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CHAPTER 1

INTRODUCTION

Formalisms representing solutions of partial differential equations as the expected value
of functionals of stochastic processes dates back to Einstein and Feynman in physics, and
Kolmogorov and Kac in mathematics. The theory for linear parabolic equations is well
developed [12, 16]. The theory for nonlinear partial differential equations is not as well
developed and generally involves either branching processes [19], or implicit, fixed point
representations.

In this dissertation we provide representations of the Navier-Stokes and related non-
linear transport equations as the expected value of functionals of stochastic processes. Our
formulation is an implicit fixed point representation and is often referred to as ‘nonlinear
in the sense of McKean’: the drift term in the stochastic differential equation is computed
as the expected value of an expression involving the flow it drives.

Connections between stochastic evolution and deterministic Navier-Stokes equations
have been established in the seminal work of Chorin [6]. In two dimensions, the nonlinear
equation obeyed by the vorticity has the form a Fokker-Planck (forward Kolmogorov)
equation. The Biot-Savart law relates the vorticity to the velocity in a linear fashion. These
facts are used by Chorin to formulate the random vortex method to represent the vorticity
of the Navier-Stokes equation using random walks and a particle limit. The random vortex
method has been proved to converge by Goodman [13] and Long [21], (see also [22]). A
stochastic representation of the Navier-Stokes equations for two dimensional flows using
similar ideas but without discretization is given in [4].

A heuristic representation of the Navier-Stokes equations in three dimensions using ideas
of random walks and particles limits was done by Peskin [23]. There are many examples
of modeling approaches using stochastic representations in physical situations, for instance
[7, 24].

The three dimensional situation is complicated by the fact that there are no obvious
Fokker-Planck like equations describing the solutions. LeJan and Sznitman [20] used a
backward-in-time branching process in Fourier space to express the velocity field of a three
dimensional viscous fluid as the average of a stochastic process. Their approach did not in-
volve a limiting process, and this led to a new existence theorem. This was later generalized
[2] to a physical space analogue.

More recently, Busnello, Flandoli and Romito developed a representation for the 3-
dimensional Navier-Stokes equations using noisy flow paths, similar to the ones considered
here. They used Girsanov transformations to recover the velocity field of the fluid from
magnetization variables, and generalized their method to work for any Fokker-Planck-type
equation. Their method however does not admit a self contained local existence proof.
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The first result we prove in this dissertation (Chapter 2) provides a stochastic represen-
tation of deterministic Navier-Stokes equations using noisy flow paths. The idea behind this
representation consists basically of two steps: In the first step a Weber formula is used to
express the velocity field of the inviscid equation in terms of the particle trajectories of the
inviscid equation without involving time derivatives. The second step is to replace classical
Lagrangian trajectories by a stochastic flow with a constant diffusion coefficient, and the
(deterministic) velocity field. Averaging the inviscid Weber formula produces the solution.
It is essential that time derivatives do not appear in the expressions to be averaged.

Explicitly, the we consider the system of equations

dX = u dt +
√

2ν dW

A = X−1

u = EP [(∇∗A) (u0 ◦ A)]

with initial data

X(a, 0) = a.

Here P is the Leray-Hodge projection onto divergence free vector fields, W a 3-dimensional
Wiener process, and E denotes the expected value with respect to the Wiener measure.
We will show that u satisfies the incompressible Navier-Stokes equations with initial data
u0.

Constantin [10] showed that when ν = 0, the above system is equivalent to the incom-
pressible Euler equations (we provide a proof of this in Chapter 2), and X is nothing but
the flow map of the inviscid fluid. Thus when ν > 0, the map X can be interpreted as the
noisy flow map of the fluid.

With this as motivation, we generalize the method of characteristics to solve elliptic
second order PDE’s by adding noise to the characteristics of the first order PDE, and
averaging it out. This is similar in nature to the Kolmogorov forward equations, however
representing the system in the framework of random characteristics has the advantage of
providing a physical meaning to the stochastic representation. This is developed in the
beginning of Chapter 2, and we conclude Chapter 2 by using this idea to provide stochastic
representations of solutions to related non-linear hydrodynamic type equations.

In Chapter 3, we provide a self-contained proof of the existence and regularity (in
periodic domains) of the Navier-Stokes equations using our stochastic formulation. We
conclude Chapter 3 by considering a stochastic model where the drift of the flow X above
is computed from the flow map X without taking expected values. The significance of
this model is the self consistent description: the computation of the (random) drift does
in terms of the flow X can be done for each realisation of the Wiener process, without
knowledge of other realizations.

This system does not give us the Navier-Stokes equations, however we show that this
system is a super-linear approximation of the Navier-Stokes equations for short time. Sur-
prisingly this system behaves more like the Euler equations, and we conclude by proving
that this system is nothing but a random translate of the Euler equations.
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CHAPTER 2

THE STOCHASTIC LAGRANGIAN FORMULATION

Our primary goal in this Chapter will be to develop a physically meaningful stochastic
representation of the Navier-Stokes and related non-linear transport equations. In Section
2.1, we extend the method of characteristics to second order elliptic PDE’s, which is the
foundation of our representation of non-linear transport equations.

As we will see in this Chapter, our representations of non-linear transport equations
involve an implicit fixed point formulation. The typical situation we will consider will be
one where the drift of a stochastic flow is the expected value of a functional of the flow
itself. We briefly address the physical significance of this in Section 2.6, in the context of
the reaction diffusion equations. We explore this further in the next Chapter (in Section
3.3) in the context of the Navier-Stokes equations.

2.1 The method of random characteristics

Consider the first order PDE

(2.1.1) ∂tθ + (u · ∇θ) = f(θ).

To obtain a solution of this, we consider the flow given by

Ẋ = u(X)(2.1.2)

X0(a) = a,(2.1.3)

and the spatially parametrized ODE

ϑ̇ = f(ϑ)(2.1.4)

ϑ0(a) = θ0(a).(2.1.5)

A direct computation (the method of characteristics) shows that θ = ϑ(X−1) is a solution
of (2.1.1) with initial data θ0.

We will now use stochastic techniques obtain an analogue of the above method for
second order elliptic PDE’s. The constant coefficient linear case can be obtained by adding
a martingale to the flow X, and is essentially the same as the Kolmogorov forward [16]
equation. The variable coefficient (linear) requires a correction term in the drift b, and
finally the non-linear case can only be treated using an implicit fixed point representation.
We consider the linear case in this section, and will consider the non-linear case later in
this chapter.
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Throughout this section we will assume that X is a stochastic flow of homeomorphisms
that satisfies the SDE

(2.1.6) dX = b dt + σ dW

with initial data

(2.1.7) X0(a) = a

where b, σ are C2 in space, C0 in time, and W is an n-dimensional Wiener process. We will
also use (aij) to denote the matrix σσ∗.

Lemma 2.1.1. Let At be any (spatially C2) process such that At ◦ Xt that is constant in
time. Then exists a process B of bounded variation such that

(2.1.8) At = Bt −
∫ t

0

(∇As)σ dWs

Proof. Applying the generalized Itô formula to A ◦ X we have

0 =

∫ t

t′
A(Xs, ds) +

∫ t

t′
∇A

∣

∣

Xs,s
dXs + 1

2

∫ t

t′
∂2

ijA
∣

∣

Xs,s
d

〈

X(i) , X(j)
〉

s
+

+

〈
∫ t

t′
∂iA(Xs, ds) , X

(i)
t − X

(i)
t′

〉

=

∫ t

t′
A(Xs, ds) +

∫ t

t′

[

∇A
∣

∣

Xs,s
b + 1

2
aij∂

2
ijA

∣

∣

Xs,s

]

ds+(2.1.9)

+

∫ t

t′
∇A

∣

∣

Xs,s
σ dWs +

〈
∫ t

t′
∂iA(Xs, ds) , X

(i)
t − X

(i)
t′

〉

.

Notice that the second and fourth terms on the right are of bounded variation. Since the
above equality holds for any t′, t, and Xs is flow of homeomorphisms, the lemma follows.

Proposition 2.1.2. Let At be a spatially C2 process. Then At ◦ Xt is constant in time if
and only if

(2.1.10) dAt + (b · ∇)At dt − 1
2
aij∂

2
ijAt dt − ∂jAt(∂iσjk)σik dt + (∇At)σ dWt = 0

Proof. First assume A satisfies equation (2.1.10). Applying the generalized Itô formula to
A ◦ X we have

At ◦ Xt − At′ ◦ Xt′ =

∫ t

t′
A(Xs, ds) +

∫ t

t′
∇As dXs +

∫ t

t′

1
2
∂2

ijAd
〈

X(i) , X(j)
〉

+

+

〈
∫ t

t′
∂iA(Xs, ds) , X

(i)
t − X

(i)
t′

〉
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=

∫ t

t′
A(Xs, ds) +

∫ t

t′
(∇As)b ds +

∫ t

t′
(∇As)σdWs+(2.1.11)

+

∫ t

t′

1
2
aij∂

2
ijAs ds +

〈
∫ t

t′
∂iA(Xs, ds) , X

(i)
t − X

(i)
t′

〉

.

Differentiating equation (2.1.10) in space, we immediately see that the martingale part of
∂iA is −

∫

(∇∂iAtσ + ∇At∂iσ) dW . Since the joint quadratic variation term in (2.1.11)
depends only on the martingale part of ∂iA, we can compute it explicitly by

〈
∫ t

t′
∂iA(Xs, ds) , X(i)

〉

= −
∫ t

t′

(

∂2
ijAsσjkσik + ∂jAs(∂iσjk)σik

)

ds

= −
∫ t

t′

(

aij∂
2
ijAs + ∂jAs(∂iσjk)σik

)

ds.(2.1.12)

Thus equation (2.1.11) reduces to

(2.1.13) At ◦ Xt − At′ ◦ Xt′ =

∫ t

t′
A(Xs, ds) +

∫ t

t′
(∇As)σ dW+

+

∫ t

t′

[

(∇A)b − 1
2
aij∂

2
ijAs − ∂jAs(∂iσjk)∂iσik

]

ds.

Now using equation (2.1.10) we have

(2.1.14)

∫ t

t′
A(Xs, ds) =

∫ t

t′

[

−(∇A)b + 1
2
aij∂

2
ijAs + ∂jAs(∂iσjk)∂iσik

]

ds+

−
∫ t

t′
(∇As)σ dWs.

Substituting (2.1.14) in equation (2.1.13) we conclude At ◦ Xt − At′ ◦ Xt′ = 0, thus
concluding the proof.

Conversely, assume that At ◦Xt is constant in time. We again proceed by applying the
generalized Itô formula to At ◦Xt to obtain (2.1.11). Now we use Lemma 2.1.1 to compute
the martingale part of ∂iA, and hence obtain equation (2.1.13). By our assumption At ◦Xt

is constant in time, hence the left hand side of (2.1.13) must always be 0. Since this holds
for arbitrary t′, t, and Xt is a homeomorphism, A must satisfy equation (2.1.10).

Remark. We remark that the 1
2
aij∂

2
ij term in (2.1.11) has a positive sign, which is the anti-

diffusive sign forward in time. The quadratic variation term in (2.1.11) contains the term
−aij∂

2
ij, thus correcting this sign, and giving us a dissipative stochastic PDE for A as we

expect.

Corollary 2.1.3. If At is the spatial inverse of Xt, then At satisfies equation (2.1.10)
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Proof. Since b and σ are assumed to be spatially C2, the flow X must also be spatially C2.
Thus A is spatially C2, and the corollary follows from Proposition (2.1.2).

Corollary 2.1.4. Let ϑ be spatially C2, and differentiable in time, and At be the spatial
inverse of Xt. Then the process θ = ϑ ◦ A satisfies the stochastic PDE

(2.1.15) dθt +
[

(b · ∇)θt − 1
2
aij∂

2
ijθt − ∂jθt(∂iσjk)σik

]

dt + (∇θt)σ dWt = ∂tϑ
∣

∣

At
dt

Proof. The corollary follows directly from Corollary 2.1.3 and the Itô formula:

dθt = ∂tϑ
∣

∣

At
dt + ∇ϑ

∣

∣

At
dAt + 1

2
∂2

ijϑ
∣

∣

At
d

〈

A
(i)
t , A

(j)
t

〉

=
[

∂tϑ
∣

∣

At
−∇ϑ

∣

∣

At
(∇At)b + 1

2
aij∇ϑ

∣

∣

At
∂2

ijAt + ∇ϑ
∣

∣

At
∂jAt(∂iσjk)σik

]

dt+

+ 1
2
∂2

ijϑ
∣

∣

At
(∂kA

i
t)akl(∂lA

j
t) dt −∇ϑ

∣

∣

At
(∇At)σ dWt

=
[

∂tϑ
∣

∣

At
− (b · ∇)θt + 1

2
aij∂

2
ijθt − ∂jθt(∂iσjk)σik

]

dt − (∇θt)σ dWt

Corollary 2.1.4 shows that the SPDE

dθt +
[

(b · ∇)θt − 1
2
aij∂

2
ijθt − ∂jθt(∂iσjk)σik

]

dt + (∇θt)σ dWt = f(θ) dt

can be solved by considering the random characteristics of the flow (2.1.6), the spatially
parametrized ODE (2.1.4), and setting θ = ϑ(A). To solve a (deterministic) second order
(linear) PDE using these random characteristics, we take the expected value of the above
equation and notice that the martingale part has mean 0.

Theorem 2.1.5. Suppose f is an affine linear function, b′ is C2 in space, C0 in time and
(aij) is a strictly positive definite symmetric matrix which is C2 in space and C0 in time.

Define σ to be a C2 in space, C0 in time matrix such that σσ∗ = (aij), and define
bj = b′j − (∂iσjk)σik. As before let X be the stochastic flow defined by (2.1.6) – (2.1.7),
and ϑ the solution of the spatially parametrized ODE (2.1.4) – (2.1.5). Then θ̄ = Eϑ(X−1)
satisfies the PDE

∂tθ̄ + (b′ · ∇)θ̄ − 1
2
aij∂

2
ij θ̄ = f(θ̄)

with initial data θ0.

Proof. Note first that since f is affine linear, Ef(θ) = f(Eθ). The proof follows by taking
the expected value of the Itô integral of equation (2.1.15).

Remark. If (aij) is spatially constant, then b′ = b, and hence our flow X has the same drift
as the characteristics of the first order PDE (2.1.1).

Remark. If (aij) ≡ 0 then the above method of finding a solution reduces to the method of
characteristics for the first order PDE (2.1.1).
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Example 2.1.6. Suppose the diffusion matrix σ =
√

2νI, where I is the identity matrix.
Then the Itô derivative of A is given by

dA + (b · ∇)Adt − ν△Adt +
√

2ν∇AdW = 0.

Further if ϑ is defined by (2.1.4) – (2.1.5), and θ = ϑ(A), then

dθ + (b · ∇)θ dt − ν△θ dt +
√

2ν∇AdW = f(θ) dt.

2.2 The viscous Burgers equations

As a precursor to the stochastic Lagrangian formulation of the Navier-Stokes equations,
we develop here a stochastic Lagrangian representation of the viscous Burgers equations.
The absence of the pressure term in the Burgers equations admits an extremely simple
Weber formula, avoiding many complications that arise for the Navier-Stokes equations.

We recall the inviscid Burger’s equation is

∂tu + (u · ∇) u = 0

with initial data
u(x, 0) = u0(x).

The absence of a pressure term causes the velocity to be actively transported by the fluid
flow. Thus if X is the fluid flow map, u ◦ X is constant in time and hence we recover the
velocity u from the instantaneous flow map by

ut = u0 ◦ (X−1
t ).

As in section 2.1, we use A to denote spatial inverse of the flow map X. In keeping with
the convention used by Constantin [10], we use the term ‘Weber formula’ to refer to an
expression that recovers the velocity field u from the flow map X and initial data u0.

Explicitly, the system

Ẋ = u

A = X−1

u = u0(A)

with initial data

X0(a) = a

is equivalent to the inviscid Burgers equation before the formation of shocks.
We now obtain a solution to the viscous Burgers equations by using the random char-

acteristics as in section 2.1, and averaging the inviscid Weber formula. We remark that our
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representation is implicit as it involves computing the drift of the stochastic flow by averag-
ing a functional of the stochastic flow. This is not abnormal as the method of characteristics
for the inviscid Burgers equation has the same implicit nature.

Theorem 2.2.1. Let W be a n-dimensional Wiener process, α ∈ (0, 1), k > 2 and u0 ∈
Ck,α. Let the pair u,X be a solution of the stochastic system

dX = u dt +
√

2ν dW(2.2.1)

A = X−1(2.2.2)

u = E[u0 ◦ A](2.2.3)

with initial data

X0(a) = a.(2.2.4)

For boundary conditions, we demand that either u and X − I are spatially periodic, or that
u and X − I decay at infinity. Then u satisfies the viscous Burgers equation

(2.2.5) ∂tu + (u · ∇) u − ν△u = 0

with initial data u0. Here E denotes the expected value with respect to the Wiener measure
and I is the identity function.

Proof. The proof of this theorem follows from Theorem 2.1.5 by setting b = u, σ =
√

2νI

and ϑ = u0.

Remark 2.2.2. The spatial invertibility of X follows from standard theory of stochastic
flows [17]. However since the diffusion matrix is spatially constant, we can see this as
follows: Taking the (spatial) gradient of equation (2.2.1), we obtain a deterministic ODE
for ∇X. A direct computation now shows

det(∇X) = exp

(
∫ t

0

∇ · us

∣

∣

Xs
ds

)

and hence X is locally invertible and orientation preserving for all time. Global invertibility
now follows since our boundary conditions ensure Xt is properly homotopic to the identity
map and hence has degree 1.

Remark 2.2.3. If a solution to the system (2.2.1) – (2.2.4) exists on the time interval [0, T ],
then our proof will show that u satisfies equation (2.2.5) on this time interval. Though
global existence for (2.2.5) is known, the fixed point methods developed in Chapter 3 will
only yield a local existence result for (2.2.1) – (2.2.4).

Remark 2.2.4. Conversely, given a (global) solution u of (2.2.5) which is either spatially
periodic or decays at infinity, standard theory shows that (2.2.1) has a global solution. Now
uniqueness of strong solutions for linear parabolic equations and Corollary (2.1.4) shows
that (2.2.3) is satisfied for all time.

8



Remark 2.2.5. Bounded domains can be treated by considering the backward flow and the
stopped process.

2.3 The Weber formula for inviscid fluids.

To use the idea behind Theorem 2.2.1 to obtain a stochastic representation of the
incompressible Navier-Stokes equations, we need to find a Weber formula for the inviscid
problem: the incompressible Euler equations. This has been developed by Constantin in
[10]. The proof of our stochastic formulation of the Navier-Stokes equations does not rely
on this theorem, however we still present a proof here as it motivates our formulation (2.4.1)
– (2.4.4).

We recall the incompressible Euler equations are

∂tu + (u · ∇) u + ∇p = 0(2.3.1)

∇ · u = 0.(2.3.2)

Theorem 2.3.1 (Constantin). Let k > 1 and u0 ∈ Ck,α be divergence free. Then u satisfies
the incompressible Euler equations (2.3.1) – (2.3.2) with initial data u0 if and only if the
pair of functions u, X satisfies the system

Ẋ = u(2.3.3)

A = X−1(2.3.4)

u = P[(∇∗A) (u0 ◦ A)](2.3.5)

with initial data

X(a, 0) = a.(2.3.6)

Here P is the Leray-Hodge projection [8, 25] on divergence free vector fields. We impose
either periodic boundary conditions and demand that u and X − I are spatially periodic, or
demand that u and X − I decay sufficiently rapidly at infinity (I is the identity map).

Proof. Assume first that u satisfies the Euler equations (2.3.1) – (2.3.2). Let p̃ = p ◦ X,
q̃ =

∫ t

0
(1

2
|Ẋ|2 + p̃) and q = q̃ ◦ A. Now

Ẍ = u̇
∣

∣

X
+ (u · ∇)u

∣

∣

X

= −∇p
∣

∣

X

=⇒ (∇∗X)Ẍ = −∇p̃

=⇒ ∂t

[

(∇∗X)Ẋ
]

= 1
2
∇|Ẋ|2 −∇p̃

=⇒ (∇∗Xt)ut ◦ Xt − u0 = ∇
∫ t

0

(

1
2
|Ẋ|2 − p̃

)

=⇒ ut ◦ Xt = (∇∗Xt)
−1u0 + (∇∗Xt)

−1∇q̃

9



= ∇∗At

∣

∣

Xt
u0 + ∇∗At

∣

∣

Xt
∇q̃

=⇒ ut = (∇∗At)u0 ◦ At + (∇∗At)∇q̃
∣

∣

At

=⇒ ut = (∇∗At)u0 ◦ At + ∇q

= P [(∇∗At)u0 ◦ At]

The other half of the theorem follows from the computations carried out in section 2.5,
or from our representation of the Navier-Stokes equations by setting ν = 0.

Remark 2.3.2. In the presence of an external force f , we only need to replace u0 in equation
(2.3.5) with ϕ defined by

ϕt = u0 +

∫ t

0

(∇∗Xs)f(Xs, s) ds.

Remark 2.3.3. This formulation was extended (deterministically) for viscous fluids in [11].
However the deterministic formulation is significantly more complicated than the stochastic
formulation we present here. The Itô correction eliminates the need for the commutator
coefficients arising in the diffusive Lagrangian formulation, and this is discussed in Section
2.4.1.

2.4 A stochastic formulation of the Navier-Stokes equations

With the method of random characteristics (Section 2.1) and the inviscid Weber for-
mula (Theorem 2.3.1), the formulation of the incompressible Navier-Stokes equations is
immediate: add noise to the characteristics, use the inviscid Weber formula (2.3.5) and
average.

Theorem 2.4.1. Let ν > 0, W be an n-dimensional Wiener process, k > 1 and u0 ∈ Ck+1,α

be a given deterministic divergence free vector field. Let the pair u, X satisfy the stochastic
system

dX = u dt +
√

2ν dW(2.4.1)

A = X−1(2.4.2)

u = EP [(∇∗A) (u0 ◦ A)](2.4.3)

with initial data

X(a, 0) = a.(2.4.4)

We impose boundary conditions by requiring u and X − I are either spatially periodic, or
decay sufficiently at infinity. Then u satisfies the incompressible Navier-Stokes equations

∂tu + (u · ∇) u − ν△u + ∇p = 0

∇ · u = 0

10



with initial data u0.

Remark 2.4.2. Remarks 2.2.2, 2.2.3 and 2.2.4 are also applicable here.

Remark 2.4.3. Domains with boundary can be considered using the backward flow and
the stopped process. However we are presently unable to provide a self contained local
existence proof, or consider the vanishing viscosity limit for domains with boundary. For
the whole spaces, we address these questions in Chapter 3.

Remark 2.4.4. In the presence of a deterministic external force f , we only need to replace
u0 in equation (2.4.3) with ϕ defined by

ϕt = u0 +

∫ t

0

(∇∗X)f(Xs, s) ds.

Clearly, if the forcing is random and independent of the Wiener process W , then our
procedure provides a representation of the stochastically forced Navier-Stokes equations.
We prove Theorem 2.4.1 in the presence of a deterministic external force at the end of this
section.

Remark 2.4.5. The construction above can be modified to provide a stochastic representa-
tion of the LANS-alpha (or Camassa-Holm) equations. The inviscid Camassa-Holm [5, 14]
equations are

∂tv + (u · ∇) v + (∇∗u)v + ∇p = 0

u = (1 − α2△)−1v

∇ · v = 0

Lemma 2.5.3 gives a formula to recover v from the inverse of the flow map. Thus we obtain
a stochastic representation of the viscous Camassa-Holm equations by replacing (2.4.3) in
(2.4.1) – (2.4.4) with

v = EP [(∇∗A) u0 ◦ A](2.4.5)

u = (1 − α2△)−1v.(2.4.6)

The velocity v will now satisfy the viscous equation

∂tv + (u · ∇) v + (∇∗u)v − ν△v + ∇p = 0.

We draw attention to the fact that the diffusive term is ν△v and not ν△u. However, we do
not derive the relation u = (1−α2△)−1v; and any other translation-invariant filter u = Tv

would work as well.

Physically, Theorem 2.4.1 rigorously provides us an interpretation of viscous fluids as
ideal inviscid fluids plus Brownian motion. We postpone the proof of this theorem to the
end of this section, and study a few consequences first.

11



The first consequence we mention is that we have a self contained proof for the local
existence of the stochastic system (2.4.1) – (2.4.4) (for boundary less domains). This is
developed in Chapter 3. We remark that our estimates, and existence time are independent
of viscosity, and that the theorem and proof also work when the viscosity ν = 0, giving us
a local existence theorem about the Euler and Navier-Stokes equations alike. In Chapter 3,
we also discuss the rate of convergence of the system (2.4.1) – (2.4.4) to the Euler equations
as ν → 0.

We now turn our attention to more physical consequences. The nature of our formula-
tion causes most identities for the Euler equations (in the Eulerian-Lagrangian form) to be
valid in the above stochastic formulation after averaging. We begin by presenting identities
for the vorticity.

Proposition 2.4.6. Let ω = ∇×u be the vorticity, and ω0 = ∇×u0 be the initial vorticity.
Then

(2.4.7) ω = E [((∇X) ω0) ◦ A] .

If the flow is two dimensional then the above formula reduces to

(2.4.8) ω = E [ω0 ◦ A] .

Remark 2.4.7. In the presence of an external force f , we have to replace ω0 in equations
(2.4.7) and (2.4.8) with ̟ defined by

̟t = ω0 +

∫ t

0

(∇Xs)
−1g(Xs, s) ds

where g = ∇× f . For two dimensional flows this reduces to

̟t = ω0 +

∫ t

0

g(Xs, s) ds.

We draw attention to the fact that these are exactly the same as the expressions in the
inviscid case.

One method of proving Proposition 2.4.6 is to directly differentiate (2.4.3), and use the
fact that P vanishes on gradients. We do not carry out the details here, but instead provide
a proof using the Itô formula.

Proof of Proposition 2.4.6. We will show that ω defined by equation (2.4.7) satisfies the
vorticity equation

(2.4.9) ∂tω + (u · ∇) ω − ν△ω = (ω · ∇)u.

Notice first that since the diffusion matrix is spatially constant, ∇X is differentiable in
time. We set ϑ = (∇X)ω0, ω̃ = ϑ ◦ A and apply Corollary 2.1.4 (or Example 2.1.6) to

12



obtain

dω̃ + (u · ∇)ω̃ dt − ν△ω̃ dt +
√

2ν∇ω̃ dW = ∇∂tX
∣

∣

At
ω0(A) dt

= (∇u)(∇X)
∣

∣

A
ω0(A) dt

= (∇u)ω̃ dt

Integrating and taking expected values shows that ω = Eω̃ satisfies the vorticity equation
(2.4.9) with initial data ω0. The proposition follows now follows from the uniqueness of
strong solutions.

Remark 2.4.8. Since u is divergence free, equation (2.4.7) is algebraically equivalent to
(2.4.3). Since our proof of Proposition 2.4.6 shows that ω satisfies the vorticity equation
(2.4.9), which is algebraically equivalent to the Navier-Stokes equations, Proposition 2.4.6
can be used to provide a quick proof of Theorem 2.4.1. We however choose to provide a
proof that directly uses the random characteristics as in Section 2.1.

Remark 2.4.9. The two dimensional vorticity equation does not have the stretching term
(ω · ∇)u, and thus the vorticity is transported by the fluid flow. With our formulation
the two dimensional vorticity equation is immediately obtained by observing that the third
component of the flow map satisfies X3(a, t) = a3.

Remark 2.4.10. Although it is evident from equations (2.4.3) and (2.4.7), we explicitly point
out that the source of growth in the velocity and vorticity fields arises from the gradient
of the noisy flow map X. The Beale-Kato-Majda [1] criterion guarantees if the vorticity
ω stays bounded, then no blow up can occur in the Euler equations. In the case of the
Navier-Stokes equations, well-known criteria for regularity exist and they can be translated
in criteria for the average of the stochastic flow map. As is well known, the vorticity of a
two dimensional fluid stays bounded, which immediately follows from equation (2.4.8).

Finally we mention the conservation of circulation. For this we need to consider a
stochastic velocity ũ defined by

(2.4.10) ũ = P [(∇∗A) (u0 ◦ A)] .

Notice immediately that u = Eũ and ũ0 = u0. As the Navier-Stokes equations are dissi-
pative, we should not expect circulation to be conserved. However the circulation of the
stochastic velocity ũ is conserved by the stochastic flow.

Proposition 2.4.11. If Γ is a closed curve in space, then

∮

X(Γ)

ũ · dr =

∮

Γ

u0 · dr.

Proof. By definition of P, there exists a function q so that

ũ = (∇∗A)(u0 ◦ A) + ∇q

13



=⇒ ∇∗X
∣

∣

A
ũ = u0 ◦ A + ∇∗X

∣

∣

A
∇q

=⇒ (∇∗X)(ũ ◦ X) = u0 + ∇(q ◦ X).

Hence
∮

X(Γ)

ũ · dr =

∫ 1

0

(ũ ◦ X ◦ Γ) · (∇X
∣

∣

Γ
Γ′) dt

=

∫ 1

0

(∇∗X
∣

∣

Γ
)(ũ ◦ X ◦ Γ) · Γ′ dt

=

∮

Γ

(u0 + ∇(q ◦ X)) · dr =

∮

Γ

u0 · dr.

We remark that the above proof is exactly the same as a proof showing circulation is
conserved in inviscid flows.

We conclude this section by proving that the stochastic system (2.4.1) – (2.4.4) is indeed
a representation of the Navier-Stokes equations.

Proof of Theorem 2.4.1. We provide the proof in the presence of an external force f , as
stated in Remark 2.4.4. We begin by remarking that Theorem 3.2.6 guarantees local
existence and well posedness of solutions to (2.4.1) – (2.4.4) (for regular initial data). Thus
the processes A and X are spatially regular enough to apply the generalized Itô formula
[17].

Now let v = ϕ ◦ A, w = (∇∗A)v. Notice that Corollary 2.1.4 (or Example 2.1.6) give
us the Itô derivatives of A and v respectively. Thus applying the Itô formula, we compute
the Itô derivative of w:

dwi = (∂iA) · dv + d(∂iA) · v + d 〈∂iAj , vj〉
= ∂iA ·

[

(−u · ∇)v + ν△v + (∇∗X)
∣

∣

A
f
]

dt −
√

2ν∂iA · (∇v dW )+

+ v · [− ((∂iu) · ∇) A − (u · ∇)∂iA + ν△∂iA] dt −
√

2νv · (∇∂iAdW )

+ 2ν∂2
kiAj∂kvj dt.

Making use of the identities

(u · ∇)wi = ∂iA · [(u · ∇)v] + [(u · ∇)∂iA] · v
△wi = ∂iA · △v + △∂iA · v + 2∂kiAj∂kvj

∂iukwk = v · [(∂iu · ∇) A]

∂iA ·
[

(∇∗X)
∣

∣

A
f
]

= f

and
∂kwi = ∂iAj∂kvj + vj∂kiAj
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we conclude

(2.4.11) dw = [−(u · ∇)w + ν△w − (∇∗u)w + f ] dt −
√

2ν∇w dW.

Now from equation (2.4.3) we see

u = Ew + ∇q

=⇒ u − u0 = E

∫ t

0

[−(u · ∇)w + ν△w − (∇∗u)w + f ] + ∇q

=

∫ t

0

[−(u · ∇)(u −∇q) + ν△(u −∇q) − (∇∗u)(u −∇q) + f ] + ∇q

=

∫ t

0

[−(u · ∇)u + ν△u + f ] + ∇p

where

p = q +

∫ t

0

[

(u · ∇)q − ν△q − 1
2
|u|2

]

.

Differentiating immediately yields the theorem.

2.4.1 A comparison with the diffusive Lagrangian formulation.

The computations above illustrate the connection between the stochastic Lagrangian
formulation (2.4.1) – (2.4.4) presented here, and the deterministic diffusive Lagrangian
formulation. We briefly discuss this below. In [11] the Navier-Stokes equations were shown
to be equivalent to the system

∂tÃ + (u · ∇) Ã − ν△Ã = 0

u = P[(∇∗Ã)v]

∂tṽβ + (u · ∇) ṽβ − ν△ṽβ = 2νCi
j,β∂j ṽi

C
p
j,i = (∇Ã)−1

ki ∂k∂jÃp

with initial data

Ã(x, 0) = 0

ṽ(x, 0) = u0(x).

We see first that Ã = EA. The commutator coefficients Cα
ij in the evolution of ṽ

compensate for the first order terms in △((∇∗Ã)ṽ). In the stochastic formulation these
arises naturally from the generalized Itô formula as the joint quadratic variation term
〈∂iAj, vj〉. More explicitly, the equations

2ν(∇∗Ã)Cj
k,·∂kṽj = 2ν∂2

kjÃi∂kṽj

15



and d 〈∂iAj , vj〉 = 2ν∂2
kjAi∂kvj dt

illustrate the connection between the two representations.

2.5 A proof of the stochastic representation of the Navier-Stokes

equations using pointwise solutions

In this section we provide an alternate proof that the system (2.4.1) – (2.4.4) is equiva-
lent to the Navier-Stokes equations (Theorem 2.4.1). We do this by constructing pointwise
(in the probability space) solutions to the SDE (2.4.1). This idea has been used by LeBris
and Lions in [18] using a generalization of the W 1,1 theory. In our context however, the
velocity u is spatially regular enough for us to explicitly construct the pointwise solution
without appealing to the generalized W 1,1 theory.

Definition 2.5.1. Given a (divergence free) velocity u, we define the operator D by

Dv = ∂tv + (u · ∇) v

Lemma 2.5.2. The commutator [D,∇] is given by

[D,∇]f = D(∇f) −∇(Df) = −∇∗u∇f

Proof. By definition,

[D,∇]f = D(∇f) −∇(Df)

= (u · ∇)∇f −∇ [(u · ∇)f ]

= (u · ∇)∇f − (u · ∇)∇f −∇∗u∇f

Lemma 2.5.3. Given a divergence-free velocity u, let X and A be defined by

Ẋ = u(X)

X(a, 0) = a

A = X−1

We define v by the evolution equation

Dv = Γ.

with initial data v0. If w is defined by

w = P [(∇∗A) v] ,

then the evolution of w is given by the system

∂tw + (u · ∇)w + (∇∗u)w + ∇p = (∇∗A)Γ

16



∇ · w = 0

w0 = Pv0

Proof. By definition of the Leray-Hodge projection, there exists a function p such that

w = ∇∗A v −∇p

= vi∇Ai −∇p

=⇒ Dw = (Dvi)∇Ai + viD∇Ai −D∇p

= Γi∇Ai − vi(∇∗u)∇Ai −∇Dp + (∇∗u)∇p

= (∇∗A)Γ − (∇∗u)(vi∇Ai + ∇p) −∇Dp

= (∇∗A)Γ − (∇∗u)w −∇Dp.

Corollary 2.5.4. If u,X,A are as above, and we define w by

(2.5.1) w = P [(∇∗A) u0 ◦ A] .

Then w evolves according to

Dw + (∇∗u)w + ∇p = 0(2.5.2)

∇ · w = 0(2.5.3)

w(x, 0) = w0(x)(2.5.4)

Proof. The proof follows from Lemma 2.5.3 by setting v = u0 ◦ A and Γ = 0.

Remark 2.5.5. If w = u in equation 2.5.1, then u satisfies the Euler equations. This is
the part of Theorem 2.3.1 that was not proved in Section 2.3. This follows immediately
because (∇∗u)u = 1

2
∇|u|2, and thus the term (∇∗u)w in equation 2.5.2 can be combined

with the pressure, yielding the Euler equations.

We are now ready to provide an alternate proof of Theorem 2.4.1.

Alternate proof of Theorem 2.4.1. For simplicity and without loss of generality we take
ν = 1

2
. Let (Ω,F , P ) be a probability space and W : [0,∞) × Ω → R

3 a three dimensional
Wiener process. Define uω and Y ω by

uω(x, t) = u(x + Wt(ω), t)

and

Ẏ ω = uω(Y ω)

Y ω(a, 0) = a
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Although uω is not Lipschitz in time, it is certainly uniformly (in time) Lipschitz in space.
Thus the regular Picard iteration will produce solutions of this equations. Finally notice
that the map X defined by

X(a, t, ω) = Y ω(a, t, ω) + Wt(ω)

solves the SDE (2.4.1).
Let Bω be the spatial inverse of Y ω. Notice that

X(Bω(x − Wt, t), t) = Y ω(Bω(x − Wt, t), t) + Wt

= x

and hence

(2.5.5) A = τWt
Bω

where τx is the translation operator defined by

(2.5.6) τxf(y) = f(y − x)

We define wω by
wω = P [(∇∗Bω) u0 ◦ Bω] .

By Lemma 2.5.3, the function wω evolves according to

∂tw
ω + (uω · ∇)wω + (∇∗uω)wω + ∇qω = 0(2.5.7)

∇ · wω = 0(2.5.8)

wω(x, 0) = u0(x).(2.5.9)

Now using equation (2.4.3) we have

u = EP [(∇∗A) u0 ◦ A]

= EP [(∇∗τWt
Bω) u0 ◦ τWt

Bω]

= EP [τWt
((∇∗Bω) u0 ◦ Bω)]

= EτWt
P [(∇∗Bω) u0 ◦ Bω]

= EτWt
wω(2.5.10)

Our assumption u0 ∈ Ck+1,α along with Theorem 3.2.6 guarantee that wω is spatially
regular enough to apply the generalized Itô formula [17] to wω(x − Wt, t), and we have

wω(x − Wt, t) − u0(x) =

∫ t

0

wω(x − Ws, ds) −
∫ t

0

∇wω
∣

∣

x−Ws,s
dWs+

+ 1
2

∫ t

0

△wω
∣

∣

x−Ws,s
ds +

〈
∫ t

0

∂jw
ω(x − Ws, ds) , xj − W

j
t

〉

.
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Notice that the process wω is C1 in time (since the time derivative is given by equation
(2.5.7)), and hence bounded variation. Thus the joint quadratic variation term vanishes.
Taking expected values and using (2.5.10) we conclude

(2.5.11) u(x, t) − u0(x) = E

∫ t

0

wω(x − Ws, ds) + 1
2

∫ t

0

△u(x, s) ds

Using equation (2.5.7) and the definition of the Itô integral we have

E

∫ t

0

wω(x − Ws, ds) = E

∫ t

0

∂tw
ω
∣

∣

x−Ws,s
ds

= −E

∫ t

0

[(uω · ∇)wω + (∇∗uω)wω + ∇qω]x−Ws,s ds

= −E

∫ t

0

[

(u(x, s) · ∇) wω
∣

∣

x−Ws,s
+ (∇∗u(x, s)) wω

∣

∣

x−Ws,s

+ ∇qω
∣

∣

x−Ws,s

]

ds

= −
∫ t

0

[

(u(x, s) · ∇) u
∣

∣

x,s
+ (∇∗u(x, t)) u

∣

∣

x,s
+

+ ∇Eqω(x − Ws, s)
]

ds

= −
∫ t

0

[

(u(x, s) · ∇) u
∣

∣

x,s
+ ∇q′

∣

∣

x,s

]

ds(2.5.12)

where q′ is defined by
q′ = 1

2
∇|u|2 + EτWt

qω

Using equations (2.5.12) in (2.5.11) (along with the observation that the joint quadratic
variation term is 0) we obtain

u(x, t) − u0(x) = −
∫ t

0

[

(u · ∇)u + 1
2
△u + ∇q

]

x,s
ds

Equations (2.5.8) and (2.5.10) show that u is divergence free, concluding the proof.

2.6 Stochastic representations of the reaction diffusion, and semi-

linear transport equations

In this section we produce a stochastic representation of second order semi-linear trans-
port equations, and study specifically the reaction diffusion equations. Our representation
again involves an implicit fixed point similar to that used for our representation of the
Navier-Stokes equations.
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In the absence of the diffusive second order term, the method of characteristics provides
a solution to the first order PDE (2.1.1) by boosting particle trajectories with the solution
of a non-linear (spatially parametrized) ODE. For the second order dissipative PDE, we
obtain the non-linearity by boosting the random characteristics of the stochastic flow X by
a function that involves an average of a functional of X. We begin by extending Theorem
2.1.5 to semi-linear transport equations.

Theorem 2.6.1. Suppose f is a C2 function, b′ is C2 in space, C0 in time and (aij) is a
strictly positive definite symmetric matrix which is C2 in space and C0 in time.

Define σ to be a C2 in space, C0 in time matrix such that σσ∗ = (aij), and define
bj = b′j − (∂iσjk)σik. If the pair of processes X, θ satisfy the system of equations

dX = b dt + σ dW(2.6.1)

θt = ϑt(At)(2.6.2)

with initial data X0(a) = a, where A is the spatial inverse of X and ϑ is defined by

ϑt = θ0 +

∫ t

0

f
(

θ̄s ◦ Xs

)

ds.

where θ̄ denotes the expected value of θ, then θ̄ satisfies the PDE

∂tθ̄ + (b′ · ∇)θ̄ − 1
2
aij∂

2
ij θ̄ = f(θ̄)

with initial data θ0.

Proof. From Corollary 2.1.4 we know

dθt +
[

(b′ · ∇)θt − 1
2
aij∂

2
ijθt

]

dt + (∇θt)σ dWt = f(θ̄t) dt

and the theorem follows by taking the expected value of the Itô integral.

Remark 2.6.2. If σ ≡ 0, then ϑ would be a solution of the ODE equation (2.1.4), as in
the method of characteristics. When σ 6= 0, we obtained the non-linear term f(θ̄) by
boosting the inverse flow A by the function ϑ along the random particle trajectories. The
computation of ϑ however is implicit, as it involves θ̄, unlike the case when σ ≡ 0.

In order to understand the physical significance of the dependence of ϑ on θ̄, we consider
the reaction diffusion equations as an example. Consider the system of equations

∂tN̄ − ν1△N̄ = −N̄ θ̄(2.6.3)

∂tθ̄ − ν2△θ̄ = N̄ θ̄,(2.6.4)

with specified initial data N0, θ0. Here N̄ represents the concentration (amount) of fuel,
and θ the temperature.
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When the diffusion rates ν1 and ν2 are equal, and if we assume θ0 + N0 ≡ 1 adding
(2.6.3) and (2.6.4) immediately gives θ̄ + N̄ ≡ 1, and hence (2.6.3) – (2.6.4) reduce to the
Kolmogorov equation

∂tθ̄ − ν△θ̄ = θ̄(1 − θ̄).

For our purposes however it is more illustrative to think of the Kolmogorov equation as the
coupled system (2.6.3) – (2.6.4).

We obtain a stochastic representation as follows: Let X, Y be the stochastic flows
defined by

Xt(a) = a +
√

2ν1Wt(2.6.5)

Yt(a) = a +
√

2ν2Wt(2.6.6)

where W is a Wiener process. Let A = X−1, B = Y −1, and define

Nt =

[

exp

(

−
∫ t

0

θ̄s ◦ Xs

)

N0

]

◦ At(2.6.7)

θt =

[

exp

(
∫ t

0

N̄s ◦ Ys

)

θ0

]

◦ Bt.(2.6.8)

Here θ̄ and N̄ denote the expected values of N and θ respectively. Then by Corollary 2.1.4,
we have

dN − ν1△N dt +
√

2ν1∇N dW = −θ̄N dt

dθ − ν2△θ dt +
√

2ν2∇θ dW = θN̄ dt.

Integrating and taking expected values, we immediately see that N̄ and θ̄ satisfy equations
(2.6.3) – (2.6.4) with initial data N0 and θ0 respectively.

Notice again that we obtain θ by boosting trajectories of the stochastic flow Y by a
functional of the expected value of the concentration N . This is physically what we expect,
as the likely hood of the reaction to occur at a given time should depend on the average
concentration, and not the concentration along the individual Wiener paths.

We explore this concept more rigorously in Section 3.3, for the Navier-Stokes equations.
We consider a system where the stochastic flow is driven by a velocity which depends on
a functional of the stochastic flow map, and not it’s average. Though this system is a
super-linear approximation of the Navier-Stokes equations, we show that this system has
characteristics that are more similar to the Euler equations, and not the Navier-Stokes
equations as we might be inclined to believe.
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CHAPTER 3

LOCAL EXISTENCE, AND A NON-AVERAGED MODEL OF

THE NAVIER-STOKES EQUATIONS

In this chapter we provide a self contained proof of local existence and well posedness
for the Navier-Stokes equations in boundaryless domains using the stochastic formulation
(2.4.1) – (2.4.4). The estimates developed allow us to quickly compute the rate of conver-
gence to the Euler equations as ν → 0.

Finally in Section 3.3 we consider the system of equations where the velocity u is given
by the inviscid Weber formula, without averaging the noise. Our first instinct would be
to believe that the average of this system behaves like a perturbation of the Navier-Stokes
equations. We will show however that this system, while a good approximation of the
Navier-Stokes equations, behaves more like a perturbation of the Euler equations.

3.1 The Weber operator and bounds.

In this section we define and obtain estimates for the Weber operator which will be
central to all subsequent results. We begin by establishing the notational convention we
use throughout this chapter. We let I denote the cube [0, L]3 with side of length L. We
define the (scale invariant) Hölder norms and semi-norms on I by

|u|α = sup
x,y∈I

Lα |u(x) − u(y)|
|x − y|α

‖u‖Ck =
∑

|m|6k

L|m| sup
I

|Dmu|

‖u‖k,α = ‖u‖Ck +
∑

|m|=k

Lk |Dmu|α

where Dm denotes the derivative with respect to the multi index m. We let Ck denote the
space of all k-times continuously differentiable spatially periodic functions on I, and Ck,α

denote the space of all spatially periodic k + α Hölder continuous functions. The spaces
Ck and Ck,α are endowed with the norms ‖ · ‖Ck and ‖ · ‖k,α respectively.

We use I to denote the identity function on R
3 or I (depending on the context), and

use I to denote the identity matrix.

Definition 3.1.1. We define the Weber operator W : Ck,α × Ck+1,α → Ck,α by

W(v, ℓ) = P [(I + ∇∗ℓ) v]

22



where P is the Leray-Hodge projection [8] onto divergence free vector fields.

Remark 3.1.2. The range of W is Ck,α because multiplication by a Ck,α function is bounded
on Ck,α, and P is a classical Calderon-Zygmund singular integral operator [25] which is
bounded on Hölder spaces.

Remark. In the whole space, or with periodic boundary conditions, the Leray-Hodge pro-
jection commutes with derivatives. This is not true for arbitrary domains [9].

Formally it seems that W(v, ℓ) should have one less derivative than ℓ. However we prove
below that W(v, ℓ) has as many derivatives as ℓ. The reason being, when we differentiate
W(v, ℓ), we can use ‘integration by parts’ to express the right hand side only in terms of
first order derivatives.

Lemma 3.1.3 (Integration by parts). If u, v ∈ C1,α then

P [(∇∗u) v] = −P [(∇∗v) u]

Proof. This follows immediately from the identity

(∇∗u) v + (∇∗v) u = ∇(u · v)

and the fact that P vanishes on gradients.

Corollary 3.1.4. If k > 1 and v, ℓ ∈ Ck,α then W(v, ℓ) ∈ Ck,α and

‖W(v, ℓ)‖k,α 6 c
(

1 + ‖∇ℓ‖k−1,α

)

‖v‖k,α .

Proof. Notice first that W(v, ℓ) ∈ Ck−1,α by Remark 3.1.2. Now

∂iW(v, ℓ) = P [∂iv + (∇∗∂iℓ)v + ∇∗ℓ ∂iv]

= P [∂iv −∇∗v ∂iℓ + ∇∗ℓ ∂iv] .

Now the right hand side has only first order derivatives of ℓ and v, hence ∇W(v, ℓ) ∈ Ck−1,α

and the proposition follows.

Proposition 3.1.5. If k > 1 and ℓ1, ℓ2 ∈ Ck,α and v1, v2 ∈ Ck,α, are such that

‖∇ℓi‖k−1,α 6 d

for i = 1, 2, then there exists c = c(k, d, α) such that

‖W(v1, ℓ1) − W(v2, ℓ2)‖k,α 6 c
(

‖v2‖k,α ‖∇ℓ1 −∇ℓ2‖k−1,α + ‖v1 − v2‖k,α

)

.
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Proof. We deduce this proposition from Corollary 3.1.4 as follows:

W(v1, ℓ1) − W(v2, ℓ2) = P [(I + ∇∗ℓ1)v1 − (I + ∇∗ℓ2)v2]

= P [(I + ∇∗ℓ1)(v1 − v2) + ∇∗(ℓ1 − ℓ2)v2]

=⇒ ‖W(v1, ℓ1) − W(v2, ℓ2)‖k,α 6 c
(

[1 + ‖∇ℓ‖k−1,α] ‖v1 − v2‖k,α +

+ ‖∇ℓ1 −∇ℓ2‖k−1,α ‖v2‖k,α

)

3.2 Local existence for the stochastic formulation.

In this section we prove local in time Ck,α existence for the stochastic formulation of
the Navier-Stokes equations. We conclude this section by using the stochastic formulation
(2.4.1) – (2.4.4) to study the convergence of the Navier-Stokes equations (in boundaryless
domains) as ν → 0. We begin with a few preliminary results.

Lemma 3.2.1. If k > 1, then there exists a constant c = c(k, α) such that

‖f ◦ g‖k,α 6 c ‖f‖k,α

(

1 + ‖∇g‖k−1,α

)k+α

‖f ◦ g1 − f ◦ g2‖k,α 6 c ‖∇f‖k,α

(

1 + ‖∇g1‖k−1,α + ‖∇g2‖k−1,α

)k+1

·
· ‖g1 − g2‖k,α

and

‖f1 ◦ g1 − f2 ◦ g2‖k,α 6 c
(

1 + ‖∇g1‖k−1,α + ‖∇g2‖k−1,α

)k+1

·

·
[

‖f1 − f2‖k,α + min
{

‖∇f1‖k,α , ‖∇f2‖k,α

}

‖g1 − g2‖k,α

]

.

The proof of Lemma 3.2.1 is elementary and not presented here. We subsequently use
the above lemma repeatedly without reference or proof.

Lemma 3.2.2. Let X be a Banach algebra. If x ∈ X is such that ‖x‖ 6 ρ < 1 then 1 + x

is invertible and ‖(1 + x)−1‖ 6
1

1−ρ
. Further if in addition ‖y‖ 6 ρ then

∥

∥(1 + x)−1 − (1 + y)−1
∥

∥ 6
1

(1 − ρ)2
‖x − y‖

Proof. The first part of the Lemma follows immediately from the identity (1 + x)−1 =
∑

(−x)n. The second part follows from the first part and the identity

(1 + x)−1 − (1 + y)−1 = (1 + x)−1(y − x)(1 + y)−1.

We generally use Lemma 3.2.2 when X is the space of Ck,α periodic matrices.
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Lemma 3.2.3. Let X1, X2 ∈ Ck+1,α be such that

‖∇X1 − I‖k,α 6 d < 1 and ‖∇X2 − I‖k,α 6 d < 1.

Let A1 and A2 be the inverse of X1 and X2 respectively. Then there exists a constant
c = c(k, α, d) such that

‖A1 − A2‖k,α 6 c ‖X1 − X2‖k,α

Proof. Let c = c(k, α, d) be a constant that changes from line to line (we use this convention
implicitly throughout this paper). Note first ∇A = (∇X)−1◦A, and hence by Lemma 3.2.2

‖∇A‖C0 6
∥

∥(∇X)−1
∥

∥

C0
6 c.

Now using Lemma 3.2.2 to bound ‖(∇X)−1‖α we have

‖∇A‖α =
∥

∥(∇X)−1 ◦ A
∥

∥

α
6

∥

∥(∇X)−1
∥

∥

α
(1 + ‖∇A‖C0) 6 c

When k > 1, we again bound ‖(∇X)−1‖k,α by Lemma 3.2.2. Taking the Ck,α norm of
(∇X)−1 ◦ A we have

‖∇A‖k,α 6
∥

∥(∇X)−1
∥

∥

k,α

(

1 + ‖∇A‖k−1,α

)k

.

So by induction we can bound ‖∇A‖k,α by a constant c = c(k, α, d). The Lemma now
follows immediately from the identity

A1 − A2 = (A1 ◦ X2 − I) ◦ A2

= (A1 ◦ X2 − A1 ◦ X1) ◦ A2

and Lemma 3.2.1.

Lemma 3.2.4. Let u ∈ C([0, T ], Ck+1,α) and X satisfy the SDE (2.4.1) with initial data
(2.4.4). Let λ = X − I and U = supt ‖u(t)‖k+1,α. Then there exists c = c(k, α, ‖u‖k+1,α)
such that for short time

‖∇λ(t)‖k,α 6
cUt

L
ecUt/L and ‖∇ℓ(t)‖k,α 6

cUt

L
ecUt/L.

Proof. From equation (2.4.1) we have

X(x, t) = x +

∫ t

0

u(X(x, s), s) ds +
√

2νBt

=⇒ ∇X(t) = I +

∫ t

0

(∇u) ◦ X · ∇X.(3.2.1)
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Taking the C0 norm of equation (3.2.1) and using Gronwall’s Lemma we have

‖∇λ(t)‖C0 = ‖∇X(t) − I‖C0 6 eUt/L − 1.

Now taking the Ck,α norm in equation (3.2.1) we have

‖∇λ(t)‖k,α 6 c

∫ t

0

‖∇u‖k,α

(

1 + ‖∇λ‖k−1,α

)k (

1 + ‖∇λ‖k,α

)

.

The bound for ‖∇λ‖k,α now follows from the previous two inequalities, induction and
Gronwall’s Lemma. The bound for ‖∇ℓ‖k,α then follows from Lemma 3.2.3.

We draw attention to the fact that the above argument can only bound ∇λ, and not λ.
Fortunately, our results only rely on a bound of ∇λ.

Lemma 3.2.5. Let u, ũ ∈ C([0, T ], Ck+1,α) be such that

sup
06t6T

‖u(t)‖k+1,α 6 U and sup
06t6T

‖ũ(t)‖k+1,α 6 U.

Let X, X̃ be solutions of the SDE (2.4.1)–(2.4.4) with drift u and ũ respectively, and let A

and Ã be the spatial inverse of X and X̃ respectively. Then there exists c = c(k, α, U) and
a time T = T (k, α, U) such that

∥

∥X(t) − X̃(t)
∥

∥

k,α
6 cecUt/L

∫ t

0

‖u − ũ‖k,α(3.2.2)

∥

∥A(t) − Ã(t)
∥

∥

k,α
6 cecUt/L

∫ t

0

‖u − ũ‖k,α(3.2.3)

for all 0 6 t 6 T ′.

Proof. We first use Lemma 3.2.4 to bound ‖∇X − I‖k,α and ‖∇X̃ − I‖k,α for short time
T ′. Now

X(t) − X̃(t) =

∫ t

0

u ◦ X − ũ ◦ X̃

=⇒
∥

∥X(t) − X̃(t)
∥

∥

k,α
6

∫ t

0

∥

∥u ◦ X − ũ ◦ X̃
∥

∥

k,α

6 c

∫ t

0

(

‖u − ũ‖k,α +
U

L

∥

∥X − X̃
∥

∥

k,α

)

and inequality (3.2.2) follows by applying Gronwall’s Lemma. Inequality (3.2.3) follows
immediately from (3.2.2) and Lemma 3.2.3.

We are now ready to prove local existence for the Navier-Stokes equations using the
stochastic formulation (2.4.1) – (2.4.4).
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Theorem 3.2.6. Let k > 1 and u0 ∈ Ck+1,α be divergence free. There exists a time
T = T (k, α, L, ‖u0‖k+1,α), but independent of viscosity, and a pair of functions λ, u ∈
C([0, T ], Ck+1,α) such that u and X = I + λ satisfy the system (2.4.1) – (2.4.4). Further
∃U = U(k, α, L, ‖u0‖k+1,α) such that t ∈ [0, T ] =⇒ ‖u(t)‖k+1,α 6 U .

Proof. Let U be a large constant, and T a small time, both of which will be specified later.
Define as before U and L by

U =
{

u ∈ C([0, T ], Ck+1,α)
∣

∣ ‖u(t)‖k+1,α 6 U, ∇ · u = 0 and u(0) = u0

}

and L =
{

ℓ ∈ C([0, T ], Ck+1,α)
∣

∣ ‖∇ℓ(t)‖k,α 6
1
2
∀t ∈ [0, T ] and ℓ(·, 0) = 0

}

.

We clarify that the functions u and ℓ are required to be spatially Ck+1,α, and need only be
continuous in time.

Now given u ∈ U we define Xu to be the solution of equation (2.4.1) with initial data
(2.4.4) and λu = Xu − I be the Eulerian displacement. We define Au by equation (2.4.2)
and let ℓu = Au − I be the Lagrangian displacement. Finally we define W : U → U by

W (u) = EW(u0 ◦ Au, ℓu).

We aim to show that W : U → U is Lipschitz in the weaker norm

‖u‖U = sup
06t6T

‖u(t)‖k,α

and when T is small enough, we will show that W is a contraction mapping.

Let c be a constant that changes from line to line. By Corollary 3.1.4 we have

‖W (u)‖k+1,α 6 cE
[(

1 + ‖∇ℓu‖k,α

)

‖u0 ◦ Au‖k+1,α

]

6 c ‖u0‖k+1,α sup
Ω

(

1 + ‖∇ℓu‖k,α

)k+2

.(3.2.4)

Here Ω is the probability space on which our processes are defined. We remark that Lemma
3.2.4 gives us a bound on ‖∇ℓu‖k,α. A bound on E‖∇ℓu‖k,α instead would not have been
enough.

Now we choose U = c(3
2
)k+2‖u0‖k+1,α, and then apply Lemma 3.2.4 to choose T small

enough to ensure ℓu, λu ∈ L. Now inequality 3.2.4 ensures that W (u) ∈ U . Now if u, ũ ∈ U ,
Lemma 3.2.5 guarantees

‖ℓu(t) − ℓũ(t)‖k,α 6 cecUt/L

∫ t

0

‖u − ũ‖k,α .
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Thus applying Proposition 3.1.5 we have

‖W (u)(t) − W (ũ)(t)‖k,α 6 c
(

U
L
‖ℓu(t) − ℓũ(t)‖k,α +

+ ‖u0 ◦ Au(t) − u0 ◦ Aũ(t)‖k,α

)

6
cU

L
‖ℓu(t) − ℓũ(t)‖k,α

6
cU

L
ecUt/L

∫ t

0

‖u − ũ‖k,α .

So choosing T = T (k, α, L, U) small enough we can ensure W is a contraction.

The existence of a fixed point of W now follows by successive iteration. We define
un+1 = W (un). The sequence (un) converges strongly with respect to the Ck,α norm. Since
U is closed and convex, and the sequence (un) is uniformly bounded in the Ck+1,α norm, it
must have a weak limit u ∈ U . Finally since W is continuous with respect to the weaker
Ck,α norm, the limit must be a fixed point of W , and hence a solution to the system (2.4.1)
– (2.4.4).

We conclude this section by studying the rate of convergence of (2.4.1) – (2.4.4) to
the Euler equations (2.3.1) – (2.3.2) in the limit ν → 0. Our method will only work for
boundaryless domains, and we remark again that the vanishing viscosity limit for domains
with boundary is not well understood.

Proposition 3.2.7. Let k > 1 and u0 ∈ Ck+1,α be divergence free, and U , T be as in
Theorem 3.2.6. For each ν > 0 we let uν be the solution of the system (2.4.1) – (2.4.4) on
the time interval [0, T ]. Making T smaller if necessary, let u be the solution to the Euler
equations (2.3.1) – (2.3.2) with initial data u0 defined on the time interval [0, T ]. Then
there exists a constant c = c(k, α, U, L) such that for all t ∈ [0, T ] we have

‖u(t) − uν(t)‖k,α 6
cU
L

√
νt

Proof. We use a subscript of ν to denote quantities associated to the solution of viscous
problem (2.4.1) – (2.4.4), and unsubscripted letters to denote the corresponding quantities
associated to the solution of the Eulerian-Lagrangian formulation of the Euler equations
(2.3.3) – (2.3.6). We use the same notation as in the proof of Theorem 3.2.6.

Now from the proof of Theorem 3.2.6 we know that for short time ℓν , ℓ ∈ L. Using
Lemma 3.2.3 and making T smaller if necessary, we can ensure λν , λ ∈ L. We begin by
estimating E‖λν − λ‖k,α:

λν(t) − λ(t) =

∫ t

0

[uν ◦ Xν − u ◦ X] +
√

2νBt

=⇒ ‖λν(t) − λ(t)‖k,α 6 c

(
∫ t

0

[

‖uν − u‖k,α + U
L
‖λν − λ‖k,α

]

+
√

ν|Bt|
)
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and so by Gronwall’s lemma

‖λν(t) − λ(t)‖k,α 6 c

(√
ν|Bt| +

∫ t

0

‖uν − u‖k,α

)

ecUt/L.

Using Lemma 3.2.3 and taking expected values gives

(3.2.5) E ‖ℓν(t) − ℓ(t)‖k,α 6 c

(√
νt +

∫ t

0

‖uν − u‖k,α

)

ecUt/L.

To estimate the difference uν − u, we use (2.4.3), and (2.3.5) to obtain

uν − u = EW(u0 ◦ Aν , ℓν) − W(u0 ◦ A, ℓ)

=⇒ ‖uν − u‖k,α 6 cE
(

U
L
‖ℓν − ℓ‖k,α + ‖u0 ◦ Aν − u0 ◦ A‖k,α

)

6
cU
L

E ‖ℓν − ℓ‖k,α

=⇒ ‖uν(t) − u(t)‖k,α 6
cU
L

ecUt/L

(√
νt +

∫ t

0

‖uν − u‖k,α

)

and the theorem follows from Gronwall’s lemma.

3.3 A non-averaged model and super-linear approximation

In this section we consider the system of equations

dX ′ = u′ dt +
√

2ν dW(3.3.1)

A′ = (X ′)−1(3.3.2)

u′ = P [(∇∗A′) (u′
0 ◦ A′)](3.3.3)

with initial data

X ′(a, 0) = a.(3.3.4)

The system (3.3.1) – (3.3.4) differs from the stochastic Lagrangian formulation of the
Navier-Stokes equations (2.4.1) – (2.4.4) in the Weber formula: the procedure for recovering
the velocity u from the flow map X involves only knowledge of one realization of the Wiener
process, and not an average with respect to the Wiener measure, as is the case with the
system (2.4.1) – (2.4.4).

The implicit dependence of X on the average in the system (2.4.1) – (2.4.4) and in
Theorem 2.6.1 poses numerous analytical difficulties: For instance it is meaningless to
talk about solutions of the system (2.4.1) – (2.4.4) which are only defined with probability
α ∈ (0, 1). Further when considering the system (2.4.1) – (2.4.4) in a domain with boundary,
it is again meaningless to restrict our attention to only those Wiener paths that avoid the
boundary. Such questions are of course meaningful and interesting for the system (3.3.1) –
(3.3.4). We this as motivation we study the system (3.3.1) – (3.3.4) in this section.
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We will show that for short time, the system (3.3.1) – (3.3.4) is a super-linear approxima-
tion of the Navier-Stokes equations, however this system behaves more like a perturbation
of the Euler equations as opposed to a perturbation of the Navier-Stokes equations. This
will be made precise later in the section.

We begin by remarking that all the bounds and the local existence result proved in
Section 3.2 for the system (2.4.1) – (2.4.4) apply verbatim to the system (3.3.1) – (3.3.4).
Since the proofs are almost identical, we do not reproduce them here, and throughout this
section we repeatedly use analogues of the results from Section 3.2.

The first result we prove shows that stopping and resetting the system (3.3.1) – (3.3.4)
at time s, will not give rise to a different velocity u′ after time s.

Proposition 3.3.1 (Semigroup property). Let X ′, u′ satisfy the system (3.3.1) – (3.3.4)
with initial data u′

0. If s 6 t, we define X ′
s,t to be the solution of the SDE (3.3.1) at time

t, with initial data Xs,s(a) = a. Let A′
s,t = (X ′

s,t)
−1, then for all s, t we have

u′
t = P

[(

∇∗A′
s,t

) (

u′
s ◦ A′

s,t

)]

Proof. If r < s < t, we know X ′
s,t ◦ X ′

r,s = X ′
r,t and hence A′

r,s ◦ A′
s,t = A′

r,t. Now by
definition of the P, there exists a function q such that

u′
s =

(

∇∗A′
0,s

)

u′
0 ◦ A′

0,s + ∇q

hence

(

∇∗A′
s,t

)

u′
s ◦ A′

s,t =
(

∇∗A′
s,t

)

(

∇∗A′
0,s

∣

∣

A′

s,t

)

(

u0 ◦ A′
0,s ◦ A′

s,t

)

+

+
(

∇∗A′
s,t

)

∇q
∣

∣

A′

s,t

=
(

∇∗ [

A′
0,s ◦ A′

s,t

]) (

u0 ◦ A′
0,t

)

+ ∇
[

q ◦ A′
s,t

]

.

Taking the Leray-Hodge projection of both sides finishes the proof.

We now show that a solution to (3.3.1) – (3.3.4) is a super-linear approximation to the
Navier-Stokes equations.

Theorem 3.3.2. Let u,X satisfy the system (2.4.1) – (2.4.4), and u′, X ′ satisfy the system
(3.3.1) – (3.3.4) with initial data u0 ∈ Ck+1,α. Then there exists a constant c and a time
T > 0, depending only on k, α, L, ‖u0‖k+1,α such that whenever s, t < T we have

(3.3.5) ‖ut − Eu′
t‖k,α 6 c

(

‖u0‖2
k+1,α t

L

)3/2

Remark. The quantities ‖u0‖ and L appear on the right hand side only for dimensional
correctness. Since c is allowed to depend on both L and ‖u0‖, they can be inserted and
removed as we please, and the main content of (3.3.5) is that ‖u′

t − Eu′
t‖ 6 O(t3/2).
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Proof. Let λ′ = X ′− I ′, and ℓ′ = A′− I be the Lagrangian displacements associated to the
system (3.3.1) – (3.3.4). We remark that the estimates proved in section 3.2, in particular
Lemma 3.2.4 are true (with identical proofs) for the system (3.3.1) – (3.3.4). Further
since u′ depends on X ′ only through it’s spatial gradient, the bounds on u′ guaranteed by
Theorem 3.2.6 will be almost sure bounds.

We first show that E‖u′
t − Eu′

t‖k,α 6 O(
√

t). Note that by Theorem 3.2.6, we know
that there exists T, U such that

sup
06t6T

‖ut‖k+1,α 6 U and sup
06t6T

‖u′
t‖k+1,α 6 U.

From equation (3.3.3) we have

u′
t − Eu′

t = P [u0(A
′
t) − Eu0(A

′
t)] + P [(∇∗ℓ′t) (u0 ◦ A′

t) − E(∇∗ℓ′t) (u0 ◦ A′
t)] .

We now take the expected value of the Ck,α norm of the right. By Lemma 3.2.4, the second
term is O(t), and by standard diffusion theory [16] (or by repeating the proof of Lemma
3.2.4), the first term is O(

√
t). Thus for short time,

(3.3.6) E ‖u′
t − Eu′

t‖k,α 6 cU

√

Ut
L

For the remainder of this proof we use ū′ or Eu′ interchangeably, to denote the expected
value of u′. Now we estimate E‖X − X ′‖k,α:

Xt − X ′
t =

∫ t

0

[us(Xs) − u′
s(X

′
s)] ds

=⇒ E ‖Xt − X ′
t‖k,α 6 E

∫ t

0

‖us(Xs) − u′
s(X

′
s)‖k,α ds

6 cE

∫ t

0

(

‖us(Xs) − ū′
s(X

′
s)‖k,α +

+ ‖ū′
s(X

′
s) − u′

s(X
′
s)‖k,α

)

ds

6 c

∫ t

0

(

‖us − ū′
s‖k,α + U

L
E ‖Xs − X ′

s‖k,α +

+ U

√

Us
L

)

ds.

We used (3.3.6) to obtain the last inequality. Applying Gronwall’s Lemma we obtain

E ‖Xt − X ′
t‖k,α 6 c

[

L
(

Ut
L

)3/2
+

∫ t

0

‖us − ū′
s‖k,α

]

eUt/L
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and by Lemma 3.2.3 this gives

(3.3.7) E ‖At − A′
t‖k,α 6 c

[

L
(

Ut
L

)3/2
+

∫ t

0

‖us − ū′
s‖k,α

]

eUt/L.

We are now ready to estimate ‖u − ū′‖. From equations (2.4.3) and (3.3.3) we have

‖ut − ū′
t‖k,α = ‖EP [(∇∗At) (u0 ◦ At) − (∇∗A′

t) (u0 ◦ A′
t)]‖k,α

and applying Proposition 3.1.5 and Lemma 3.2.1 we obtain

‖ut − ū′
t‖k,α 6 cU

L
‖At − A′

t‖k,α

and using (3.3.7) and Gronwall’s Lemma, we are done.

We now find a SPDE governing the evolution of u′.

Proposition 3.3.3. If u′ is a solution of (3.3.1) – (3.3.4), then u′ satisfies the SPDE

du′ + (u′ · ∇)u′ dt − ν△u′ dt + d(∇p) +
√

2ν∇u′ dW = 0(3.3.8)

∇ · u′ = 0(3.3.9)

Proof. We proceed as in the proof of Theorem 2.4.1. We set w′ = (∇∗A)u0 ◦ A, and a
computation similar to the one leading up to equation (2.4.11) yields

(3.3.10) dw′ = [−(u′ · ∇)w′ + ν△w′ − (∇∗u′)w′] dt −
√

2ν∇w′ dW

From equation (3.3.3) we know that there exists q′ such that u′ = w′ + ∇q′. Hence

du′ = dw′ + d(∇q′)

du′ = [−(u′ · ∇)w′ + ν△w′ − (∇∗u′)w′] dt −
√

2ν∇w′ dW + d(∇q′)

= [−(u′ · ∇)(u′ −∇q′) + ν△(u′ −∇q′) − (∇∗u′)(u′ −∇q′)] dt+

−
√

2ν∇(u′ −∇q′) dW + d(∇q)

= [−(u′ · ∇)u′ + ν△u′] dt + d(∇p′)

where

p′ = q′ +

∫ t

0

[

(u′ · ∇)q′ − ν△q′ − 1
2
|u′|2

]

ds +
√

2ν

∫ t

0

∂jq
′dW (j)

s .

Though evident, we draw attention to the striking similarity between the system 3.3.8
– 3.3.9 and the Navier-Stokes equations. We will now show that despite this similarity,
the Eu′ does not behave like a solution of the Navier-Stokes equations. The covariance
between u′ and ∇u′ in the term E(u′ · ∇)u′ will alter the behaviour of the solution and as
mentioned earlier, the system (3.3.1) – (3.3.4) behaves more like the Euler equations. We
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now show that the system (3.3.1) – (3.3.4) can be thought of as a random translate of the
solution of the Euler equations.

Theorem 3.3.4. Let v be a solution of the Euler equations (2.3.1) – (2.3.2) with initial
data u0, and u′ a solution to the stochastic system (3.3.1) – (3.3.4). Then

(3.3.11) u′(x, t) = v(x −
√

2νWt, t)

One method of proof would be to apply the Itô formula to v(x −
√

2νWt, t), and see
that u′ satisfies the SPDE (3.3.8), and use uniqueness. We provide a different proof here,
which does not rely on the uniqueness for the SPDE (3.3.8).

Proof. We use the computations involved in the alternate proof of Theorem 2.4.1 as given
in Section 2.5. We define uω, wω as we did in the proof of Theorem 2.4.1 in Section 2.5.
Following the computations leading up to (2.5.10), we obtain

u′ = τ√2νWt
wω

and hence
wω(x, t) = u′(x + Wt, t) = uω(x, t).

Thus equation (2.5.7) gives us

∂tu
ω + (uω · ∇) uω + ∇pω = 0

where pω = qω + 1
2
|uω|2. Thus uω satisfies the Euler equations with initial data u0, and by

uniqueness of strong solutions we have

v(x, t) = uω(x, t) = u(x +
√

2νWt, t)

concluding the proof.

We conclude by studying the vanishing viscosity limit of (3.3.1) – (3.3.4).

Proposition 3.3.5. Let u0 ∈ C2,α, and v be a solution of the Euler equations with initial
data u0. Suppose T > 0 is such that for each ν > 0, the system (3.3.1) – (3.3.4) has a
solution u′

ν defined on the interval [0, T ]. Then

lim
ν→0

u′
ν(x, t) = v(x, t)

almost surely.

Proof. The proof is immediate from the identity (3.3.11).

Remark 3.3.6. Our assumption u0 ∈ C2,α is necessary to ensure that we have a local
existence theorem for (3.3.1) – (3.3.4) uniformly in ν, and that the identity (3.3.11) holds.
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We believe that result and proof will still be true for domains with boundary. The
intuitive justification for this is because for a given realization of the Wiener process W ,
we can always choose ν small enough so that the path of the diffusion X ′ will not exit
the domain in time T . In this case identity (3.3.11) is still valid, and thus our proof of
Proposition 3.3.5 should go through.

This will mean that the ‘boundary layer’ of the system (3.3.1) – (3.3.4) will not affect the
interior flow as ν → 0. This is of course an open question for the Navier-Stokes equations.
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with applications to continuum theories. Adv. Math. 137 (1998), no. 1, 1–81.

[15] G. Iyer, A stochastic perturbation of inviscid flows. Eprint: math.AP/0505066

35

http://arxiv.org/abs/math/0505066


[16] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus. Graduate Texts in
Mathematics 113 (1991).

[17] H. Kunita, Stochastic flows and stochastic differential equations. Cambridge Studies
in Advanced Mathematics, 24 (1997).

[18] C. LeBris, P. L. Lions, Renormalized solutions of some transport equations with par-
tially W 1,1 velocities and applications. Ann. Mat. Pura Appl. (4) 183 (2004), no. 1,
97–130.

[19] J. LeGall, Spatial Branching Processes, Random Snakes and Partial Differential Equa-
tions. Lectures in Mathematics, Birkhäuser (1999).
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