩽ 2
∫︂ s+τ∗

s
F (∥θt∥L2) dt−2ε0

∫︂ s+τ∗

s
∥∇θt∥2

L2 dt .

If

(2.8)
∫︂ s+τ∗

s
∥∇θt∥2

L2 dt ⩾
1
ε0

∫︂ s+τ∗

s
F (∥θt∥L2) dt ,

then the right hand side of (2.7) is at most 0, and hence ∥θs+τ∗∥L2 ⩽ B.
If (2.8) fails, then from

θs+τ∗ = Ss,s+τ∗θs +
∫︂ s+τ∗

s
St,s+τ∗N(θt) dt

we obtain

∥θs+τ∗∥L2 ⩽ ∥Ss,s+τ∗θs∥L2 +
∫︂ s+τ∗

s

⃦⃦⃦
St,s+τ∗N(θt)

⃦⃦⃦
L2
dt

⩽
B

2 +
∫︂ s+τ∗

s
∥N(θt)∥L2 dt

⩽
B

2 +
∫︂ s+τ∗

s

(︂
C0∥∇θt∥2

L2 +G(∥θt∥L2)
)︂
dt
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⩽
B

2 +
∫︂ s+τ∗

s

(︃
C0

ε0
F (∥θt∥L2) +G(∥θt∥L2)

)︃
dt .(2.9)

Since τ∗ ⩽ T0(B) (so that ∥θt∥L2 ⩽ 2B + 1 for all t in the integral), it
follows that

∥θs+τ∗∥L2 ⩽
B

2 +
(︃
C0

ε0
F (2B + 1) +G(2B + 1)

)︃
τ∗ ⩽ B.

From this and ∥θt∥L2 ⩽ 2B + 1 for all t ∈ [s, s + τ∗] both holding
whenever ∥θs∥L2 ⩽ B (in particular, when s = 0), the claim follows via
induction on n. □

Proof of Proposition 2.2. Without loss of generality, we again assume
t0 = 0. We again also denote B def= ∥θ0∥L2 and τ∗ = τ∗(u). By (1.4) and
continuity of G we have G(0) = 0, therefore N(0) = 0 by (H2). This
proves the claim when θ0 = 0, so let us now assume that B > 0.

As in the previous proof, from (2.5) we obtain

(2.10) ∥θt∥L2 ⩽ 2∥θs∥L2 whenever t ∈
[︄
s, s+

∫︂ 2∥θs∥L2

∥θs∥L2

y

F (y) dy
]︄
.

Next, let CB
def= max{C0B, 2ε0}. From (2.7) we see that if

(2.11)
∫︂ τ∗

0
∥∇θt∥2

L2 dt ⩾
1
ε0

∫︂ τ∗

0
F (∥θt∥L2) dt+ CB − ε0

4C2
B

B2 ,

then we obtain (also using ε0 ⩽ CB/2 and the definition of CB)

∥θτ∗∥L2 ⩽
(︃

1 − ε0(CB − ε0)
2C2

B

)︃1/2
B

⩽
(︃

1 − ε0

8CB

)︃
B ⩽

(︃
1 − min

{︃ 1
16 ,

ε0

8C0B

}︃)︃
B .(2.12)

And if (2.11) fails, then the argument proving (2.9) shows that

∥θτ∗∥L2 ⩽
B

2 +
∫︂ τ∗

0

(︃
C0

ε0
F (∥θt∥L2) +G(∥θt∥L2)

)︃
dt+ C0(CB − ε0)

4C2
B

B2 .

From (2.10) and F,G being increasing, we see that if τ∗ ⩽ T1(B), then
the integral is bounded above by B

4 and so

∥θτ∗∥L2 ⩽

(︄
3
4 + C0CB − ε0

4C2
B

B

)︄
B ⩽

(︃
1 − min

{︃1
8 ,

ε0

4C0B

}︃)︃
B .

Applying this argument iteratively on time intervals [(n− 1)τ∗, nτ∗]
for n ∈ N, and with B replaced by ∥θ(n−1)τ∗∥L2 , shows that

(2.13) ∥θnτ∗∥L2 ⩽ Ψn(∥θ0∥L2)
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for all n ∈ N. From (2.10) we know that ∥θt∥L2 at most doubles at
times between integer multiples of τ∗. Combining this fact with (2.13)
yields (2.2), as desired. □

3. Preventing blow-up of Keller-Segel dynamics
In this section we prove Theorem 1.4. For the sake of convenience,

we denote
∇−1 def= ∇∆−1 .

That is, we let ∇−1ψ
def= ∇ϕ, where ϕ solves ∆ϕ = ψ on Td. With

this notation, the first two equations of the Keller-Segel system (1.6a′),
(1.6b), (1.6c) read
(3.1) ∂tρ+ u · ∇ρ = ∆ρ+ χ∇ · (ρ∇−1(ρ− ρ̄)) .

The main idea here is to use the results from Section 2 to show that
∥ρt∥L2 remains uniformly bounded in time. Once this is established,
well known results can be used to obtain global regularity, and then (1.7)
will be obtained from (2.2).

Lemma 3.1. Let ρ be a smooth solution to (1.6a′), (1.6b), (1.6c) on the
time interval [0, T ), and let t0 ∈ [0, T ). There are c = c(χ∥ρt0 − ρ̄∥L2) >
0 and τ1 = τ1(∥ρt0 − ρ̄∥L2 , ρ̄, χ) > 0 such that if τ∗(u) ⩽ τ1 for the
incompressible drift u, then
(3.2) ∥ρt − ρ̄∥L2 ⩽ 3e−c(t−t0)/τ∗(u)∥ρt0 − ρ̄∥L2 ,

for all t ∈ [t0, T ). Moreover, τ1 and c can be chosen to be decreasing in
each argument.

Proof. Notice that if we let

θ
def= ρ− ρ̄ ,

N(θ) def= χ∇ ·
(︂
(θ + ρ̄)∇−1θ

)︂
,

then θ satisfies (1.1) (here we think of ρ̄0 as a parameter) and N(θ) is
mean-zero. Thus, in order to apply Proposition 2.2, we only need to
verify hypotheses (H1)–(H2) and (1.4). For (H1), we compute

χ−1
∫︂
Td
θN(θ) dx =

∫︂
Td

(θ + ρ̄)θ2 dx+
∫︂
Td
θ∇θ · ∇−1θ dx

= 1
2∥θ∥3

L3 + ρ̄∥θ∥2
L2(3.3)

because∫︂
Td
θ∇θ · ∇−1θ dx = 1

2

∫︂
Td

∇θ2 · ∇−1θ dx = −1
2

∫︂
Td
θ3 dx .
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Using the Gagliardo-Nirenberg and Young inequalities (see for in-
stance [Maz85]), we have

∥θ∥3
L3 ⩽ C1∥θ∥

3− d
2

L2 ∥∇θ∥
d
2
L2 ⩽ χ−1∥∇θ∥2

L2 + C2χ
d

4−d ∥θ∥
12−2d

4−d

L2 ,

for some universal constants C1, C2. Using this in (3.3) shows that (H1)
holds with ε0 = 1

2 and

F (y) =
(︂
C1χ

4
4−dy

4
4−d + χρ̄

)︂
y2 .

For (H2), note that the Hardy-Littlewood-Sobolev inequality implies
χ−1∥N(θ)∥L2 ⩽ ∥θ(θ + ρ̄)∥L2 + ∥∇θ · ∇−1θ∥L2

⩽ ρ̄∥θ∥L2 + ∥θ∥2
L4 + ∥∇θ∥L2∥∇−1θ∥L∞

⩽ ρ̄∥θ∥L2 + C3
(︂
∥θ∥2

Ḣ
d/4 + ∥∇θ∥L2∥θ∥

Ḣ
d/2−1+ε

)︂
⩽ ρ̄∥θ∥L2 + C4∥∇θ∥2

L2

for any ε > 0 and constants C3, C4 depending only on ε. (Above we also
used for ψ = ∆−1θ that for any s > 0 we have ∥D2ψ∥Ḣ

s ⩽ C∥∆ψ∥Ḣ
s ,

with some constant C = C(s, d).) Hence (H2) is satisfied with C0 = C4χ
(after fixing, e.g., ε = 1

2) and G(y) = χρ̄y.
From the above formulae for F and G we can see that (1.4) also

holds. Thus Proposition 2.2 applies, proving (3.2) as well as the last
claim. □

Next, we use the fact that a time-uniform bound on ∥ρt∥L2 implies
global existence for (3.1). This was shown in [KX16], and we present
here a short proof for the sake of completeness.
Lemma 3.2 (Thm. 2.1 in [KX16]). Let d ∈ {2, 3} and ρ0 ∈ C∞(Td) be
non-negative. If the maximal time T of existence of the unique smooth
solution ρ to (3.1) with initial data ρ0 and incompressible drift u is
finite, then

(3.4)
∫︂ T

0
∥ρt − ρ̄∥

4
4−d

L2 dt = ∞ .

Proof. Multiplying (3.1) by −∆ρ and integrating in space yields

(3.5) 1
2∂t∥∇ρ∥2

L2 + ∥∆ρ∥2
L2 ⩽

⃓⃓⃓⃓∫︂
Td

∇ρ · ∇−1(ρ− ρ̄)∆ρ dx
⃓⃓⃓⃓

+
⃓⃓⃓⃓∫︂

Td
u · ∇ρ∆ρ dx

⃓⃓⃓⃓
+
⃓⃓⃓⃓∫︂

Td
ρ(ρ− ρ̄)∆ρ dx

⃓⃓⃓⃓
= I + II + III .

To estimate I , we integrate by parts to get

I ⩽
1
2

⃓⃓⃓⃓∫︂
Td

∇|∇ρ|2 · ∇−1(ρ− ρ̄) dx
⃓⃓⃓⃓
+

d∑︂
i=1

⃓⃓⃓⃓∫︂
Td

(∇ρ) · (∇−1(ρ− ρ̄))xi
ρxi

dx

⃓⃓⃓⃓
.
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Another integration by parts in the first term shows that it is bounded
above by ∫︂

Td
|∇ρ|2|ρ− ρ̄| dx ⩽ ∥ρ− ρ̄∥L4∥∇ρ∥2

L8/3

while L4-boundedness of double Riesz transforms shows that the second
term is bounded above by C∥ρ−ρ̄∥L4∥∇ρ∥2

L8/3 for some constant C. The
Gagliardo-Nirenberg inequality applied to both norms in this product
then yields

I ⩽ C∥∇ρ∥
d
4
L2∥ρ−ρ̄∥1− d

4
L2 ∥∆ρ∥

d
4
L2∥∇ρ∥2− d

4
L2 = C∥∇ρ∥2

L2∥ρ−ρ̄∥1− d
4

L2 ∥∆ρ∥
d
4
L2

and therefore finally

I ⩽ C∥∇ρ∥2− d
2

L2 ∥ρ− ρ̄∥L2∥∆ρ∥
d
2
L2 ⩽

1
2∥∆ρ∥2

L2 + C∥ρ− ρ̄∥
4

4−d

L2 ∥∇ρ∥2
L2

(with a new C in each inequality).
For II , we again integrate by parts and use ∇ · u = 0 to get

II ⩽
⃓⃓⃓⃓∫︂

Td
u · ∇|∇ρ|2 dx

⃓⃓⃓⃓
+ C∥u∥C1∥∇ρ∥2

L2 = C∥u∥C1∥∇ρ∥2
L2 .

For III , we integrate by parts and use the Gagliardo-Nirenberg
inequality exactly as we did for term I to obtain

III ⩽ 2
∫︂
Td

|ρ− ρ̄||∇ρ|2 dx+ ρ̄
∫︂
Td

|∇ρ|2 dx

⩽
1
2∥∆ρ∥2

L2 +
(︃
C∥ρ− ρ̄∥

4
4−d

L2 + ρ̄
)︃

∥∇ρ∥2
L2 .

Using the above bounds in (3.5) yields

(3.6) ∂t∥∇ρ∥2
L2 + ∥∆ρ∥2

L2 ⩽ C
(︃

∥u∥C1 + ρ̄+ ∥ρ− ρ̄∥
4

4−d

L2

)︃
∥∇ρ∥2

L2 .

Gronwall’s lemma now shows that if (3.4) does not hold, then ∥∇ρ∥L2

and ∥∆ρ∥L2 remain uniformly bounded on [0, T ). Then a standard
Galerkin approximations argument shows that ρ can be smoothly ex-
tended beyond T , a contradiction. This completes the proof. □

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Let τ0(y, χ) def= τ1(y, y, χ), with τ1 being from
Lemma 3.1 (so τ0 is also decreasing in both arguments). If T is the
maximal time of existence of ρ, then (3.2) holds (with t0 = 0) for all
t ∈ [0, T ). Therefore we must have T = ∞ because otherwise (3.4)
would not hold, contradicting Lemma 3.2. This also means that (1.7)
follows from (3.2). The last claim follows from Theorem 1.3. □
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4. Quenching of reactions by stirring
A well established model for the (normalized) temperature of a

combusting substance (see, e.g., the reviews [Ber02,Xin00,Xin09]) is
the reaction diffusion equation

(4.1) ∂tθ = ∆θ + f(θ) .

Here, the function θ takes values in [0, 1] and the non-linear Lipschitz
reaction function f is of the ignition type (other types of reaction
functions model other reactive processes, including chemical kinetics
and population dynamics). That is, we assume that there is α0 ∈ (0, 1)
such that

f(θ) = 0 for θ ∈ [0, α0] ∪ {1} and f(θ) > 0 for θ ∈ (α0, 1) .

The number α0 is ignition temperature, below which no burning occurs.
Also note that since θ ≡ 0, 1 are stationary solutions, comparison
principle indeed yields 0 ⩽ θ ⩽ 1 whenever 0 ⩽ θ0 ⩽ 1.

When the combustive process is also subject to mixing due to a
prescribed incompressible drift u, equation (4.1) becomes

∂tθ + u · ∇θ = ∆θ + f(θ) .(4.1′)

With or without the drift u, one can show using

∂t∥θt∥L1 =
∫︂
Td
f(θt) dx ⩾ 0

that the fuel burns completely (i.e., limt→∞∥1−θt∥L∞ = 0) for all initial
data 0 ⩽ θ0 ⩽ 1 that satisfy θ̄0

def=
∫︁
Td θ0 dx ⩾ α0 and θ0 ̸≡ α0.

When instead θ̄0 < α0, the fuel may or may not burn completely, and
it is possible for the reaction to be quenched, that is, ∥θT ∥L∞ ⩽ α0 for
some T ⩾ 0. Comparison principle shows that after such time T , evolu-
tion of the temperature will be governed by the linear equation (1.2),
and hence we will have limt→∞∥θt − θ̄0∥L∞ = 0.

The main result of this section shows that if θ̄0 < α0, then one can
always ensure quenching by choosing an incompressible drift u with a
small enough dissipation time.

Theorem 4.1. Let θ be the solution to (4.1′) on Td with nonnegative
initial data θ0 ∈ L∞(Td) with θ̄0 < α0. There is τ0 = τ0(α0, θ̄0) such that
if τ∗(u) ⩽ τ0 for some divergence-free vector field u, then the reaction
is quenched. In particular, if θ̄0 < α0 and d ∈ {2, 3}, then there is
a time-independent smooth cellular flow u on Td that quenches the
reaction.
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Remark. The last claim should also hold for d ⩾ 4, but we are not aware
of a construction of such flows. Time-periodic flows with this property
can be constructed by alternating flows from Example 5.7 below acting
on different pairs of coordinates.

Theorem 4.1 and its proof are closely related to Theorem 7.2 in
[CKRZ08], which is a qualitative statement about a certain class of
time-independent drifts (so-called relaxation-enhancing ones) on general
compact manifolds. Theorem 4.1 is a more quantitative result that
applies to general time-dependent drifts. It is an immediate consequence
of the comparison principle and the following result about equation (1.2).

Proposition 4.2. There is a constant Cd such that the solution operator
Ss,t for (1.2) with any u ∈ L∞((0,∞),W 1,∞(Td)) satisfies
(4.2) sup

s⩾0
∥Ss,s+t∥L1

0→L∞
0
⩽ ε

for every ε > 0, provided
(4.3) t ⩾ (Cd + d ln− τ∗(u) + 2 ln− ε)τ∗(u) .

Proof. There is a u-independent constant cd ⩾ 1 such that if φ is the
solution to (1.2) with mean-zero initial data φ0 ∈ L1(Td), then
(4.4) ∥φs+t∥L∞ ⩽ cdt

−d/4∥φs∥L2

and
(4.5) ∥φs+t∥L2 ⩽ cdt

−d/4∥φs∥L1

for any s ⩾ 0 and t ∈ [0, 1]. The first claim is contained in Lemma 5.4
in [Zla10] (see also Lemma 5.6 in [CKRZ08] and Lemmas 3.1, 3.3
in [FKR06]), while the second follows from it and a simple duality
argument (it is also contained in Lemma 5.4 in [Zla10] but with d

2 in
place of d

4 , which would also suffice here). Notice also that while [Zla10]
only considers time-independent drifts, the proof of its Lemma 5.4
equally applies to the time-dependent case.

Write τ∗ = τ∗(u) and let σ = min{τ∗, 1}. Then for any s ⩾ 0, n ∈ N,
and t ⩾ nτ∗ + 2σ we have

∥φs+t∥L∞ ⩽ ∥φs+nτ∗+2σ∥L∞ ⩽ cdσ
−d/4∥φs+nτ∗+σ∥L2

⩽ cdσ
−d/42−n∥φs+σ∥L2 ⩽ c2

dσ
−d/22−n∥φs∥L1 .

The result now follows from this estimate with

n =
⌈︃
log2(c2

dσ
−d/2ε−1)

⌉︃
and from 1

ln 2 ⩽ 2, with Cd
def= 2 + 4 ln cd. □
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We can now prove Theorem 4.1.

Proof of Theorem 4.1. Notice that

λ
def= sup

y∈(0,1]

f(y)
y

is finite, and if φ solves (1.2) on Td with initial data ϕ0
def= θ0, then

the comparison principle shows that θt ⩽ eλtφt for all t ⩾ 0. Let
t0

def= − 1
λ

ln α0+θ̄0
2α0

> 0 and

ε
def= α0e

−λt0 − θ̄0 = α0 − θ̄0

2 > 0 .

If now τ0 > 0 is such that for any τ∗(u) ⩽ τ0 we have that the right-hand
side of (4.3) is at most t0, then Proposition 4.2 shows that

∥φt0 − θ̄0∥L∞ ⩽ ε∥θ0 − θ̄0∥L1 ⩽ ε ⩽ α0e
−λt0 − θ̄0 .

Therefore ∥θt0∥L∞ ⩽ ∥φt0∥L∞eλt0 ⩽ α0, completing the proof of the first
claim. The last claim follows from Theorem 1.3. □

5. Dissipation times of periodic and cellular flows
In this section we will prove Theorem 1.3 and also provide examples

of cellular flows in 2D and 3D satisfying its hypotheses.
Consider now the advection-diffusion equation (1.2) on Rd, with

initial data φ0 and a time-independent mean-zero divergence-free Lips-
chitz vector field u. Consider also the stochastic process Xx

t = Xx
t (ω)

satisfying the SDE

(5.1) dXx
t =

√
2 dBt − u(Xx

t )dt, Xx
0 = x.

Here Bt = Bt(ω) is a normalized Brownian motion on Rd with B0 = 0,
defined on some probability space (Ω,B∞,PΩ). Lemma 7.8 in [Øks03]
shows that if kt(x, y) is the fundamental solution for (1.2) (i.e., kt(x, ·)
is the density for Xx

t ) and EΩ the expectation with respect to ω ∈ Ω,
then solutions to (1.2) satisfy

(5.2) φ(t, x) =
∫︂
Rd
kt(x, y)φ0(y) dy = EΩ

(︂
φ0(Xx

t )
)︂
.

Finally, for each vector e ∈ Rd, the effective diffusivity of u in direction
e is the number

(5.3) De(u) def= lim
t→∞

EΩ

(︄
|(Xx

t − x) · e|2

2t

)︄
(⩾ 1),
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with the limit being independent of x ∈ Rd. It will be also convenient
to denote

D(u) def= min{De1(u), . . . , Ded
(u)} ⩾ 1

the minimum of effective diffusivities in all the coordinate directions.
We refer the reader to the discussion in Sections 1 and 2 of [Zla11] for
more details.

It follows from (5.3) that the stochastic process travels far (relative
to

√
t, for large t) with large probability when the effective diffusivity is

large, which may of course aid mixing when such flows are scaled down
and acting on a torus. In fact, cellular flows in two dimensions have
their effective diffusivities growing proportionally to the square root of
their amplitudes [FP94,Kor04], so this suggests that large amplitude
cellular flows (with small cells) should be good short time mixers on T2.
To show that, we need to use the following result from [Zla11], which is
a short time large probability one-sided analogue of (5.3) for 1-periodic
flows, with u-independent constants.

Lemma 5.1 (Theorem 2.1 in [Zla11]). There is C ⩾ 1 such that for
any 1-periodic incompressible mean-zero Lipschitz flow u on Rd, any
e ∈ Rd, any α > 0, and any τ ⩾ 1, there are t ∈ [1, τ + 1] and x ∈ Rd

such that

(5.4) PΩ

(︃
|(Xx

t − x) · e| ⩾ α
√︂
τDe(u)

)︃
⩾ 1 − Cα.

Remark. The result in [Zla11] has t ∈ [0, τ ], but the proof can be easily
modified to obtain this version.

Because we want to consider general periods, we now extend this
result to that case.

Lemma 5.2. There is C ⩾ 1 such that for any l-periodic incompressible
mean-zero Lipschitz flow u, any e ∈ Rd, any α > 0, and any τ ⩾ l2,
there are t ∈ [l2, τ + l2] and x ∈ Rd such that (5.4) holds.

Proof. Let v(x) def= l u(lx), let Xx
t be from (5.1), and let Y x

t
def= 1

l
X lx

l2t.
Then Y x

t satisfies

dY x
t =

√
2 1
l
dBl2t − v(Y x

t )dt, Y x
0 = x.

Since 1
l
Bl2t equals Bt in law, it follows that Y x

t is a stochastic process
corresponding to the 1-periodic flow v via (5.1). From (5.3) we immedi-
ately see that De(v) = De(u) for all e ∈ Rd, and Lemma 5.1 applied to
v then finishes the proof. □
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Next we extend the claim to all x, in an appropriate sense. Let
Ψ(x) def=

∫︁∞
x

1√
2π
e−y2/2dy.

Theorem 5.3. There is C ⩾ 1 such that for any l-periodic incompress-
ible mean-zero Lipschitz flow u on Rd, any e ∈ Sd, any α ∈ (0, 1), and
any τ ⩾ l2, there is t ∈ [l2, τ + l2] such that for any x ∈ Rd we have

PΩ

(︃
|(Xx

t − x) · e| ⩾ α
√︂
τDe(u) − 3lΨ−1(α) − 2l2∥u∥L∞

)︃
⩾ 1 − C

√
α.

Also, De(u) = De(uL) for any L > 0, where uL(x) def= 1
L
u( x

L
).

Remark. Note that for any 1-periodic flow u we now have

lim
L→0

(︂
3LΨ−1(Cα) − 2L2∥uL∥L∞

)︂
= 0,

with uL being L-periodic. So if u has a large effective diffusivity, Xx
t

will travel far for all t as small as one needs and all x ∈ Rd, provided
we scale the flow down sufficiently (and multiply by the same scaling
factor). This will result in good mixing properties of such flows on Td.

Proof. The last claim was established in the previous proof.
It is well known that there is c > 0 such that for any l-periodic flow

u, the probability density function ht(x, y) def= ∑︁
k∈(lZ)d kt(x, y+ k) of the

process Xx
t mod l ∈ (lT)d takes values in [cl−d, c−1l−d] when t = l2 (for

each x ∈ Td). Given τ ⩾ l2, take (t, x) from Lemma 5.2. Then for any
α > 0 and C from Lemma 5.2 we have
1 − Cα− PΩ

(︂
|
√

2B1 · e| > a
)︂

⩽
∫︂

(lT)d
hl2(x, y)PΩ

(︃⃓⃓⃓
(Xy

t−l2 − y) · e
⃓⃓⃓
⩾ α

√︂
τDe(u) − la− l2∥u∥L∞

)︃
dy.

This is due to the Markov property of Xx
t as well as the fact that if

|
√

2Bl2 ·e| ⩽ la (which has the same probability as |
√

2B1 ·e| ⩽ a), then
|Xx

l2 − x| ⩽ la+ l2∥u∥L∞ . Let us now pick a def=
√

2Ψ−1(α), so we have
PΩ(|

√
2B1 · e| > a) ⩽ 2Cα. Using hl2 ⩾ cl−d and

∫︁
(lT)d hl2(x, y)dy = 1,

we find that the measure of the set of all y ∈ (lT)d such that

PΩ

(︃⃓⃓⃓
(Xy

t−l2 − y) · e
⃓⃓⃓
⩾ α

√︂
τDe(u) − la− l2∥u∥L∞

)︃
< 1 − 3c−1

√
Cα

is at most
√
Cα ld.

Let now z ∈ Rd be arbitrary. Then Markov property again yields

PΩ

(︃
|(Xz

t − z) · e| ⩾ α
√︂
τDe(u) − 2la− 2l2∥u∥L∞

)︃
+ PΩ

(︂
|
√

2B1 · e| > a
)︂
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⩾
∫︂

(lT)d
hl2(z, y)·

· PΩ

(︃⃓⃓⃓
(Xy

t−l2 − y) · e
⃓⃓⃓
⩾ α

√︂
τDe(u) − la− l2∥u∥L∞

)︃
dy

⩾ 1 − 3c−1
√
Cα− c−1l−d

√
Cα ld .

So Cα ⩽ 1 ⩽ c−1 shows for the above t and all z ∈ Rd,

PΩ

(︃
|(Xz

t − z) · e| ⩾ α
√︂
τDe(u) − 2la− 2l2∥u∥L∞

)︃
⩾ 1 − 5c−1

√
Cα.

If we now change C to be 5 max{C, c−2}, the result follows. □

From now on we will consider flows on Td with period 1
ν

(ν ∈ N) that
are also symmetric. We say that a flow u is symmetric in xn if we have

(5.5) u(Rnx) = Rnu(x) for all x ∈ Td,

where Rnv
def= v − 2vnen for v = ∑︁d

n=1 vnen ∈ Rd is the reflection in the
nth coordinate. Note that a periodic flow that is symmetric in all d
coordinates has a cellular structure.

We let Xx
t be the process above, when u is considered on Rd (extended

periodically), and note that Xx
t mod 1 is the corresponding process on

Td. Finally, for any divisor µ of ν, we denote by Cµ
k

def= Πd
n=1[kn

µ
, kn+1

µ
)

(k = (k1, . . . , kd) ∈ {0, . . . , µ−1}d) the “cells” of u on Td of size 1
µ

(each
of which is an invariant set for the flow when u is symmetric).

Lemma 5.4. There is C ⩾ 1 such that for any 1
ν
-periodic incompressible

mean-zero Lipschitz flow u that is symmetric in xn we have

(5.6) |PΩ (Xx
τ ∈ Cµ

k ) − PΩ (Xx
τ ∈ Cµ

m)| ⩽ C
√
α

for any x ∈ Rd, any α ∈ (0, 1), any divisor µ of ν, and any k,m as
above such that k −m is a multiple of en, provided

(5.7) τ ⩾
(6νΨ−1(α) + 4∥u∥L∞ + ν2)2

4ν4α2Den(u) + 2
ν2 .

In particular, if u is symmetric in all coordinates, then we have

(5.8)
⃓⃓⃓⃓
⃓PΩ (Xx

τ ∈ Cµ
k ) − 1

µd

⃓⃓⃓⃓
⃓ ⩽ Cd

√
α

for any x ∈ Rd, any α, µ as above, and any k,m ∈ {0, . . . , µ − 1}d,
provided

(5.9) τ ⩾
(6νΨ−1(α) + 4∥u∥L∞ + ν2)2

4ν4α2D(u) + 2
ν2 .
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Proof. The second claim follows from the first applied successively in
all d coordinates, and from ∑︁

m PΩ (Xx
τ ∈ Cµ

m) = 1.
As for the first claim, notice that (5.6) is implies τ ⩾ 2

ν2 and

α
√︂

(τ − ν−2)Dej
(u) − 3ν−1Ψ−1(α) − 2ν−2∥u∥L∞ ⩾

1
2 .

Theorem 5.3 shows that there is s ∈ [ 1
ν2 , τ ] such that

PΩ

(︃
|(Xx

s − x)n| ⩾ 1
2

)︃
⩾ 1 − C

√
α,

when Xx
t is considered on Rd. This means that there is Ω′ ⊆ Ω

with PΩ(Ω′) ⩾ 1 − C
√
α such that for each ω ∈ Ω′, the process

Xx
t (ω) mod 1 hits at least one of the two hyperplanes on Td with

xn ∈ {kn+mn+1
2µ

, kn+mn+1
2µ

+ 1
2} by time s.

But symmetry in xn and 1
ν
-periodicity show that u is symmetric

across any hyperplane with xn = j
2ν

(j = 0, . . . , 2ν − 1), that is,

u
(︃
Rn

(︃
x− j

2ν en

)︃
+ j

2ν en

)︃
= u

(︃
Rnx+ j

ν
en

)︃
= u(Rnx) = Rnu(x)

for all x ∈ Td. Since also Cµ
k and Cµ

m are mapped into each other by
reflections across the hyperplanes with xn ∈ {kn+mn+1

2µ
, kn+mn+1

2µ
+ 1

2},
the law of Bt is invariant under the reflection Rn, and Xx

t satisfies the
strong Markov property, it follows that

PΩ(ω ∈ Ω′ and Xx
τ (ω) ∈ Cµ

k ) = PΩ(ω ∈ Ω′ and Xx
τ (ω) ∈ Cµ

m)
because τ ⩾ s. This finishes the proof. □

If ht is as above and h′
t is the corresponding probability density kernel

for the flow −u on Td, then we have ht(x, y) = h′
t(y, x) for all x, y ∈ Td

because ∇ · u ≡ 0 means that the adjoint of the operator et(∆−u·∇)

(whose kernel is ht) is et(∆+u·∇) (whose kernel is h′
t). Therefore, the

solution to (1.2) on Td satisfies∫︂
Cµ

k

φ(t, x)dx =
∫︂

Cµ
k

∫︂
Td
ht(x, y)φ0(y)dydx

=
∫︂
Td

∫︂
Cµ

k

h′
t(y, x)dxφ0(y)dy

=
∫︂
Td

PΩ (Xy
τ ∈ Cµ

k ) φ0(y)dy,

with Xy
t the process corresponding to −u. If (5.8) holds and φ0 is

mean-zero, then we obtain⃓⃓⃓⃓
⃓
∫︂

Cµ
k

φ(τ, x)dx
⃓⃓⃓⃓
⃓ ⩽ Cd

√
α∥φ0∥L1
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for each k. Poincaré inequality now shows that∫︂
Cµ

k

|∇φ(τ, x)|2dx ⩾ C−2
d µ2 inf

|a|⩽Cd
√

αµd∥φ0∥L1

∫︂
Cµ

k

|φ(τ, x) − a|2dx

for each k and some Cd ⩾ 1 (only dependent on d). But then

µ−1∥∇φτ ∥L2 ⩾ C−1
d

⃦⃦⃦⃦(︂
|φτ | − Cd

√
αµd∥φ0∥L1

)︂+
⃦⃦⃦⃦

L2

⩾ C−1
d ∥φτ ∥L2 −

√
αµd∥φ0∥L1 ,

which now implies that

(5.10) d

dτ
∥φτ ∥2

L2 = −2∥∇φτ ∥2
L2 ⩽ −C−1

d µ∥φτ ∥L2

as long as ∥φτ ∥L2 ⩾ 2Cd

√
αµd∥φ0∥L2 (because ∥φ0∥L2 ⩾ ∥φ0∥L1). From

this and Lemma 5.4 we obtain the following result.

Theorem 5.5. For any d ∈ N, there is Cd ⩾ 1 such that for any
1
ν
-periodic incompressible mean-zero Lipschitz flow u on Td that is

symmetric in all coordinates and any mean-zero φ0 ∈ L2(Td), the
solution to (1.2) on Td satisfies
(5.11) ∥φt∥L2(Td) ⩽ 2Cd

√
αµd∥φ0∥L2(Td)

for each α ∈ (0, 1) and each divisor µ of ν, provided

(5.12) t ⩾
(6νΨ−1(α) + 4∥u∥L∞ + ν2)2

4ν4α2D(−u) + 2
ν2 + 2Cd

µ
ln+ 1

2Cd

√
αµd

Proof. This follows from (5.10) for all times τ satisfying (5.9) such that
∥φτ ∥L2 ⩾ 2Cd

√
αµd∥φ0∥L1 , noting also that ∥φτ ∥L2 ⩽ ∥φ0∥L2 . □

We can now prove Theorem 1.3.

Proof. Let αn
def= D(un)−1/4 and µn

def= ⌊α−1/4d
n ⌋. Using these values for

α, µ in Theorem 5.5, as well as u(x) = −νnun(νnx) with a sufficiently
large ν = νn (a multiple of µn), together with the last claim in Theorem
5.3, yields that the sum of the first two fractions in (5.12) is less than
D(un)−1/2, while 2Cd

√
αµd in (5.11) is bounded above by 2CdD(un)−1/16

and the last term in (5.12) is bounded above by C
µn

ln 2µn for some C ⩾ 1
and all n. Since all three bounds converge to 0 as n → ∞, the proof of
the first claim is finished.

The last claim follows from this and Examples 5.7 and 5.8 below. □

Remark 5.6. We can in fact pick νn to be the smallest multiple of
µn = ⌊D(un)1/16d⌋ greater than ∥un∥L∞D(un)(1−8d)/32d and still have
the right-hand side of (5.12) bounded above by C

µn
ln 2µn for some

C ⩾ 1. That is, we have τ∗(vn) ⩽ C
µn

ln 2µn. In particular, if un are
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the 2D flows from Example 5.7 below, we obtain νn ∼ A113/128
n and

τ∗(vn) ⩽ CA−1/64
n lnAn

Example 5.7. When d = 2, hypotheses of Theorem 1.3 are satisfied by
un(x, y) def= An∇⊥ψ(x, y) with limn→∞ An = ∞ and any stream function
ψ ∈ C2,δ(Td) that has only non-degenerate critical points and vanishes
when x = 0 or y = 0, for instance ψ(x, y) = sin(2πx) sin(2πy). (When
periodically extended onto R2, these flows are called cellular, with their
cells being (k, k + 1) × (m,m+ 1) for any k,m ∈ Z.) This is because
then D(un) ∼ A1/2

n by [FP94,Kor04].

Example 5.8. When d = 3, hypotheses of Theorem 1.3 are satisfied by
un(x, y, z) def= An

(︂
Φx(x, y)W ′(z),Φy(x, y)W ′(z), 8π2Φ(x, y)W (z)

)︂
with limn→∞ An = ∞, and the functions Φ(x, y) def= cos(2πx) cos(2πy)
and W (z) def= sin(2πz) (this again extends periodically to a cellular flow
on R3). We now have limn→∞ D(un) = ∞ by [RZ07].
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