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Abstract. This paper studies questions related to the dynamic transition
between local and global minimizers in the Ginzburg-Landau theory of su-
perconductivity. We derive a heuristic equation governing the dynamics of
vortices that are close to the boundary, and of dipoles with small inter vortex
separation. We consider a small random perturbation of this equation, and
study the asymptotic regime under which vortices nucleate.

1. Introduction.
This paper studies questions related to the dynamic transition between local

and global minimizers in the Ginzburg-Landau theory of superconductivity. The
Ginzburg-Landau theory provides a mesoscopic description of the state of a su-
perconductor through the order parameter – a specific function C-valued function
u ∈ H1(Ω) for which the local density of superconducting Cooper pairs is given by
|u(x)|. Here Ω ⊆ R2 is the region occupied by the superconductor. A fundamental
feature of superconductors are the presence of localized regions called vortices, where
the superconductor drops into a normal state. In these regions the degree of u is
nontrivial about each vortex, and the induced magnetic field pierces through the
superconductor.

The mechanism by which vortices become energetically favorable was proved by
Serfaty using a careful energy decomposition. Recall, the Ginzburg-Landau energy
is defined by

(1.1) Gε(u,A) def=
∫

Ω

(1
2 |∇Au|

2 + 1
2 |∇ ×A− hex|2 + 1

4ε2 (1− |u|2)2
)
dx ,

where A is the magnetic potential, hex = hex(ε) is the strength of the external
magnetic field, and ∇A

def= ∇− iA. Physically, ε is the non-dimensional ratio of the
superconductors coherence length to the London penetration depth.
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To understand the energy decomposition, define the Meissner potential ξm to be
the solution of

−∆ξm + ξm + 1 = 0 in Ω
ξm = 0 on ∂Ω .

(1.2)

When hex is small enough (explicitly, when hex < hc1 , defined below), the purely
superconducting state with no vortices gives a global minimizer of the Ginzburg-
Landau energy Gε, see [17]. This state corresponds to u ≡ 1 and A = hex∇⊥ξm,
and the minimizing energy (called the Meissner energy) is given by

(1.3) Gm(hex) def= Gε(1, hex∇⊥ξm) = h2
ex

∫
Ω

1
2 |∇ξm|

2 + 1
2 |∆ξm − 1|2 dx .

If there are a finite number of vortices at points aj , with degrees dj ∈ {±1}
respectively which are reasonably separated and away from the boundary, then
Serfaty [19,20] shows that Ginzburg-Landau energy can be decomposed as

(1.4) Gε(uε, Aε) = Gm +
n∑
j=1

(π|ln ε|+ 2πdjhex ξm(aj)) + oε(|ln ε|) ,

and the order parameter uε takes the form,

(1.5) uε(x) ≈
n∏
j=1

ρε(|x− aj |)
( x− aj
|x− aj |

)dj
eiψ
∗
ε ,

where ρε(s) is the equivariant vortex profile with ρε(0) = 0, ρε(s)→ 1 for s� ε (see
Appendix II of [2]), dj ∈ ±1, and ψ∗ε is a harmonic function that ensures ∂νuε = 0
on ∂Ω.

Note that ξm(ai) is always negative, since the maximum principle implies −1 <
ξm < 0 in Ω. Thus, examining (1.4) one sees that vortices with negative degrees are
never energetically favorable. Furthermore, if the applied magnetic field hex is very
large, then a positively oriented vortex can be energetically favorable. The critical
threshold at which this happens is explicitly given by

(1.6) hc1
def= |ln ε|

2 max|ξm|
,

and is known as the first critical field. In this case, the optimal location for a single
positively oriented, energetically favorable vortex is at the point where ξm achieves
its minimum and is located in the interior of Ω.

Our main interest in this paper is to study the dynamic transition between the
Meissner state and the energetically favorable state with an interior vortex. We
recall that the dynamics of a type-II superconductor are governed by the Gor’kov-
Éliashberg system [10], a coupled system of equations describing the evolution of
the order parameter uε and the electromagnetic field potentials Φε ∈ H1(R2,R1),
Aε ∈ H1(R2,R2). Explicitly, these equations are

∂Φεuε = ∇2
Aεuε + 1

ε2uε(1− |uε|
2) in Ω ,(1.7)
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Eε = ∇⊥hε + jAε(uε) in Ω ,(1.8)
ν · ∇Aεuε = ν · Eε = 0 on ∂Ω ,(1.9)

hε = hex on ∂Ω ,(1.10)

where

∂Φε
def= ∂t − iΦε , Eε

def= ∂tAε −∇Φε , hε
def= ∇×Aε , jAε(uε)

def= (iuε,∇Aεuε) ,

and (a, b) def= 1
2 (ab+ ab) is the real part of the complex inner product.

Now consider the Gor’kov-Éliashberg system with initial data (u0
ε, A

0
ε) corre-

sponding to the Meissner state (1, hex∇⊥ξm). Since energy satisfies the diffusive
identity

(1.11) Gε(uε(t), Aε(t)) +
∫ t

0

∫
Ω

(
|∂Φεuε|2 + |Eε|2

)
dx ds = Gε(u0

ε, A
0
ε) ,

we will assume that hex is large enough so that

Gε(u0
ε, A

0
ε) = Gm(hex) > Gε(uεmin, A

ε
min) .

Here (uεmin, A
ε
min) denotes the global minimizer of the energy Gε with applied

magnetic field hex. In this case the energy minimizing configuration has lower energy
than the Meissner state, and the dynamic transition to the global minimizer will
involve nucleating vortices.

The process by which vortices are nucleated is not yet well understood. It was
shown in [1] and [3] that the Meissner state is linearly stable until the applied
magnetic field hex crosses the second critical field

hc2
def= C

ε
,

where C is a constant depending on the domain Ω. Since hc2 is much larger than
hc1 , this points at a very significant hysteresis phenomena and the process by which
this dynamically generates vortices is highly nontrivial, see [13].

Along these lines, vortices can also dynamically nucleate as a way of tunneling
to lower energy states. Due to topological considerations, vortices should either
nucleate at the boundary or nucleate as a dipole in the interior of the domain. In the
first case, let aε = aε(t) be the distance of the center of a vortex from the boundary
of Ω. We know from [18] that when aε(0) > exp(−| ln ε|1/2) the evolution of aε is
governed by the ODE

(1.12) πȧε = −d λ∇ξm(aε) ,

where d = ±1 is the degree of the vortex. Hence, any positive vortices move towards
the interior to a lower energy state and any negative vortices move to the boundary
and become excised (see [18]). However, the energy of a vortex at a distance of
order exp(−| ln ε|1/2) away from ∂Ω is

Gm(hex) + π|ln ε|+ oε(|ln ε|)� Gm(hex) .

This is an extremely large barrier to overcome and is even more dramatic when a
dipole is nucleated in the interior. In particular once a dipole has separation of at

least exp(−| ln ε|1/2), the associated energy is

Gm(hex) + 2π|ln ε|+ oε(|ln ε|)� Gm(hex) .

Thus the energy barrier to nucleate a vortex at the boundary or via a dipole is much
larger than the energy gap between the Meissner state and the configuration with
the vortex at the minimizer.

The main purpose of this paper is to better understand how this energy barrier
can be overcome through the study of vortices close to the boundary and dipoles
with small inter-vortex separation. In particular, for every α ∈ (0, 1) we study the
dynamics of vortices a distance of εα away from the boundary. The energy barrier
to nucleate such vortices is π(1− α)|ln ε|, which is a much smaller energy barrier to
overcome. We show the following results:

(1) We obtain a heuristic ODE governing the motion of these vortices (equa-
tion (2.1), below).

(2) We rigorously estimate the annihilation times of vortices O(εα) away from
the boundary, and show that this agrees with the annihilation times of (2.1)
(Theorem 2.1 and Proposition 2.2, below).

(3) We consider a stochastically perturbed version of the heuristic ODE govern-
ing vortex motion, and estimate the chance that the vortex nucleates (and
thus achieving a lower energy state) before annihilating. This is Theorem 2.3,
below.

The same analysis can be made for vortex dipoles with inter-vortex separation εα.
A more physically relevant problem is the direct study of a stochastically perturbed

version of (1.7)–(1.10), without relying on the simplified heuristics. This is a much
harder question requiring a deep understanding of the long time dynamics of the
underlying nonlinear stochastic PDE. The problem is described briefly at the end of
Section 2, below, but its resolution is beyond the scope of the current investigation.

Plan of this paper. In Section 2 we state the main results of this paper. In
Section 3 we formally derive the heuristic ODE (2.1) by matching terms of leading
order. In Section 4 prove Theorem 2.1, rigorously estimate the annihilation times
of vortices a distance O(εα) away from the boundary. Confirming that these
annihilation times agrees with that of (2.1) is relegated to Appendix A. Finally, in
Section 5 we prove Theorem 2.3, estimating the chance of vortex nucleation.

Acknowledgements. We thank the anonymous referees for many helpful sugges-
tions and comments.

2. Main Results.
2.1. Boundary Vortex Dynamics and Annihilation Times. We begin with
a heuristic ODE governing the motion of a vortex close to the boundary of the
domain Ω. Since the scales we are interested in are very small, we locally flatten
the boundary of ∂Ω and state the governing equation on the half plane.
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Heuristic ODE. Let (0, aε(t)) be the position of a vortex at time t in the do-
main R2

+
def= R× R+. If α ∈ (0, 1) and aε(0) = εα then, to leading order the motion

of the vortex is governed by the ODE

(2.1) ȧε = λhex

|ln ε| −
1

|ln ε|aε
,

where λ = −2∂yξm(0, 0) > 0, which corresponds an order parameter of the form
(1.5).

We provide a formal derivation of (2.1) in Section 3 by matching terms of leading
order. To obtain a rigorous result supporting (2.1) as a model for boundary vortex
dynamics, we show that annihilation time of vortices at a distance of εα from the
boundary is O(ε2α) in the full Gor’kov-Éliashberg system (1.7)-(1.10) (Theorem 2.1,
below). This this agrees with the annihilation time predicted by the ODE (2.1)
(Proposition 2.2, below).

In order to state Theorem 2.1 we need to introduce some notation. Define the
Jacobian J by

J(w) def= det∇w = 1
2∇× j(w) ,

where j(w) def= (iw,∇w). Recall that if

w =
( n∏
j=1

( x− aj
|x− aj |

)dj)
is the order parameter associated with n point vortices located at a1, . . . , an with
degrees d1, . . . , dn ∈ {±1} respectively, then a direct calculation shows

J
( n∏
j=1

( x− aj
|x− aj |

)dj)
= π

n∑
j=1

djδaj .

Consequently, J can be used to describe the location of vortices.
More precisely, the measure of vortex separation used throughout this paper

is the (C0,γ
0 (Ω))∗ norm of the differences in the Jacobian of the order parameters.

Here 0 < γ 6 1 if a fixed parameter. It is convenient to note that if a, b ∈ Ω are
such that min{d(a, ∂Ω), d(b, ∂Ω)} > |a− b|, then∥∥δa − δb∥∥(C0,γ

0 (Ω))∗ = |a− b|γ .

We now state our first result.

Theorem 2.1. Let (uε(t), Aε(t),Φε(t)) be a solution to the system (1.7)–(1.10)
under the Coulomb gauge such that

C1|ln ε| 6 hex 6 C2 exp
(
|ln ε|1/2

)
.

for some constants C1, C2 > 0. Suppose the initial data (u0
ε, A

0
ε,Φ0

ε) satisfies∣∣Gε(u0
ε, A

0
ε)−Gm(hex)

∣∣ 6 π(1− α)|ln ε|+ C

for a constant C and 0 < α < 1. Moreover, for some γ ∈ (0, 1] suppose either

(2.2)
∥∥∥J(u0

ε)− π
(
δa0,+
ε
− δa0,−

ε

)∥∥∥
(C0,γ

0 )∗
= oε

( |ln ε|
hex

)
and

∣∣a0,+
ε − a0,−

ε

∣∣ = εα ,

or

(2.3)
∥∥J(u0

ε)− πδa0
ε

∥∥
(C0,γ

0 )∗ = oε

( |ln ε|
hex

)
and d(a0

ε, ∂Ω) = εα .

Then there exists a time tε ∈ ( ε
2α

2 , ε2α) such that

(2.4)
∥∥1− |uε(tε)|

∥∥
L∞(Ω) = oε(1).

In particular, there are no vortices in the domain at time tε.

Remark. Although Theorem 2.1 guarantees that there are no vortices in the domain
at time tε, we do not know whether the Meissner state persists at later times, unlike
in the non-gauged case [22]. This is because of the loss of fine tuned control of the
energy decomposition at larger times in the gauged problem. We remark, however,
that the annihilation time scale in Theorem 2.1 is of the same order as that in [22]
in the non-gauged case.

Remark. Initial data satisfying (2.2) can be constructed as follows. Let ρε be the
profile of the equivariant vortex as in (1.5), and define

u0
ε =

2∏
j=1

ρε(|x− aεj |)
( x− aεj
|x− aεj |

)dj
eiψ
∗
ε ,

with d1 = 1, d2 = −1, aε1 = a0,+
ε , aε2 = a0,−

ε . We set A0
ε = hex∇⊥ξm (where ξm

is given by (1.2)) and Φ0
ε ≡ 0. A short calculation shows that Gε(u0

ε, A
0
ε) =

Gm + π(1− α)|ln ε|+ oε(|ln ε|).

For completeness, we also estimate the annihilation time of the ODE (2.1), and
show that it is of the same order as the time scales obtained in Theorem 2.1, up to
a logarithmic factor.

Proposition 2.2. Let α ∈ (0, 1] and suppose aε satisfies the ODE (2.1) with initial
data aε(0) = εα. Let tε be the vortex annihilation time (i.e. a time such that
aε(tε) = 0). If εαhex|ln ε| → 0 as ε→ 0, then

(2.5) lim
ε→0

tε
ε2α|ln ε| = 1

2
for any λ > 0.

The proof of Theorem 2.1 (presented in Section 4) is similar to arguments found
in [22] in the gauge-free situation. The proof of Proposition 2.2 follows quickly from
well known properties of the Lambert W function, and is relegated to Appendix A.

2.2. Stochastic Models for Driving Dipoles. In light of Theorem 2.1, one
requires an applied field larger than exp(| ln ε|1/2) for vortices to be pulled away
from the boundary and nucleate. This is an extremely large energy barrier to
overcome. Our aim is to introduce a small random perturbation into (2.1) to
account for thermal fluctuations. In this scenario, nucleation becomes a rare event,
and our aim is to estimate the chance of nucleating. The general idea of studying
such asymptotics was introduced in [16], and has since been extensively studied by
various authors (see for instance [9, 12]).
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Explicitly, the equation we consider is

(2.6) daε = −bε(aε) dt+
√

2βε dWt,

where

(2.7) bε(a) def= −λhex

|ln ε| + 1
|ln ε|a

is the right hand side of (2.1), and W is a standard Brownian motion and βε is a
scaling parameter depending on ε. We remark that equation (2.6) is similar to the
SDE satisfied by a Bessel process of dimension 1 + 1/(βε|ln ε|).

The question of how stochastic forcing in the Gor’kov-Éliashberg equations can
induce stochastic ODE’s for the vortex position (2.6)-(2.7) is not well understood.
Some initial forays in this direction in the gauge-less case can be found in [4].

Once vortices reach a distance of exp(−| ln ε|1/2) away from the boundary, we
know (see [18], briefly described in Section 1) that they are driven into the interior
and move into a stable, lower energy state. In our context, if the boundary vortex
dynamics is approximated by (2.1), then vortices which are a distance of O(1/hex)
will be pulled away from the boundary. Thus, in order to investigate nucleation,
we study the chance that solutions to (2.6) starting a distance of εα away from
the boundary, reach a distance O(1/hex) before annihilating (i.e. before aε = 0,
corresponding to the vortex with center aε reaching the boundary of the domain).

Precisely, define the stopping time τε by

(2.8) τε = inf{t | aε(t) 6∈ (0, Âε)} , where Â
def= 1
λhex

.

Since the vortices we consider have radius εα, the closest to the boundary they can
start is a distance of εα away. In this case the chance of nucleating one such vortex
is

P εα
(
aε(τε) = Âε

) def= P
(
aε(τε) = Âε

∣∣ aε(0) = εα
)
.

On a bounded domain Ω, we locally flatten the boundary and interpret aε(t) as
the distance of the vortex from the boundary. In this case it is natural to consider the
motion of many vortices simultaneously, near different points on the boundary. Since
the size of these vortices is O(εα), we can fit O(ε−α) such vortices simultaneously
on ∂Ω. Assuming the motion of each of these vortices is independent, and governed
by (2.6), then the chance that at least one of these vortices nucleates is given by

(2.9) Nε
def= 1− (1− P εα(aε(τε) = Âε))ε

−α
.

Under physically relevant assumptions on hex, we show that the nucleation proba-
bility Nε transitions from 0 to 1 at the threshold

βε ≈
α

ln|ln hex|
.

This, along with more precise asymptotics, is our next result.

Theorem 2.3. Let aε solve the SDE (2.6)–(2.7),

(2.10) cε
def= λhex

|ln ε| , Â
def= 1
λhex

,

and τε, defined by (2.8), be the first exit time of a from the interval (0, Âε). Suppose1

that as ε→ 0, we have hex →∞ and εshex → 0 for any s > 0.
(1) If

lim sup
ε→0

βε ln hex < α,

then the nucleation probability Nε → 0 as ε→ 0.
(2) On the other hand, if

lim
ε→0

βε = 0 and lim inf
ε→0

βε ln hex > α,

then the nucleation probability Nε → 1 as ε→ 0.

We remark that Âε in (2.10) is chosen so that a = Âε is a stable equilibrium
of the ODE (2.1). The proof of Theorem 2.3 is in Section 5, and also provides
asymptotics in the transition regime when

βε ln hex → α ,

In this case limiting value of Nε depends on the rate of convergence and is described
in Remark 5.1, below.

We conclude this section with the description of an open question that is more
physically realistic. Consider a stochastically forced version of the full Gor’kov-
Éliashberg equations (1.7)–(1.10), instead of the heuristic ODE (2.1). The noise
should spontaneously generate vortices, and due to topological constraints these
vortices will appear either near the boundary, or as dipoles with small inter vortex
separation. Using the heuristic ODE (2.1) and Theorem 2.3 we expect that when
the noise is strong enough, these vortices (or dipoles) will nucleate providing a
mechanism by which the system “tunnels” to a lower energy state. This leads us to
make the following conjecture.

Conjecture 2.4. Consider a stochastically forced version of (1.7)–(1.10). If the
forcing is strong enough, the system admits a unique invariant measure for all ε > 0.
In this case, the invariant measure converges weakly as ε→ 0 to a measure supported
on the set of all functions that are limits of global minimizers of the Ginzburg-Landau
energy functional. Depending on the relation between hex and hc1 such functions
correspond to the purely superconducting state, or a nucleated state with finitely
many vortices.

In light of Theorem 2.3 one would guess that the above conjecture holds when
the variance of the noise is at least O(1/ ln hex). However, this would require the
stochastic forcing to spontaneously nucleate enough dipoles (or vortices near the
boundary). Moreover, truly nonlinear effects may change the threshold significantly.

Proving existence (and possibly uniqueness) of the invariant measure is likely to
be amenable to currently available techniques. Understanding the limiting behaviour
of the invariant measure, however, is more delicate. In finite dimensions, the small
noise limit of the invariant measure of a randomly perturbed potential flow is a
sum of delta masses located at the global minima of the potential, with the relative
mass at each minima depending on its basin of attraction. In infinite dimensions

1 Clearly hex ≈ |ln ε|, and hex ≈ exp(| ln ε|1/2) as in Theorem 2.1 have the property that
as ε→ 0, both hex →∞ and εshex → 0 for all s > 0.
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the situation is more complicated as there may be a continuum of global minima,
and understanding the limiting behaviour is much more involved.

The remainder of this paper is devoted to proving the results stated in this
section.

3. Formal Derivation of Boundary Vortex Dynamics.
The purpose of this section is to provide a short, heuristic derivation of (2.1).

Recall that a standard calculation (see for example [8]) shows that
∂tgε(uε, Aε) + |∂Φεuε|2 + |Eε|2 = ∇ · (∂Φεuε,∇Aεuε) +∇× (Eε(hε − hex)) ,(3.1)

where gε(u,A), defined by

gε(u,A) def= 1
2 |∇Au|

2 + 1
2 |h− hex|2 + 1

4ε2

(
1− |u|2

)2
,

is the energy density associated to Gε(u,A). We will split this energy density into
simpler terms. Following Bethuel et. al. [2], let

Eε(u) def=
∫

Ω
eε(u) dx , where eε(u) def= 1

2 |∇u|
2 + 1

4ε2

(
1− |u|2

)2
.

as introduced and studied by Bethuel et. al. [2].
Suppose now that our domain Ω is the half ball Ω = B1(0) ∩ R2

+, and consider a
vortex located at (0, aε(t)) at time t, where aε(0) = a0

ε = εα. From [19] we know

Gε(uε, Aε) = Gm(hex) + Eε(uε) + 2πhex

∫
Ω
ξmJ(uε)dx+ lower order terms ,

where Gm(hex) is the Meissner energy associated to applied field hex. We can
approximate the energy Eε(uε) by

Eε(uε) = π ln aε(t)
ε

+ lower order terms .

Combining the previous two equations, and using the fact that on small scales J(uε)
is concentrated at the site of the vortex (see [11]), yields

Gε(uε, Aε) = π ln aε(t)
ε

+ 2πhex ξm(0, aε(t)) +Gm(hex) + lower order terms .

On the other hand one can formally show that∫ t

0

∫
Ω

(
|∂Φεuε|2 + |Eε|2

)
dx ds =

∫ t

0
π ln aε(s)

ε
|ȧε(s)|2ds+ lower order terms.

Combined with (1.11) this yields[
π log aε(t)

ε
+ 2πhex ξm(0, aε(t))

]
+
∫ t

0
π ln aε(s)

ε
|ȧε(s)|2ds

=
[
π log a

0
ε

ε
+ 2πhex ξm(a0

ε)
]

+ lower order terms.
(3.2)

Differentiating (3.2) in time and neglecting the lower order terms yields the ODE

ȧε ln aε
ε

= −2hex ∂yξm(0, aε)−
1
aε
.

Using (1.2) and the Hopf lemma, we know that the outward normal derivative of
ξm is strictly positive on the boundary. Thus, to leading order, we obtain (2.1).

4. Dipole Annihilation Times.
The main goal in this section is to prove Theorem 2.1. We do this through the

following η-compactness result.

Proposition 4.1 (η-compactness). Fix C1, C2 > 0 and suppose that
C1|ln ε| 6 hex 6 C2 exp

(
|ln ε|1/2

)
.

Let (uε(t), Aε(t),Φε(t)) be a solution to (1.7)-(1.10) under a Coulomb gauge that
satisfies ∣∣Gε(u0

ε, A
0
ε)−Gm

∣∣ 6 η|ln ε|+ C

for some constants C > 0 and η ∈ (0, π). If further

(4.1)
∥∥J(u0

ε)
∥∥

(C0,γ
0 )∗ = oε

( |ln ε|
hex

)
for some 0 < γ 6 1, then for any δ < 2− 2η

π , there exists a time tε ∈ ( ε
δ

2 , ε
δ) such

that (2.4) holds.

Momentarily postponing the proof of Proposition 4.1, we prove Theorem 2.1.

Proof of Theorem 2.1. We first consider the case where the initial data is a dipole
with separation εα (i.e. satisfies (2.2)). In this case,

‖J(u0
ε)‖(C0,γ

0 )∗ 6
∥∥∥J(u0

ε)− π
(
δa0,+
ε
− δa0,−

ε

)∥∥∥
(C0,γ

0 )∗
+ π

∥∥∥δa0,+
ε
− δa0,−

ε

∥∥∥
(C0,γ

0 )∗

= oε

( |ln ε|
hex

)
+ π

∣∣a0,+
ε − a0,−

ε

∣∣γ = oε

( |ln ε|
hex

)
.

Thus, Proposition 4.1 guarantees that for any δ ∈ [0, 2−2η/π), there exists a tε < εδ

such that equation (2.4) holds. Since η = π(1 − α), the restriction δ < 2 − 2η/π
is precisely δ < 2α. Taking the infimum of the times tε as δ → 2α will guarantee
the existence of a time in the interval [0, ε2α] for which (2.4) holds. This proves
Theorem 2.1 in the case that (2.2) holds.

The proof when the initial data is a vortex located a distance of εα away from the
boundary (i.e. when (2.3) is satisfied) is similar. Indeed, let ϕ ∈ C0,γ

0 and y ∈ ∂Ω
be the point that is closest to the vortex center a0

ε, and observe∣∣∣∫
Ω
ϕδa0

ε
dx
∣∣∣ =

∣∣ϕ(a0
ε)− ϕ(y)

∣∣ 6 d(a0
ε, ∂Ω)γ‖ϕ‖C0,γ

0
.

Thus ‖δa0
ε
‖(C0,γ

0 )∗ = O(εαγ), and hence

‖J(u0
ε)‖(C0,γ

0 )∗ 6 ‖J(u0
ε)− δa0

ε
‖(C0,γ

0 )∗ + ‖δa0
ε
‖(C0,γ

0 )∗ = oε

( |ln ε|
hex

)
.

Now Proposition 4.1, and the same argument as in the previous case, finishes the
proof. �

The remainder of this section is devoted to the proof of Proposition 4.1. We
begin by recalling a regularity result from [7,23].
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Lemma 4.2 (Lemma 3.7 in [7] or Propositions 2.7–2.8 in [23]). Let (uε, Aε,Φε) be a
solution to (1.7)–(1.10) under the Coulomb gauge with ‖u0

ε‖L∞ 6 1, ‖∇u0
ε‖L∞ 6 C

ε

and Gε(u0
ε, A

0
ε) 6 Ch2

ex. Then we have
‖uε(t)‖L∞ 6 1 ,(4.2)

‖∇uε(t)‖L∞ 6
C

ε
,(4.3)

for all t > 0.

Remark. The hypotheses in [7] and [23] for (4.2) and (4.3) respectively, are for
smaller energies (when Gε(0) = O(|ln ε|)) and under the parabolic gauge. The
proofs, however, can be easily adjusted to the higher energy level O(h2

ex) and the
Coulomb gauge as stated in Lemma 4.2 above.

The main step in the proof of Proposition 4.1 is an energy-splitting argument,
which we now describe. Define the free energy GF,ε(u,A) by

(4.4) GF,ε(u,A) def=
∫

Ω

(1
2 |∇Au|

2 + 1
2 |∇ ×A|

2 + 1
4ε2 (1− |u|2)2

)
dx .

Even though Gε(uε, Aε) is of order O(h2
ex), we claim that the Eε(uε) is of order

O(|ln ε|) for short time. This is our next result.

Proposition 4.3. Suppose that (uε(t), Aε(t),Φε(t)) is a solution to (1.7)-(1.10) in
the Coulomb gauge with |Gε(u0

ε, A
0
ε) − Gm| 6 η|ln ε|. If ‖J(u0

ε)‖(C0,γ
0 )∗ = oε( |ln ε|hex

)

for some 0 < γ 6 1, then for all 0 6 t�
( |ln ε|
h3

ex

)2/γ we have

(4.5) Eε(uε(t)) 6 η|ln ε|+ oε(|ln ε|).

Remark. By the assumptions on hex, we have

εβ �
( |ln ε|
h3

ex

)2/γ

for any 0 6 β 6 1 and all ε 6 ε0, independent of β, γ.

Remark. A dipole separated by εα or a vortex at a distance εα from the boundary
satisfy the hypotheses.

Proof of Proposition 4.3. 1. We first establish some regularity results on solutions
of the equation. We will fix a Coulomb Gauge that ensures

∇ ·Aε = 0 in Ω Aε · ν = 0 on ∂Ω .

In this gauge, a solution satisfies

∂tuε − iΦεuε = ∇2
Aεuε + 1

ε2uε(1− |uε|
2) ,

∂tAε −∇Φε = ∆Aε + jAε(uε) ,
in Ω with boundary conditions

∂νuε = ν ·Aε = ∂νΦε = 0 ,
hε = hex ,

on ∂Ω. Using the boundary conditions (1.9)–(1.10) and (3.1) we have the energy
bound

Gε(uε(t), Aε(t)) +
∫ t

0

∫
Ω
|∂Φεuε|2 + |Eε|2 dx ds = Gε(u0

ε, A
0
ε),(4.6)

and by assumptions on hex, Gε(t) 6 Ch2
ex. (We assume here, and subsequently, that

C is a constant independent of ε that may increase from line to line.) Therefore,

‖∇Aεuε‖L2 6 Chex, ‖Eε‖L2([0,t];L2(Ω)) 6 Chex, and ‖Aε‖H1 6 Chex,

where the last bound on Aε follows from the Coulomb gauge and a standard Hodge
argument.

2. Next we claim that for all 0 6 t 6 1 and any 0 6 γ 6 1,

(4.7)
∥∥J(uε(t))− J(u0

ε)
∥∥

(C0,γ
0 )∗ 6 Ch

2
ex
(
max{ε, t1/2}

)γ
,

and if 0 6 t�
( |ln ε|
h3

ex

)2/γ , then
(4.8)

∥∥J(uε(t))− J(u0
ε)
∥∥

(C0,γ
0 )∗ = oε

( |ln ε|
hex

)
.

This will enable us to split the full Ginzburg-Landau energy sufficiently well.
We first establish an estimate on the continuity of the Jacobian in certain weak

topologies. Recalling JA(u) = 1
2∇× (jA(u) +A), a direct calculation shows

(4.9) ∂tJAε(uε) = ∇× (i∂Φεuε,∇Aεuε) +∇×
(
Eε

(1− |uε|2

2

))
.

Now for any ϕ ∈ C0,γ
0 we have∣∣∣∫

Ω

(
JAε(t)(uε(t))− JA0

ε
(u0
ε)
)
ϕdx

∣∣∣ =
∣∣∣∫ t

0

∫
Ω
ϕ(x) d

ds
JAε(s)(uε(s)) dx ds

∣∣∣
= 2
∣∣∣∫ t

0

∫
Ω
∇⊥ϕ ·

(
i∂Φεuε,∇Aεuε

)
dx ds

∣∣∣
+
∣∣∣∫ t

0

∫
Ω
∇⊥ϕ · Eε(1− |uε|2) dx ds

∣∣∣
6 2‖∇ϕ‖L∞‖∂Φεuε‖L2([0,t]×Ω)‖∇Aεuε‖L2([0,t]×Ω)

+ ε‖∇ϕ‖L∞‖Eε‖L2([0,t]×Ω)

∥∥∥1− |uε|2

ε

∥∥∥
L2([0,t]×Ω)

6 2
√
t‖∇ϕ‖L∞‖∂Φεuε‖L2([0,t]×Ω)‖∇Aεuε‖L∞([0,t];L2(Ω))

+ ε
√
t‖∇ϕ‖L∞‖Eε‖L2([0,t]×Ω)

∥∥∥1− |uε|2

ε

∥∥∥
L∞([0,t];L2(Ω))

,

and so ∣∣∣∫
Ω

(
JAε(t)(uε(t))− JA0

ε
(u0
ε)
)
ϕdx

∣∣∣ 6 C‖∇ϕ‖L∞h2
ex
√
t .

This implies

(4.10)
∥∥JAε(t)(uε(t))− JA0

ε
(u0
ε)
∥∥
Ẇ−1,1(Ω) 6 Ch

2
ex
√
t .
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However, we note that for any ϕ ∈W 1,∞
0 ,∣∣∣∫

Ω
ϕ
(
JAε(uε)− J(uε)

)
dx
∣∣∣ =

∣∣∣∫
Ω
∇⊥ϕ ·

(
jAε(uε) +Aε − j(uε)

)∣∣∣
=
∣∣∣∫

Ω
∇⊥ϕ ·

(
Aε(1− |uε|2)

)∣∣∣
6 ε‖∇ϕ‖L∞‖Aε‖L2

∥∥∥1− |uε|2

ε

∥∥∥
L2

6 Cε‖∇ϕ‖L∞h
2
ex ,

where we recall j(u) def= (iu,∇u). Consequently

(4.11)
∥∥JAε(t)(uε(t))− J(uε(t))

∥∥
Ẇ−1,1(Ω) 6 Cεh

2
ex ,

for all t 6 ε− 1
2 . In particular (4.10) and (4.11) imply

(4.12)∥∥J(uε(t))− J(u0
ε)
∥∥

(C0,1(Ω))∗ 6
∥∥J(uε(t))− J(u0

ε)
∥∥
Ẇ−1,1(Ω) 6 C max{ε,

√
t}h2

ex.

A similar calculation shows that

(4.13)
∥∥J(uε(t))− J(u0

ε)
∥∥

(C0
0 (Ω))∗ 6 Ch

2
ex.

Using (4.12) and (4.13), along with interpolation of dual Hölder spaces, (see Jerrard-
Soner [11]), yields (4.7).

3. Next, we claim that

(4.14) Gε(uε(t), Aε(t)) = Gm +GF,ε(uε(t), A′ε(t)) + oε(|ln ε|) ,

where A′ε(t) = Aε(t) − hex∇⊥ξm and GF,ε is defined in (4.4). To see this, we
decompose

Gε(uε, Aε) = GF,ε(uε, A′ε) + h2
ex

∫
Ω
|∇ξm|2|uε|2 + |hm − 1|2 dx

− hex

∫
Ω
∇⊥ξm · jA′ε(uε) + h′ε(hm − 1) dx ,

where h′ε = ∇×A′ε. Note hm − 1 = ξm, where hm
def= ∆ξm is the Meissner magnetic

field. Therefore,

− hex

∫
Ω
∇⊥ξm · jA′ε(uε) + h′ε(hm − 1) dx

= −hex

∫
Ω
∇⊥ξm · j(uε)−∇⊥ξm ·A′ε|uε|2 + h′εξm dx

= 2hex

∫
Ω
ξmJ(uε) dx+ hex

∫
Ω
∇⊥ξm ·A′ε(|uε|2 − 1) dx ,

and so

Gε(uε, Aε) = Gm +GF,ε(uε, A′ε) + 2hex

∫
Ω
ξmJ(uε) dx

+ hex

∫
Ω
∇⊥ξm ·A′ε(|uε|2 − 1) dx+ h2

ex

∫
Ω
|∇ξm|2(|uε|2 − 1) dx

= Gm +GF,ε(uε, A′ε) + 2hex

∫
Ω
ξmJ(uε) dx+ oε(|ln ε|) .

Since ξm is a smooth function (and hence in any Hölder space), then

hex

∫
Ω
ξmJ(u0

ε) dx = oε(|ln ε|)

holds by assumption and (4.14) follows from (4.7).
4. Finally, we prove that

(4.15) Eε(uε(t)) 6 η|ln ε|+ oε(|ln ε|)

for all t 6
( |ln ε|
h3

ex

)2/γ .
By (1.11) and our assumptions

Gε(uε(t), Aε(t)) +
∫ t

0

∫
Ω
|∂Φεuε|2 + |∇Φε|2 + |∂tAε|2 dx ds 6 Gm + η|ln ε|.(4.16)

By steps 2 and 3, we have

(4.17) GF,ε(uε(t), A′ε(t)) 6 η|ln ε|+ oε(|ln ε|)

as long as t�
( |ln ε|
h3

ex

)2/γ . Thus, we can continue our decomposition and use∫
Ω
|∇A′εuε|

2 dx =
∫

Ω
|∇uε|2 − 2∇⊥ξ′ε · j(uε) + |A′ε|2|uε|2 dx

=
∫

Ω
|∇uε|2 − 2ξ′εJ(uε) + |A′ε|2|uε|2 dx .

By (4.17) we have ‖A′ε‖H1 6 Chex then ‖ξ′ε(t)‖C0,γ 6 Chex for all t > 0. Using
‖J(u0

ε)‖(C0,γ
0 )∗ = oε( |ln ε|hex

) and (4.7), along with the bound on ξ′ε yields (4.15). �

We now state the η-compactness result for the gauge-less energy, Eε.

Proposition 4.4 (Proposition 2.2 in [21]). Suppose uε satisfies the static equation

∆uε + 1
ε2uε(1− |uε|

2) = fε in Ω ,

∂νuε = 0 on ∂Ω .

Further, assume |uε| 6 1, Eε(uε) 6M |ln ε|, |∇uε| 6 C
ε , and ‖fε‖L2 6 1

εβ
for some

β < 2. Then, after extraction of a subsequence ε→ 0, we can find Rε → +∞ with
Rε 6 C|ln ε| and a family of balls ∪ni=1Bi = ∪ni=1B(ai, Rεε), with ai depending on
ε and n bounded independently of ε, such that the following hold.

(1) As ε→ 0 we have

(4.18) ‖1− |uε|‖L∞(Ω\∪iB(ai,Rεε)) → 0 .

(2) For every β < 1 and every subset I of [1, n], we have

(4.19) βπ
∑
i∈I

d2
i 6

∫
∪i∈IB(ai,Rεε1−β)

eε(uε)
|ln ε| dx+ C|ln ε| 72 ε1−β‖fε‖L2 + oε(1)

We now prove Proposition 4.1.
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Proof of Proposition 4.1. Using the above bounds on the gauged problem above,
we follow the template laid out in [22].

1. We first claim that for any 0 < δ < 1, there exists a time tε ∈ ( ε
δ

2 , ε
δ) such

that
(4.20)

∥∥∂Φεuε(tε)
∥∥2
L2 +

∥∥Eε(tε)∥∥2
L2 6 Cε

−δh2
ex.

(We will later choose δ to ensure there are no vortices at time tε.) To prove (4.20),
we use the parabolic bound∫ t

0

(∥∥∂Φεuε(s)
∥∥2
L2 +

∥∥Eε(s)∥∥2
L2

)
ds 6 Gε(u0

ε, A
0
ε) 6 Ch2

ex .

Since we also know

Ch2
ex >

∫ t

t
2

∥∥∂Φεuε(s)
∥∥2
L2 +

∥∥Eε(s)∥∥2
L2 ds >

t

2 inf
s∈[ t2 ,t]

(∥∥∂Φεuε(s)
∥∥2
L2 +

∥∥Eε(s)∥∥2
L2

)
then there exists a tε ∈ ( ε

δ

2 , ε
δ) such that (4.20) holds.

2. We claim that this implies that
(4.21) ‖Aε(tε)‖L∞ 6 Cε

−δ/2hex.

To see this we note that from (4.20),
‖∇hε(tε)‖L2 6 ‖jAε(uε(tε))‖L2 + ‖Eε(tε)‖L2

6 Chex + Cε−δ/2hex.

In particular, ‖hε(tε)‖H1 6 Cε−δ/2hex. Using standard elliptic theory and a Hodge
decomposition of Aε we find that

‖Aε(tε)‖L∞ 6 C‖Aε(tε)‖H2 6 C‖∇ × (−∆−1
0 )hε(tε)‖H2 6 C‖hε(tε)‖H1 ,

and (4.21) follows by embedding.
3. We now show that the first two steps and the hypotheses allow us to use

Proposition 4.3. From the evolution equation for uε we can write

∆uε + 1
ε2uε(1− |uε|

2) = fε,

where
(4.22) fε ≡ 2iAε · ∇Aεuε + |Aε|2uε − ∂Φεuε.

Each of these terms can be estimated in L2 for some time t ∈ ( 1
2ε
δ, εδ). From (4.21)

and (1.11)

(4.23) ‖Aε · ∇Aεuε‖L2 6 ‖Aε‖L∞‖∇Aεuε‖L2 6 Cε−
δ
2hex

and
(4.24) ‖|Aε|2uε‖L2 6 ‖Aε‖2H1 6 Ch2

ex.

(4.25) ‖∂Φεuε(tε)‖L2 6 Cε−
δ
2hex.

Then by (4.23)-(4.25) for the tε ∈ ( ε
δ

2 , ε
δ) we have

(4.26) ‖fε(tε)‖L2 6 Cε−
δ
2hex.

4. We can now follow Proposition 2.1 in [22]; by the structure result Proposi-
tion 4.4 at tε defined above, there are vortices {aj} of degree {dj} such that for any
β < 1,

(4.27) βπ
∑
j

d2
j 6 η + C|ln ε| 72 ε1−β− δ2hex + oε(1).

We can choose β > η
2π and δ < 2− 2β, then by (4.19) we have that for all ε 6 ε0,∑

j d
2
j < 2; consequently,

∑
d2
j ∈ {0, 1}. However, since the dj ’s are nontrivial then

either ‖1− uε(tε)‖L∞ = oε(1) or there exists one vortex a with degree ±1.
Suppose now that there exists a single vortex a, we again use the argument

from [22] to get that Eε(uε(tε)) > π ln `
ε + O(1), where ` = d(a, ∂Ω). But upper

bound (4.5) implies that Eε(uε(tε)) 6 η|ln ε| + oε(|ln ε|) which implies that the
vortex must satisfy ` 6 εµ for some

(4.28) µ > 1− η

π
.

By Theorem 2 of [21] we have that

(4.29) ‖fε(tε)‖L2 > C
ε−µ

|ln ε| ,

for some constant C depending on β and Ω. Given (4.26) and (4.29) we see that

(4.30) 2µ < δ.

On the other hand we can further restrict δ < 2− 2 ηπ , and so with (4.28) we get

(4.31) δ < 2µ,

and a contradiction between (4.30) and (4.31). Therefore, there are no vortices at
time tε, which implies ‖1− |uε(tε)|‖L∞ = oε(1). �

5. Stochastic Models for Driving Dipoles.
We devote this whole section to proving Theorem 2.3. When βε = 0 the SDE (2.6)

reduces to (2.1) which has a locally attracting point at 0. Standard large deviation
results can be used to estimate the chance that a escapes from 0, however, these
results don’t directly apply in this scenario as the initial position, strength of the
noise, and the interval length all depend on ε. While these obstructions can likely
be overcome abstractly, the problem at hand admits an explicit solution and we
handle it directly instead.

We know (see for instance [14, §9]) that the function ϕε defined by

ϕε(x) def= P x(aε(τε) = Âε) .

satisfies the equation

(5.1) βε∂
2
xϕε − bε∂xϕε = 0 ,

with boundary conditions

ϕε(0) = 0 , and ϕε(Â) = 1 .
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Let Bε =
∫
bε be a primitive of bε. The solution to (5.1) is given by

ϕε(z) =
∫ z

0 e
Bε/βε∫ Âε

0 eBε/βε
=

∫ z
0 x

1
βε|ln ε| exp

(
−λhexx
βε|ln ε|

)
dx∫ Âε

0 x
1

βε|ln ε| exp
(
−λhexx
βε|ln ε|

)
dx

.

Using (2.10) and making the substitution y = cεx/βε yields

P z(aε(τε) = Âε) = ϕε(z) =
∫ cεz/βε

0 y
1

βε|ln ε| e−y dy∫ 1/(βε|ln ε|)
0 y

1
βε|ln ε| e−y dy

.

Thus, Theorem 2.3 now reduces to understanding the asymptotic behaviour of the
right hand side as ε→ 0.

To this end, define

mε = cεε
α

βε
and nε = 1

βε|ln ε|
,

and observe

(5.2) P εα(aε(τε) = Âε) = ϕε(εα) = γ(nε + 1,mε)
γ(nε + 1, nε)

,

where
γ(s, x) =

∫ x

0
ts−1e−t dt

is the incomplete lower gamma function. Note
mε

nε
= λhexε

α ε→0−−−→ 0 .

We now split the analysis into cases.
Case I: βε � 1/|ln ε|. In this case nε →∞. Clearly

(5.3) γ(nε + 1,mε) 6
∫ mε

0
tnε dt = mnε+1

ε

nε + 1 .

To estimate γ(nε + 1, nε), observe first that for any x > 1, γ(s, x) is decreasing in s
when s is sufficiently large. Thus, without we can without loss of generality, assume
nε ∈ N. Repeatedly integrating by parts we obtain the identity

γ(nε + 1, x) = nε!(1− e−xenε(x)) , where en(x) =
n∑
k=0

xk

k!

is the truncated exponential. Since e−nen(n)→ 1/2 as n→∞ we must have

(5.4) lim
n→∞

γ(n+ 1, n)
n! = 1

2 .

For the numerator γ(nε + 1,mε), clearly

γ(nε + 1,mε) 6
∫ mε

0
tnε dt = mnε+1

ε

nε + 1 ,

and using (5.2), (5.4) and Sterlings formula we have

lim
ε→0

P εα(aε(τε) = Âε)
εα

= 0 .

Finally, to estimate Nε, equation (2.9) shows

(5.5) ϕε(εα)
2εα 6 Nε = 1− (1− P εα(aε(τε) = Âε))ε

−α
6

2ϕε(εα)
εα

,

and hence Nε → 0 as ε→ 0.
Case II: βε ≈ 1/|ln ε|. In this case we assume

lim
ε→0

1
|ln ε|βε

= n0 > 0 ,

and so nε → n0 and mε → 0 as ε→ 0.
Now the denominator in (5.2) is γ(nε + 1, nε) which converges to some constant

c2 > 0 as nε → n0. The numerator in (5.2), γ(nε + 1,mε), can again be bounded
by (5.3). This shows

P εα(aε(τε) = Âε) 6 c(hexε
α)1+n0 ,

for some constant c > 0. Consequently, using (5.5), we have Nε 6 ch1+n0
ex εαn0 → 0

as ε→ 0.
Case III: βε � 1/|ln ε|. In this case both mε → 0, nε → 0. Using the estimate

e−xxs

s
6 γ(s, x) 6 xs

s
,

we see

(5.6) e−mε
(mε

nε

)nε+1
6 ϕε(εα) 6 enε

(mε

nε

)nε+1
.

To compute the limiting behaviour of Nε, observe

lim
ε→0

− ln(1−Nε)
ε−αϕε(εα) = − ln(1− ϕε(εα))

ϕε(εα) = 1 ,

where, for simplicity, we assumed the existence of the limit. Using (5.6),

lim
ε→0

ln
(ϕε(εα)

εα

)
= lim
ε→0

ln
( (mε/nε)1+nε

εα

)
= lim
ε→0

[(
1 + 1

βε|ln ε|

)
ln
(
cε|ln ε|

)
− α

βε

]
= lim
ε→0

[ 1
βε

( ln
(
λhex

)
|ln ε| − α

)
+ ln(λhex)

]
,(5.7)

provided the limits exists. From this it follows that if lim inf βε ln hex > α, then
the limit above is +∞, and hence Nε → 1 as ε → 0. On the other hand if
lim supβε ln|ln ε| < α, then the limit above is −∞, and hence Nε → 0 as ε → 0.
This concludes the proof of Theorem 2.3.

Remark 5.1. In the transition regime (when βε ln|ln ε| → α), we note that Nε can
be estimated from above and below using (5.7). The bounds obtained, however,
depend on the rate at which βε ln hex converges to α.
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Appendix A. Annihilation Times of the Heuristic ODE.
We devote this appendix to proving Proposition 2.2, estimating the annihilation

times of the heuristic equation (2.1). A direct calculation shows that when λ > 0
the solution to (2.1) is given by

aε(t) = 1
λhex

[
1 +W0(−C exp

(λ2h2
ext

|ln ε|

)]
,

for some constant C. Here W0 is the principal branch of the Lambert W function.
We recall (see [5], or Section 4.13 in [15]) that W0 is defined by the functional
relation

W0(zez) = z

when z > −1.
Using the initial data aε(0) = εα we find

C = (1− λhexε
α)e−(1−λhexε

α).

Annihilation occurs when W0 = −1 which is precisely when

C exp
(λ2h2

extε
|ln ε|

)
= 1
e
.

Substituting C above gives

exp
(
λhexε

α + λ2h2
extε

|ln ε|

)
= 1

1− λhexεα
,

and hence

tε = |ln ε|
λ2h2

ex

(
|ln(1− λhexε

α)| − λhexε
α
)

= ε2α|ln ε|
2 + 1

3λhexε
3α|ln ε|+ · · · .

Since εαhex|ln ε| → 0 by assumption, dividing both sides by ε2α|ln ε|, equation (2.5)
follows.

It remains to prove (2.5) when λ = 0. In this case, the exact solution to (2.1) is
given by

aε(t) =
(
ε2α − 2t

|ln ε|

)1/2
,

and hence

(A.1) tε = ε2α|ln ε|
2 ,

for any ε > 0. This concludes the proof of Proposition 2.2.
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