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Abstract. The Cahn–Hilliard equation is a classic model of phase separation
in binary mixtures that exhibits spontaneous coarsening of the phases. We
study the Cahn–Hilliard equation with an imposed advection term in order
to model the stirring and eventual mixing of the phases. The main result is
that if the imposed advection is sufficiently mixing then no phase separation
occurs, and the solution instead converges exponentially to a homogeneous
mixed state. The mixing effectiveness of the imposed drift is quantified in terms
of the dissipation time of the associated advection-hyperdiffusion equation, and
we produce examples of velocity fields with a small dissipation time. We also
study the relationship between this quantity and the dissipation time of the
standard advection-diffusion equation.

1. Introduction
Spinodal decomposition refers to the phase separation of a binary mixture, such

as alloys that are quenched below their critical temperature. A well-studied model
is the Cahn–Hilliard equation [CH58,Cah61], where the evolution of the normalized
concentration difference c between the two phases is governed by the equation
(1.1) ∂tc+ γD∆2c = D∆(c3 − c) .
Here D > 0 is a mobility parameter, and √γ is the Cahn number, which is related
to the surface tension at the interface between phases. The coefficient γD is a
hyperdiffusion that regularizes the equation at small length scales by overcoming
the destabilizing −D∆c term. The concentration c is normalized such that the
regions {c = 1} and {c = −1} represent domains that are pure in each phase. For
simplicity, we will only consider (1.1) on the d-dimensional torus Td.

When γ is small, solutions to (1.1) spontaneously form domains with c = ±1
separated by thin transition regions (see Figure 1). This has been well studied by
many authors (see for instance [ES86,Ell89,Peg89]), and the underlying mechanism
can be understood as follows. The free energy of this system, E , can be decomposed
into the sum of the chemical free energy, Echem, and the interfacial free energy, Eint,
where

Echem
def= 1

4

∫
Td

(c2 − 1)2 dx and Eint
def= 1

2γ

∫
Td
|∇c|2 dx .

Using (1.1), one can directly check that E decreases with time, and hence solutions
should approach minimizers of E after a long time. Minimizing the chemical free
energy Echem favors forming domains where c = ±1. Minimizing the interfacial free
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Figure 1. The solution of the Cahn–Hilliard equation (1.1) on the
2D torus with D = 0.001, γ = .01/(2π)2 at times t = 0, 2, 5 and
20. The phases c = 1 and c = −1 are red and blue, respectively,
and c = 0 is green.

energy Eint favors interfaces of thickness
√
γ separating the domains. As a result, the

typical behavior of equation (1.1) is to spontaneously phase-separate as in Figure 1.
In this paper we study the effect of stirring on spontaneous phase separation.

When subjected to an incompressible stirring velocity field u(t, x), equation (1.1) is
modified to

(1.2) ∂tc+ u · ∇c+ γ∆2c = ∆(c3 − c) .

For simplicity, we have set the mobility parameter D to be 1. The advective
Cahn–Hilliard equation (1.2) has has been studied by many authors [CPB88,LLG95,
ONT07a,ONT07b,ONT08,LDE+13] for both passive and active advection. Under a
strong shear flow, for instance, it is known that solutions to (1.2) equilibrate along
the flow direction and spontaneously phase separates in the direction perpendicular
to the flow.

Our main result is to show that if the stirring velocity field is sufficiently mixing,
then no phase separation occurs. More precisely, we show that if the dissipation time
of u is small enough, then c converges exponentially to the total concentration c̄ =∫
Td c0 dx. This is illustrated by the numerical simulations in Figure 2, where the

velocity field u was chosen to be alternating horizontal and vertical shear flows with
randomized phases (see [Pie94,ONT07a,ONT08]). When the shear amplitude, A, is
small, the norms of the solution settle to some non-zero value after a large time. As
the amplitude is increased, the flow mixes faster, and we see the solution decays
exponentially to c̄ = 0.

Decay of the advective Cahn–Hilliard equation. To state our main result,
we need to first introduce the notion of dissipation time. Let u be a divergence-free
vector field and consider the equation

(1.3) ∂tθ + u · ∇θ + γ(−∆)αθ = 0,

with α > 0, periodic boundary conditions, and mean-zero initial data. For α = 1
this is the advection-diffusion equation; for α = 2 it is the advection-hyperdiffusion
equation. Incompressibility of u and the Poincaré inequality immediately imply that
‖θt‖L2 is decreasing as a function of t, and

(1.4) ‖θs+t‖L2 6 e−(2π)2αγt ‖θs‖L2 .
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Figure 2. Decay of H1, L2, and H−1 norms for the random shear
flow for A = 0.5 (left) and A = 2 (right). On the left the norms
settle to equilibrium values; on the right they decay exponentially.
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Figure 3. Final concentration c for the two cases in Figure 2.

Thus, we are guaranteed

(1.5) ‖θs+t‖L2 6 1
2‖θs‖L2 , for every t >

ln 2
(2π)2αγ

,

and every s > 0. However, u generates gradients through filamentation, which
causes solutions to dissipate ‖θt‖L2 faster. This may result in the lower bound
in (1.5) being attained at much smaller times, and the smallest time t at which this
happens is known as the dissipation time (see for instance [FW03,FI19]).

Definition 1.1 (Dissipation time). Let Su,αs,t be the solution operator to (1.3) on
Td × (0,∞). That is, for any f ∈ L2(Td), the function θt = Su,αs,t f solves (1.3) with
initial data θs = f , and periodic boundary conditions. The dissipation time of u is

(1.6) τ∗α(u, γ) def= inf
{
t > 0

∣∣∣ ‖Su,αs,s+t‖L̇2→L̇2 6 1
2 for all s > 0

}
.

Here L̇2 is the space of all mean-zero, square integrable functions on the torus Td.

While this definition makes sense for any α > 0, we are mainly interested in
the case when α is either 1 or 2. Note that (1.5) implies τ∗α(u, γ) 6 O(1/γ) as
γ → 0. If, however, u is mixing, then this can be dramatically improved (see
for instance [CKRZ08,Zla10,CZDE18,Wei18,FI19,Fen19]). In fact [FI19] bound
τ∗1 (u, γ) explicitly in terms of the mixing rate of u. Moreover, when u is exponentially
mixing, [CZDE18,Wei18,Fen19] show that τ∗1 (u, γ) 6 O(|ln γ|2) as γ → 0.

With this notion, we can now state our main result.
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Theorem 1.2. Let d ∈ {2, 3}, u ∈ L∞((0,∞);W 1,∞(Td)), and c be the solution
of (1.2) with initial data c0 ∈ H2(Td).

(1) When d = 2, for any β > 1, µ > 0, there exists a time
T0 = T0(‖c0 − c̄‖L2 , c̄, β, γ, µ)

such that if τ∗2 (u, γ) < T0, then for every t > 0, we have
‖c(t)− c̄‖L2 6 βe−µt‖c0 − c̄‖L2 .(1.7)

(2) When d = 3, for any β > 1, µ > 0, there exists a time
T1 = T1(‖c0 − c̄‖L2 , c̄, β, γ, µ)

such that if
(1.8) (1 + ‖∇u‖L∞)1/2τ∗2 (u, γ) < T1 ,

then (1.7) still holds for every t > 0.
Remark 1.3. The times T0 and T1 can be computed explicitly, as can be seen from
the proof of the theorem and equations (2.16) and (2.27) respectively.

Several authors have used mixing properties of the advection term to quench
reactions, prevent blow-up, and stem the growth of non-linear PDEs (see for
instance [FKR06,HL09, BKNR10,KX16, BH17, IXZ19]). Our results are similar
in spirit to those in [IXZ19], where the authors used related ideas to prove decay
of solutions to a large class of nonlinear parabolic equations. These results were
formulated for second-order PDEs where the diffusive term is the Laplacian, but
they can easily be generalized to apply when the diffusive term is the bi-Laplacian
as we have in (1.2). Unfortunately, the assumptions required for these results to
apply are not satisfied by the nonlinear term, even when d = 2. Thus we cannot
directly use the results in [IXZ19] here.

Our 3D result is qualitatively different (and weaker) from the 2D case, or the
results in [IXZ19]. Indeed, in [IXZ19], the authors only rely on smallness of the
dissipation time τ∗1 . Here, in 2D we rely on the smallness of τ∗2 . However, in 3D we
now require smallness of (1 + ‖∇u‖)1/2

L∞τ
∗
2 . In the next section we produce velocity

fields where this is arbitrarily small. We remark, however, that while we can find
velocity fields for which (1+‖∇u‖L∞)1/2τ∗2 is arbitrarily small, it appears impossible
to produce velocity fields for which (1 + ‖∇u‖L∞)τ∗2 is arbitrarily small. To see
this, the proof in [Poo96] (see also equation (9) in [MD18]) can be easily adapted to
obtain the lower bound

τ∗2 (u, γ) > 1
C‖u‖C2

ln
(

1 + C‖u‖C2

γ

)
for some explicit dimensional constant C. When τ∗2 (u, γ) is small, we expect ‖u‖C2

to be large, and in this case the above shows (1 + ‖u‖C2)τ∗2 (u, γ) grows at least
logarithmically with ‖u‖C2 .

Incompressible velocity fields with small dissipation time. In order to apply
Theorem 1.2, we need to produce incompressible velocity fields u for which τ∗2 (u, γ)
is arbitrarily small when d = 2, and for which (1 + ‖∇u‖1/2

L∞)τ∗2 (u, γ) is arbitrarily
small when d = 3. We do this here by rescaling mixing flows. This has been studied
previously by [CKRZ08,KSZ08,Zla10,CZDE18,FI19,Fen19] when the diffusive term
is the standard Laplacian. With minor modification, the proofs can be adapted to
our context, where the diffusive term is the bi-Laplacian.
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Proposition 1.4. Let v ∈ L∞([0,∞);C2(Td)), and define uA(x, t) = Av(x,At). If
v is weakly mixing with rate function h, then

τ∗2 (uA, γ) A→∞−−−−→ 0 .

If further v is strongly mixing with rate function h, and

(1.9) t h(t) t→∞−−−→ 0 ,

then
(1 + ‖∇uA‖L∞)1/2τ∗2 (uA, γ) A→∞−−−−→ 0 .

For ease of presentation, we defer the definition of weak and strong mixing used
above to Section 3 (see Definition 3.1, below). The deficiency of Proposition 1.4 is
that it is not easy to construct examples of mixing flows. The simplest example we
are aware of is alternating flows with randomized phases introduced by Pierrehum-
bert [Pie94] and used to produce our Figure 2. More recently, a variety of other
examples were constructed in [YZ17,ACM19,EZ19,BBPS19].

This shortcoming was addressed in [IXZ19], where the authors showed that
for any τ0 > 0, there exists a sufficiently strong and fine cellular flow, u, for
which τ∗1 (u, γ) < τ0. This provides a simple and explicit family of velocity fields
with arbitrarily small τ∗1 (u, γ), and in [IXZ19] the authors used it to prevent blow up
in the Keller–Segel and other second-order, non-linear, parabolic PDEs. We expect
that for any τ0 > 0, one can also construct sufficiently strong and fine cellular flows
for which τ∗2 (u, γ) < τ0. Unfortunately the proof in [IXZ19] does not generalize
easily, and thus we are presently unable to produce cellular flows for which τ∗2 (u, γ)
is small enough, or for which (1.8) holds.

Relationships between the various dissipation times. Since for any α, γ > 0,
the quantity τ∗α(u, γ) is a measure of the rate at which u mixes, it is natural to
study its behavior as α and γ vary. When α = 1, the behavior of τ∗α(u, γ) as
γ → 0 was recently studied in [CZDE18,FI19,Fen19] and quantified in terms of
the mixing rate. We will instead study the behavior of τ∗α(u, γ) when γ is fixed
and α varies. Moreover, since τ∗1 (u, γ) and τ∗2 (u, γ) are particularly interesting from
a physical point of view, we focus our attention on the relationship between these
two quantities. Our first result is an upper bound for τ∗2 (u, γ) in terms of τ∗1 (u, γ).

Lemma 1.5. There exists an explicit dimensional constant C such that for every
divergence-free u ∈ L∞([0,∞);C2(Td)), and every γ > 0, we have

(1.10) τ∗2 (u, γ) 6 Cτ∗1 (u, γ)(1 + ‖u‖C2 τ∗1 (u, γ)) .

Since velocity fields with small τ∗1 (u, γ) are known, one use of Lemma 1.5 is to
produce velocity fields for which τ∗2 (u, γ) and (1+‖∇u‖L∞)1/2τ∗2 (u, γ) are small. For
instance, if u is mixing at a sufficiently fast rate, then results of [Wei18,CZDE18,FI19,
Fen19] along with Lemma 1.5 can be used to produce velocity fields for which τ∗2 (u, γ)
and (1 + ‖∇u‖L∞)1/2τ∗2 (u, γ) are arbitrarily small. Lemma 1.5, however, cannot be
used to produce cellular flows for which τ∗2 (u, γ) is arbitrarily small. Indeed, with
the τ∗1 bound in [IXZ19], or even the best expected heuristic for cellular flows, the
right-hand side of (1.10) diverges.
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Plan of the paper. In Section 2 we prove our main result (Theorem 1.2). In
Section 3 we recall the definition of weak and strong mixing and prove Proposi-
tion 1.4. In Section 4 we prove Lemma 1.5 bounding τ∗2 in terms of τ∗1 . Finally, for
completeness, we conclude with an appendix estimating the dissipation time τ∗2 in
terms of the mixing rate of the advecting velocity field.

2. Decay of the advective Cahn–Hilliard equation
This section is devoted to the proof of Theorem 1.2. We begin by recalling the

well-known existence of global strong solutions to equation (1.2). Elliott and
Songmu [ES86] proved well-posedness in the absence of advection. Since the
advection is a first-order linear term, their proof can easily be adapted to our
setting. We state the result here for convenience.
Proposition 2.1. Let γ > 0, u ∈ L∞([0,∞);W 1,∞(Td)) be divergence-free and
c0 ∈ H2(Td). There exists a unique strong solution to (1.2) in the space

c(t, x) ∈ L2
loc([0,∞);H4(Td)) ∩ L∞loc([0,∞);H2(Td)) ∩H1

loc([0,∞);L2(Td)) .
For the remainder of this section let β > 1, γ > 0, and µ > 0 be as in the

statement of Theorem 1.2. Without loss of generality we may further assume
β ∈ (1, 2]. We also fix a divergence-free velocity field u ∈ L∞([0,∞);W 1,∞(Td)),
c0 ∈ H2(Td) and let c be the unique strong solution to equation (1.2) with initial
data c0. The existence of such a solution is guaranteed by Proposition 2.1.

The main idea behind the proof of Theorem 1.2 is to split the analysis into two
cases. First, when the time average of ‖∆c‖L2 is large, standard energy estimates
will show that the variance of c decreases exponentially. Second, when the time
average of ‖∆c‖2

L2 is small, we will use the advection term to show that the variance
of c still decreases exponentially, at a comparable rate.

We begin with a lemma handling the first case.
Lemma 2.2. For any t0 > 0, we have
(2.1) sup

06τ6γ ln β
‖c(t0 + τ)− c̄‖2

L2 6 β‖c(t0)− c̄‖2
L2 .

Moreover, if for some τ ∈ (0, γ ln β) we have

(2.2) 1
τ

∫ t0+τ

t0

‖∆c‖2
L2 ds >

β + 2γµ
γ2 ‖c(t0)− c̄‖2

L2 ,

then
(2.3) ‖c(t0 + τ)− c̄‖L2 6 e−µτ‖c(t0)− c̄‖L2 .

For clarity of presentation, we momentarily postpone the proof of Lemma 2.2.
We will now treat the two- and three-dimensional cases separately.

2.1. The two-dimensional case. Suppose the time average of ‖∆c‖2
L2 is small.

In this case, we will show that if τ∗2 (u, γ) is small enough, then the variance of c
still decreases by a constant fraction after time τ∗2 (u, γ).
Lemma 2.3. For any t0 > 0, there exists a time

T ′0 = T ′0(‖c(t0)− c̄‖L2 , c̄, β, γ, µ) ∈ (0, γ ln β]
such that if

τ∗2 (u, γ) 6 T ′0(‖c(t0)− c̄‖L2 , β, γ, µ, c̄) ,(2.4a)
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1
τ∗2 (u, γ)

∫ t0+τ∗2 (u,γ)

t0

‖∆c‖2
L2 ds 6

β + 2γµ
γ2 ‖c(t0)− c̄‖2

L2 ,(2.4b)

then (2.3) still holds at time τ = τ∗2 (u, γ). Moreover, the time T ′0 can be chosen to
be decreasing as a function of ‖c(t0)− c̄‖L2 .

Remark. The time T ′0 can be computed explicitly in terms of ‖c(t0)− c̄‖L2 , β, γ, µ,
and c̄, as can be seen from (2.16), below.

Momentarily postponing the proof of Lemma 2.3, we prove Theorem 1.2 in 2D.

Proof of Theorem 1.2 when d = 2. Define

T0 = min
{
T ′0,

ln β
2µ

}
,

where T ′0 is the time given by Lemma 2.3 with t0 = 0. For conciseness, let
τ∗2 = τ∗2 (u, γ), and suppose τ∗2 < T ′0. If

(2.5) 1
τ∗2

∫ τ∗2

0
‖∆c‖2

L2 ds >
β + 2γµ
γ2 ‖c(t0)− c̄‖2

L2 ,

and since T ′0 < γ ln β by choice, Lemma 2.2 applies and we must have
(2.6) ‖c(τ∗2 )− c̄‖L2 6 e−µτ

∗
2 ‖c0 − c̄‖L2 .

If on the other hand (2.5) does not hold, then Lemma 2.3 applies and (2.6) still
holds.

Since T ′0 is a decreasing function of ‖c− c̄‖L2 , we may restart the above argument
at time τ∗2 . Proceeding inductively, we find

‖c(nτ∗2 )− c̄‖L2 6 e−µnτ
∗
2 ‖c0 − c̄‖L2 ,

for all n ∈ N.
Now for any time t > 0, let n ∈ N be such that t ∈ (nτ∗2 , (n + 1)τ∗2 ). Since

t− nτ∗2 6 τ∗2 6 γ ln β, Lemma 2.2 applies and (2.1) yields

‖c(t)− c̄‖L2 6
√
β‖c(nτ∗2 )− c̄‖L2 6

√
βe−µnτ

∗
2 ‖c0 − c̄‖L2

6
√
βe−µt+µτ

∗
2 ‖c0 − c̄‖L2 6 βe−µt‖c0 − c̄‖L2 .

The last inequality follows from τ∗2 6 ln β/(2µ). This completes the proof. �

2.2. The three-dimensional case. In this case, in order to prove the analog of
Lemma 2.3, we need a stronger assumption on τ∗2 (u, γ).

Lemma 2.4. For any t0 > 0, there exists a time T ′1 = T ′1(‖c(t0)− c̄‖L2 , c̄, β, γ, µ)
such that if

(1 + ‖∇u‖L∞)1/2τ∗2 (u, γ) 6 T ′1 ,(2.7)

1
2τ∗2 (u, γ)

∫ t0+2τ∗2 (u,γ)

t0

‖∆c‖2
L2 ds 6

β + 2γµ
γ2 ‖c(t0)− c̄‖2

L2 ,(2.8)

then
(2.9) ‖c(t0 + 2τ∗2 (u, γ))− c̄‖L2 6 e−2µτ∗2 (u,γ)‖c(t0)− c̄‖L2 .

Moreover, the time T ′1 can be chosen to be decreasing as a function of ‖c(t0)− c̄‖L2 .

Remark. The time T ′1 can be computed explicitly in terms of ‖c(t0)− c̄‖L2 , β, γ, µ,
and c̄, as can be seen from (2.27) below.
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Momentarily postponing the proof of Lemma 2.4, we prove Theorem 1.2 in 3D.

Proof of Theorem 1.2 when d = 3. Let T ′1 be the time given by Lemma 2.4 with
t0 = 0, and define

T1 = min
{
T ′1,

ln β
4µ

}
.

The remainder of the proof is now identical to the proof when d = 2 (page 7) with
Lemma 2.3 replaced with Lemma 2.4. �

2.3. Variance decay in 2D (Lemmas 2.2 and 2.3). It now remains to prove
the lemmas. The variance decay when ‖∆c‖L2 is large follows directly from the
energy inequality in both 2D and 3D. We prove this first.

Proof of Lemma 2.2. For simplicity and without loss of generality we assume t0 = 0.
Multiplying equation (1.2) by c− c̄ and integrating over Td, we obtain

∂t‖c− c̄‖2
L2 = 2〈∆(c3 − c− γ∆c), c− c̄〉
6 −6‖c∇c‖2

L2 + 2‖c− c̄‖L2‖∆c‖L2 − 2γ‖∆c‖2
L2 .(2.10)

Here the notation 〈f, g〉 =
∫
Td fg dx denotes the standard L2 inner-product on Td.

Drop the first term in (2.10) and apply Young’s inequality to find

(2.11) ∂t‖c− c̄‖2
L2 6 −γ‖∆c‖2

L2 + 1
γ
‖c− c̄‖2

L2 ,

and hence

(2.12) ‖c(t)− c̄‖2
L2 6 ‖c0 − c̄‖2

L2 et/γ for all t > 0 .

In particular, if t ∈ (0, γ ln β), we see that (2.1) holds with t0 = 0.
For (2.3), note that integration of (2.11) from 0 to τ with (2.1) and (2.2) gives

‖c(τ)− c̄‖2
L2 6 ‖c0 − c̄‖2

L2

(
1 + βτ

γ

)
− γ

∫ τ

0
‖∆c‖2

L2 ds 6 ‖c0 − c̄‖2
L2(1− 2µτ) .

Since 1− 2µτ 6 e−2µτ , this proves (2.3) as desired. �

We now turn to Lemma 2.3, where the time integral of ‖∆c‖2
L2 is assumed small.

In this case, by definition of τ∗2 , the linear terms halve the variance of c in time τ∗2 .
If τ∗2 is small enough, then we show that the nonlinear terms cannot increase the
variance too much in this time interval.

Proof of Lemma 2.3. For notational convenience, we use Ss,t to denote Su,2s,t , the
solution operator in Definition 1.1 with α = 2. As before, we also use τ∗2 to denote
τ∗2 (u, γ). For simplicity, and without loss of generality, we will again assume t0 = 0.

By Duhamel’s principle, we know

c(τ∗2 )− c̄ = S0,τ∗2 (c0 − c̄) +
∫ τ∗2

0
Ss,τ∗2 (∆(c3(s)− c(s))) ds .

By definition of τ∗2 = τ∗2 (u, γ), and the fact that Su,αs,t is an L2-contraction, we have

‖c(τ∗2 )− c̄‖L2 6
B

2 +
∫ τ∗2

0
‖∆(c3 − c)‖L2 ds ,(2.13)
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where B def= ‖c0 − c̄‖L2 . We now estimate the second term on the right of (2.13).
First note

‖∆(c3 − c)‖L2 = ‖6c|∇c|2 + 3c2∆c−∆c‖L2

6 6‖c− c̄‖L∞‖∇c‖2
L4 + 6|c̄|‖∇c‖2

L4 + 3‖c− c̄‖2
L∞‖∆c‖L2

+ 6|c̄|‖c− c̄‖L∞‖∆c‖L2 + (3c̄2 + 1)‖∆c‖L2 .(2.14)
By the Gagliardo–Nirenberg inequality we know

‖c− c̄‖L∞ 6 C‖∆c‖d/4
L2 ‖c− c̄‖1−d/4

L2 ,

‖∇c‖L4 6 C‖∆c‖(4+d)/8
L2 ‖c− c̄‖(4−d)/8

L2 ,

for some dimensional constant C. Here, and subsequently, we assume C is a purely
dimensional constant that may increase from line to line. Substituting this in (2.14)
when d = 2 we find

‖∆(c3 − c)‖L2 6 C‖∆c‖2
L2‖c− c̄‖L2

+ C|c̄|‖∆c‖3/2
L2 ‖c− c̄‖1/2

L2 + (3c̄2 + 1)‖∆c‖L2

6 C(1 + c̄2)(1 + ‖c− c̄‖L2)(‖∆c‖L2 + ‖∆c‖2
L2) .(2.15)

If we choose T ′0 small enough to ensure T ′0 < γ ln β, then (2.1), (2.4b), (2.13) and
(2.15) yield

‖c(τ∗2 )− c̄‖L2 6
B

2 + Cβ,µτ
∗
2

γ2 (1 + c̄2)(1 +B2)B .

Here, Cβ,µ is a constant that only depends on β, µ that may increase from line to
line. Now choosing

(2.16) T ′0 = min
{ γ2

4Cβ,µ(1 + c̄2)(1 +B2) , γ ln β , 1
4µ

}
we see that whenever τ∗2 6 T ′0 we must have

‖c(τ∗2 )− c̄‖L2 6
3B
4 6 (1− µτ∗2 )B 6 e−µτ

∗
2 ‖c0 − c̄‖L2 ,

as claimed. Clearly the choice of T ′0 above is decreasing in B, finishing the proof. �

2.4. Variance decay in 3D (Lemma 2.4). To prove variance decay in 3D, we
first need an H1 bound. For the remainder of this subsection we assume d = 3.

Lemma 2.5. Define the free energy, E, by

E(t) def= 1
4

∫
T3

(c2 − 1)2 dx+ 1
2γ

∫
T3
|∇c|2 dx .

Then, for any t0, τ > 0 we have

(2.17) ‖∇c(t0 + τ)‖2
L2 6

2E(t0)
γ

+ ‖∇u‖L
∞

2π2γ
eτ/γ‖c(t0)− c̄‖2

L2 .

Proof. Without loss of generality assume t0 = 0. Multiplying (1.2) by c3 − c− γ∆c
and integrating over T3, we have

∂tE + 〈u · ∇c, c3 − c− γ∆c〉 = −‖∇(c3 − c− γ∆c)‖2
L2 .(2.18)

Since u is divergence free,
|〈u · ∇c, c3 − c− γ∆c〉| = |〈u · ∇c, γ∆c〉| 6 γ‖∇u‖L∞‖∇c‖2

L2 .
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Use this in (2.18) and integrate in time to get∫ τ

0
‖∇(c3 − c− γ∆c)‖2 ds+ E(τ) 6 E(0) + γ‖∇u‖L∞

∫ τ

0
‖∇c‖2

L2 ds

6 E(0) + γ‖∇u‖L∞
4π2

∫ τ

0
‖∆c‖2

L2 ds .(2.19)

Time-integrating (2.11) and using (2.12), we find

γ

∫ τ

0
‖∆c‖2

L2 ds 6
1
γ

∫ τ

0
‖c− c̄‖2

L2 ds+ ‖c(t0)− c̄‖2
L2 6 eτ/γ‖c0 − c̄‖2

L2 .(2.20)

Finally, we substitute (2.20) in (2.19) to obtain

1
2γ‖∇c(τ)‖2

L2 6 E(τ) 6 E(0) + ‖∇u‖L
∞

4π2 eτ/γ‖c0 − c̄‖2
L2 ,

which immediately implies (2.17) as claimed. �

We now prove Lemma 2.4.

Proof of Lemma 2.4. As before, we assume without loss of generality that t0 = 0.
In the 3D case, we will express c(2τ∗2 ) using Duhamel’s principle. However, for
reasons that will be explained below, we need to use a starting time of t1 ∈ [0, τ∗2 ],
which might not be 0. Note that for any t1 ∈ [0, τ∗2 ], we have

c(2τ∗2 )− c̄ = St1,2τ∗2 (c(t1)− c̄) +
∫ 2τ∗2

t1

Ss,2τ∗2 (∆(c3 − c)) ds .

Since 2τ∗2 − t1 > τ∗2 , the above implies

‖c(2τ∗2 )− c̄‖L2 6 1
2‖c(t1)− c̄‖L2 +

∫ 2τ∗2

t1

‖∆(c3 − c)‖ ds .(2.21)

To bound the first term on the right, we note that if 2T ′1 6 γ ln β, then (2.1) implies

‖c(t1)− c̄‖L2 6
√
βB ,(2.22)

where B def= ‖c0 − c̄‖L2 .
To bound the second term on the right-hand side, recall the Gagliardo–Nirenberg

interpolation inequalities in 3D guarantee

‖c− c̄‖L∞ 6 C‖∇c‖1/2
L2 ‖∆c‖1/2

L2 ,

‖∇c‖L4 6 C‖∇c‖1/4
L2 ‖∆c‖3/4

L2 .

Expanding ‖∆(c3 − c)‖L2 as in (2.14), and using these inequalities, we see

‖∆(c3 − c)‖L2 6 C‖∆c‖2
L2‖∇c‖L2 + C|c̄|‖∆c‖3/2

L2 ‖∇c‖1/2
L2

+ (3c̄2 + 1)‖∆c‖L2 ,

6 C(1 + c̄2)(1 + ‖∇c‖L2)(‖∆c‖L2 + ‖∆c‖2
L2) .(2.23)

The difference from the 2D case is precisely at this step, as the above estimate does
not allow us to bound the second term on the right of (2.21) using (2.8) and (2.1)
alone. Indeed, to bound this term, we now need a time-uniform bound on ‖∇c‖L2 ,
in combination with (2.8) and (2.1). Unfortunately, the only such bounds we can
obtain depend on u, and thus our criterion in 3D involves both ‖∇u‖L∞ and τ∗2 .
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To carry out the details, note first that by Chebyshev’s inequality and (2.8) we
can choose t1 ∈ [0, τ∗2 ] so that

(2.24) ‖∆c(t1)‖2
L2 6

2β + 4γµ
γ2 B2 .

Using the Gagliardo–Nirenberg inequality and (2.24) we note that the free energy E
at time t1 can be bounded by

E(t1) 6 1
4‖c(t1)‖4

L4 + 1
2γ‖∇c(t1)‖2

L2 + 1
4

6 2‖c(t1)− c̄‖4
L4 + 1

2γ‖∇c‖
2
L2 + 2c̄4 + 1

4

6 C‖c(t1)− c̄‖5/2
L2 ‖∆c(t1)‖3/2

L2 + γ

8π2 ‖∆c(t1)‖2
L2 + 2c̄4 + 1

4

6
Cβ5/4(2β + 4γµ)3/4

γ3/2 B4 + β + 2γµ
4π2γ

B2 + 2c̄4 + 1
4

6
Cβ,µB

4

γ2 + 2(c̄4 + 1) .

Thus, for any time t ∈ [t1, 2τ∗], we use Lemma 2.5 and obtain

‖∇c(t)‖2
L2 6

2E(t1)
γ

+ ‖∇u‖L
∞

2π2γ
e(t−t1)/γ‖c(t1)− c̄‖2

L2

6
Cβ,µ
γ3 (1 + ‖∇u‖L∞)(1 + c̄4)(B4 + 1) .(2.25)

The use of (2.8), (2.23) and (2.25) in (2.21) yields

‖c(2τ∗2 )− c̄‖L2 6

√
βB

2 + (1 + c̄2)
(

1 + Cβ,µ
γ3/2 (1 + ‖∇u‖L∞)1/2(1 + c̄2)(1 +B2)

)
·
(Cβ,µ
γ2 B2 + Cβ,µ

γ
B
)
τ∗2

6

√
βB

2 + Cβ,µτ
∗
2

γ7/2 (1 + ‖∇u‖L∞)1/2(1 + c̄4)(1 +B3)B .(2.26)

Thus if we choose

(2.27) T ′1
def= min

{(3
4 −
√
β

2

) γ7/2

(1 +B3)(1 + c̄4)Cβ,µ
,
γ ln β

2 ,
1

8µ

}
,

then our assumption (2.7) and the bound (2.26) imply (2.9) as claimed. Note that,
since we have previously assumed β 6 2, the choice of T ′1 will be strictly positive.
Finally, the fact that T ′1 is decreasing in ‖c0 − c̄‖L2 follows directly from (2.27). �

3. The dissipation time of mixing flows
In this section we prove Proposition 1.4. Since working on closed Riemannian

manifolds introduces almost no added complexity, we will prove Proposition 1.4 in
this setting. Let M be a d-dimensional, smooth, closed Riemannian manifold, with
metric normalized so that vol(M) = 1. Let ∆ denote the Laplace–Beltrami operator
on M , and u ∈ L∞([0,∞);W 1,∞(M)) be a divergence-free vector field. We begin
by recalling the definition of weakly mixing and strongly mixing that we use.
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Definition 3.1. Let h : [0,∞)→ (0,∞) be a continuous decreasing function that
vanishes at ∞. Given φ0 ∈ L̇2(M), let φ denote the solution of
(3.1) ∂tφ+ u(t, x) · ∇φ = 0 ,
on M , with initial data φ0.

(1) We say u is weakly mixing with rate function h if for every φ0, ψ ∈ Ḣ1(M)
and every s, T > 0 we have( 1

T

∫ T

0

∣∣〈φ(s+ t), ψ〉
∣∣2 dt)1/2

6 h(T )‖φ(s)‖H1‖ψ‖H1 .

(2) We say u is strongly mixing with rate function h if for every φ0, ψ ∈ Ḣ1(M)
and every s, t > 0 we have∣∣〈φ(s+ t), ψ〉

∣∣ 6 h(t)‖φ(s)‖H1‖ψ‖H1 .

The use of H1 norms in Definition 3.1 is purely for convenience, and is motivated
by [LTD11,Thi12,FI19]. The traditional choice in the dynamical systems literature
is to use C1 norms instead. This difference, however, is not significant as varying
the norms used in Definition 3.1 only changes the mixing rate function (see for
instance Appendix A in [FI19]).

In [FI19,Fen19] the authors estimated the dissipation time τ∗1 (u, γ) in terms of
the weak (or strong) mixing rate function h. With minor modifications, their work
can be modified to give the following estimate for τ∗2 .

Theorem 3.2. Let u ∈ L∞([0,∞);C2(M)) be a divergence-free vector field, and
h : [0,∞)→ (0,∞) be a continuous decreasing function that vanishes at ∞.

(1) There exists constants C1, C2 > 0 such that if u is weakly mixing with rate
function h, then for all sufficiently small γ we have

τ∗2 (u, γ) 6 t∗ + C1‖u‖C2 t2∗ . (3.2)
Here t∗ is the unique solution of

γ‖u‖C2 t2∗ = C2 (h(t∗/
√

2))8/(4+d). (3.3)
(2) There exists constants C1, C2 > 0 such that if u is strongly mixing with rate

function h, then for all sufficiently small γ, we have (3.2), where t∗ is the
unique solution of

γ‖u‖C2 t2∗ = C2 h
2(t∗/2

√
2) . (3.4)

The proof of Theorem 3.2 is very similar to that in [Fen19, Chapter 4], and we
provide a sketch in Appendix A. We now prove Proposition 1.4 using Theorem 3.2.

Proof of Proposition 1.4. Rescaling time by a factor of A we immediately see that

(3.5) τ∗2 (uA, γ) = 1
A
τ∗2

(
v,
γ

A

)
.

For the first assertion in Proposition 1.4, we assume v is weakly mixing with rate
function h. Using (3.2) and (3.5) we see that

(3.6) τ∗2 (uA, γ) 6 1
A

(
t∗(A) + C1‖v‖C2 t2∗(A)

)
,

where t∗(A) solves

(3.7) γ

A
‖v‖C2 t2∗(A) = C2 (h( t∗(A)√

2 ))8/(4+d) .
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Clearly this implies t∗(A) → ∞ as A → ∞. Since h vanishes at ∞, this in turn
implies that t2∗(A)/A → 0 as A → ∞. Consequently, the right hand side of (3.6)
vanishes as A→∞, proving first assertion of Proposition 1.4

For the second assertion, we assume v is strongly mixing with rate function h
satisfying (1.9). In this case Theorem 3.2 and (3.5) imply (3.6) still holds, provided
t∗(A) is defined by

(3.8) γ

A
‖v‖C2 t2∗(A) = C2 h

2
( t∗(A)

2
√

2

)
.

Note that this still implies t∗(A)→∞ as A→∞. Using this along with (1.9) we
see that

t2∗(A)
A
6

ε

t2∗(A)
for any ε > 0, and all sufficiently large A. Using this in (3.6) yields A1/2τ∗2 (uA, γ)→
0 as A→∞, concluding the proof. �

4. Relationship between τ∗1 and τ∗2 (Lemma 1.5)
In this section we prove Lemma 1.5 bounding τ∗2 (u, γ) in terms of τ∗1 (u, γ).

Throughout we fix u ∈ L∞([0,∞);C2(Td)), and assume θ is a solution of (1.3)
with α = 2 and mean-zero initial data θ0 ∈ L̇2(Td). As before, we abbreviate
τ∗α(u, γ) to τ∗α.

The proof of Lemma 1.5 is similar to that of Theorem 1.2 in 3D. We divide
the analysis into two cases: the first where the time average of ‖∆θ‖2

L2 is large
(Lemma 4.1), and the second where the time average of ‖∆θ‖2

L2 is small (Lemma 4.2).
Lemma 1.5 will be proved after these two lemmas.

Lemma 4.1. If for some t0 > 0, λ, τ > 0 we have

(4.1) 1
τ

∫ t0+τ

t0

‖∆θ‖2
L2 ds > λ‖θ(t0)‖2

L2 ,

then

(4.2) ‖θ(t0 + τ)‖L2 6 e−λγτ‖θ(t0)‖L2 .

Proof. Multiplying (1.3) by θ and integrating, we obtain

‖θ(t0 + τ)‖2
L2 = ‖θ(t0)‖2

L2 − 2γ
∫ t0+τ

t0

‖∆θ‖2
L2 ds .

Inequalities (4.1) and 1− x 6 e−x yield (4.2) as desired. �

Lemma 4.2. There exists an explicit dimensional constant C1 such that if

λ
def= 1

4γτ∗1 (20C1‖u‖C2 τ∗1 + 11) ,

and for some t0 > 0 we have

(4.3) 1
2τ∗1

∫ t0+2τ∗1

t0

‖∆θ‖2
L2 ds 6 λ‖θ(t0)‖2

L2 ,

then (4.2) still holds at time τ = 2τ∗1 .
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Proof. Without loss of generality assume t0 = 0. By Chebyshev’s inequality, there
exists t1 ∈ [0, τ∗1 ] such that
(4.4) ‖∆θ(t1)‖2

L2 6 2λ‖θ0‖2
L2 .

Since
∂tθ + u · ∇θ − γ∆θ = −γ∆2θ − γ∆θ ,

Duhamel’s principle implies

θ(2τ∗1 ) = Su,1t1,2τ∗1
θ(t1)− γ

∫ 2τ∗1

t1

Su,1s,2τ∗1
(∆2θ(s) + ∆θ(s)) ds ,

where S is the solution operator from Definition 1.1. Since 2τ∗1 − t1 > τ∗1 , and S is
an L2 contraction, this implies

‖θ(2τ∗1 )‖L2 6
‖θ0‖L2

2 + 2γ
∫ 2τ∗1

t1

‖∆2θ‖L2 ds .(4.5)

To estimate the second term on the right, we multiply (1.3) by ∆2θ and integrate
in space to obtain

1
2∂t‖∆θ‖

2
L2 + γ‖∆2θ‖2

L2 6 C1‖u‖C2 ‖∆θ‖2
L2 ,

for some explicit dimensional constant C1. Integration in time together with (4.3)
and (4.4) yields

2γ
∫ 2τ∗1

t1

‖∆2θ‖2
L2 ds 6 λ(4C1‖u‖C2 τ∗1 + 2)‖θ0‖2

L2 .

Using this in (4.5) we have

‖θ(2τ∗1 )‖L2 6
(

1
2 + 2

(
γτ∗1λ(2 + 4C1‖u‖C2 τ∗1 )

)1/2
)
‖θ0‖L2 .

By our choice of λ this implies
‖θ(2τ∗1 )‖L2 6 (1− 2λγτ∗1 )‖θ0‖L2 6 e−2λγτ∗1 ‖θ0‖L2 ,

finishing the proof. �

The proof of Lemma 1.5 follows quickly from Lemmas 4.1 and 4.2.

Proof of Lemma 1.5. Iterating Lemmas 4.1 and 4.2 repeatedly we see that for any
t0 > 0 and n ∈ N we have

‖θ(t0 + 2nτ∗1 )‖L2 6 e−2nλγτ∗1 ‖θ(t0)‖L2 .

Thus we must have τ∗2 6 (ln 2)/(λγ), from which (1.10) follows. �

Appendix A. Dissipation time bounds of mixing vector fields
In this section, we prove Theorem 3.2. As in Section 3, we assume here thatM is a

smooth, closed, Riemannian manifold with volume 1, and ∆ is the Laplace–Beltrami
operator on M . We also fix a divergence free vector field u ∈ L∞([0,∞);C2(M)),
and let θ be the solution to the advection hyper-diffusion equation (1.3) with α = 2
on the manifold M , with mean-zero initial data θ0 ∈ L̇2(M).

The idea behind the proof of Theorem 3.2 is to divide the analysis into two cases.
When ‖∆θ‖L2/‖θ‖L2 is large, the energy inequality implies ‖θ‖L2 decays rapidly.
On the other hand, when ‖∆θ‖L2/‖θ‖L2 is small, we use the mixing assumption
on u to show that ‖θ‖L2 still decays rapidly. The outline of the proof is the same as
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that of Theorem 1.2; however, the proof of the second case is substantially different.
We begin by stating two lemmas handling each of the above cases.

Lemma A.1. The solution θ satisfies the energy inequality

∂t‖θ‖2
L2 = −2γ‖∆θ‖2

L2 .(A.1)

Consequently, if for some c0 > 0 we have

‖∆θ(t)‖2
L2 > c0‖θ(t)‖2

L2 , for all 0 6 t 6 t0 ,

then

‖θ(t)‖2
L2 6 e−2γc0t‖θ0‖2

L2 , for all 0 6 t 6 t0 .(A.2)

Lemma A.2. Let 0 < λ1 6 λ2 6 · · · be the eigenvalues of the Laplacian, where
each eigenvalue is repeated according to its multiplicity. Suppose u is weakly mixing
with rate function h. There exists positive, finite dimensional constants C̃, c̃ such
that the following holds: If λN is an eigenvalue of the Laplace–Beltrami operator
such that

h−1
( 1
c̃λ

(d+4)/4
N

)
6

1
C̃λN

√
γ‖u‖1/2

C2

,(A.3)

and if

(A.4) ‖∆θ0‖2
L2 < λ2

N‖θ0‖2
L2

holds, then we have

(A.5) ‖θ(t0)‖2
L2 6 exp

(
−γλ

2
N t0
4

)
‖θ0‖2

L2 ,

at a time t0 given by

(A.6) t0
def= h−1

( 1
c̃λ

(d+4)/4
N

)
.

If instead u is strongly mixing, then the analog of Lemma A.2 is as follows.

Lemma A.3. Suppose u is strongly mixing with rate function h. There exists a
finite dimensional C̃ > 0 such that the following holds: If λN is an eigenvalue of
the Laplace–Beltrami operator such that

2h−1
( 1

2λN

)
6

1
C̃λN

√
γ‖u‖1/2

C2

,(A.7)

and if (A.4) holds, then (A.5) holds at a time t0 given by

(A.8) t0
def= 2h−1

( 1
2λN

)
.

Momentarily postponing the proof of Lemmas A.1–A.3, we prove Theorem 3.2.

Proof of Theorem 3.2. For the first assumption, we assume u is weakly mixing
with rate function h. Let c̃, C̃ be the constants from Lemma A.2. Note that the
intermediate value theorem readily implies the existence of a unique λ∗ > 0 such
that

(A.9) h−1
( 1
c̃λ

(d+4)/4
∗

)
= 1
C̃λ∗
√
γ‖u‖1/2

C2

.
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Further, it is easy to see that λ∗ →∞ as γ → 0. Thus, for all sufficiently small γ,
Weyl’s lemma1 guarantees the existence of N = N(γ) ∈ N such that

(A.11) λ2
∗

2 6 λ
2
N 6 λ

2
∗ .

Now choosing c0 = λ2
N and repeatedly applying Lemmas A.1 and Lemma A.2, we

obtain an increasing sequence of times (t′k), such that t′k →∞, t′k+1 − t′k 6 t0, and

‖θs(t′k)‖2
L2 6 exp

(
− γλ2

N t
′
k

4

)
‖θ0‖2

L2 .

This immediately implies

τ∗2 (u, γ) 6 8 ln 2
γλ2

N

+ t0 .(A.12)

Choosing

t∗
def=

√
2

C̃λ∗
√
γ‖u‖1/2

C2

,

and using (A.9), (A.11), and (A.12) yields (3.2) as claimed.
The proof of the second assertion of Theorem 3.2 is almost identical to that of

the first assertion. The only change required is to replace Lemma A.2 with A.3. �

It remains to prove Lemmas A.1–A.3.

Proof of Lemma A.1. Multiplying (1.3) by θ, integrating over M and using the
fact that u is divergence free immediately yields (A.1). The second assertion of
Lemma A.1 follows from this and Gronwall’s lemma. �

For Lemmas A.2 and A.3 we will need a standard result estimating the difference
between θ and solutions to the inviscid transport equation.

Lemma A.4. Let φ be the solution of (3.1) with initial data θ0. There exists a
dimensional constant Cd such that for all t > 0 we have

‖θ(t)− φ(t)‖2
L2 6

√
2γt ‖θ0‖L2

(
Cd ‖u‖C2

∫ t

0
‖∆θ‖2

L2 ds+ ‖∆θ0‖2
L2

)1/2
.(A.13)

Proof. Subtracting (1.3) and (3.1) shows
∂t(θ − φ) + u · ∇(θ − φ) + γ∆2θ = 0 .

Multiplying this by θ(t)− φ(t) and integrating over space and time gives

‖θ(t)− φ(t)‖2
L2 = −2γ

∫ t

0

∫
M

(θ − φ)∆2θ dx ds 6 2γ‖θ0‖L2

∫ t

0
‖∆2θ‖L2 ds .

(A.14)

On the other hand, multiplying (1.3) by ∆2θ and integrating over M gives
∂t‖∆θ‖2

L2 + 2〈u · ∇θ,∆2θ〉+ 2γ‖∆2θ‖2
L2 = 0 .

1Recall that Weyl’s lemma (see for instance [MP49]) says that

(A.10) λj ≈
4π Γ( d

2 + 1)2/d

vol(M)2/d
j2/d ,

asymptotically as j →∞. This implies λj+1 − λj = o(λj) as j →∞. Hence, for all sufficiently
large λ∗, one can always find N large enough such that (A.11) holds.
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Integrating the middle term by parts, using the fact that u is divergence free, and
integrating in time yields

2γ
∫ t

0
‖∆2θ‖2

L2 ds 6 Cd‖u‖C2

∫ t

0
‖∆θ‖2

L2 ds+ ‖∆θ0‖2
L2 ,

for some dimensional constant Cd. Substituting this in (A.14) and using the Cauchy–
Schwartz inequality gives (A.13) as claimed. �

We now prove Lemma A.2.

Proof of Lemma A.2. We claim that our choice of λN and t0 will guarantee∫ t0

0
‖∆θ(s)‖2

L2 ds >
λ2
N t0‖θ0‖2

L2

8 .(A.15)

Once this is established, integrating (A.1) in time immediately yields (A.5).
Thus, to prove Lemma A.2, we only need to prove (A.15). Suppose, for con-

tradiction, the inequality (A.15) does not hold. Letting PN : L̇2(M) → L̇2(M)
denote the orthogonal projection onto the span of the first N eigenfunctions of the
Laplace–Beltrami operator, we observe

λ2
N t0‖θ0‖2

L2

8 >

∫ t0

0
‖∆θ(s)‖2

L2 ds > λ2
N

∫ t0

t0/2
‖(I − PN )θ(s)‖2

L2 ds

>
λ2
N

2

∫ t0

t0/2
‖(I − PN )φ(s)‖2

L2 ds− λ2
N

∫ t0

t0/2
‖(I − PN )

(
θ(s)− φ(s)

)
‖2
L2 ds

>
λ2
N t0
4 ‖θ0‖2

L2 −
λ2
N

2

∫ t0

t0/2
‖PNφ(s)‖2

L2 ds− λ2
N

∫ t0

0
‖θ(s)− φ(s)‖2

L2 ds .(A.16)

We will now bound the last two terms in (A.16).
For the last term in (A.16), we use Lemma A.4 to obtain∫ t0

0
‖θ(s)− φ(s)‖2

L2 ds

6
∫ t0

s=0

√
2γs ‖θ0‖L2

(
Cd‖u‖C2

∫ s

0
‖∆θ(t)‖2

L2 dt+ ‖∆θ0‖2
L2

)1/2
ds

6 C
√
γ t

3/2
0 ‖θ0‖L2

(
‖u‖C2

∫ t0

0
‖∆θ(t)‖2

L2 dt+ ‖∆θ0‖2
L2

)1/2

6 C
√
γ t

3/2
0 λN‖θ0‖2

L2

(
‖u‖C2 t0 + 1

)1/2
.(A.17)

For the last inequality above, we used our assumption that the inequality (A.15)
does not hold.

To estimate the second term on the right of (A.16), let ej denote the eigenfunction
of the Laplace–Beltrami operator corresponding to the eigenvalue λj . Now∫ t0

t0/2
‖PNφ(s)‖2

L2 ds 6
N∑
j=1

∫ t0

0
|〈φ(s), ej〉|2 ds 6 t0h2(t0)‖φ0‖2

H1

N∑
j=1

λj .

Using Weyl’s lemma (A.10) and the assumption (A.4), we see

(A.18)
∫ t0

t0/2
‖PNφ(s)‖2

L2 ds 6 Ct0h
2(t0)‖φ0‖2

L2λ
(d+4)/2
N ,
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for some constant C = C(M).
We now let C1 be the larger of the constants appearing in (A.17) and (A.18).

Using these two inequalities in (A.16) shows

(A.19) 1
8 >

1
4 − C1λN

√
γt0
(
1 + t0‖u‖C2

)1/2 − C1λ
(d+4)/2
N h2(t0) .

If we choose c̃ >
√

16C1, then by equation (A.6) the last term on the right is at
most 1/16. Next, when γ is sufficiently small we will have t0‖u‖C2 > 1. Thus,
if C̃ > 16

√
2C1 and λN is the largest eigenvalue for which (A.3) holds, then the

second term above is also at most 1/16. This implies 1/8 > 1/8, which is the desired
contradiction. �

The proof of Lemma A.3 is very similar to that of Lemma A.2.

Proof of Lemma A.3. Follow the proof of Lemma A.2 until (A.18). Now, to estimate
the second term on the right of (A.16), the strongly mixing property of u gives∫ t0

t0/2
‖PNφ(s)‖2

L2 ds 6 λN

∫ t0

t0/2
‖φ(s)‖2

H−1 ds 6 λN

∫ t0

t0/2
h2(s)‖θ0‖2

H1 ds

6
t0
2 λNh

2(t0/2) ‖∆θ0‖L2‖θ0‖L2 6
t0
2 λ

2
Nh

2(t0/2) ‖θ0‖2
L2 .(A.20)

Above, the last inequality followed from interpolation and the assumption (A.4).
Now let C1 be the constant appearing in (A.17). Using (A.17) and (A.20)

in (A.16) implies
1
8 >

1
4 − C1λN

√
γt0
(
1 + t0‖u‖C2

)1/2 − 1
4λ

2
Nh

2(t0/2).
If t0 is defined by (A.8), then the last term above is at most 1/16. Moreover, if
C̃ = 29/2 C1 and λN is the largest eigenvalue of the Laplace–Beltrami operator
satisfying (A.7), then the second term above is also at most 1/16. This again forces
1/8 > 1/8, which is our desired contradiction. �
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