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Abstract. We study an overdamped Langevin equation on the d-dimensional
torus with stationary distribution proportional to p = e−U/κ. When U has
multiple wells the mixing time of the associated process is exponentially large
(of size eO(1/κ)). We add a drift to the Langevin dynamics (without changing
the stationary distribution) and obtain quantitative estimates on the mixing
time. We show that an exponentially mixing drift can be rescaled to make the
mixing time of the Langevin system arbitrarily small. For numerical purposes,
it is useful to keep the size of the imposed drift small, and we show that the
smallest allowable rescaling ensures that the mixing time is O(d/κ2), which is
an order of magnitude smaller than eO(1/κ).

We provide one construction of an exponentially mixing drift, although
with rate constants whose κ-dependence is unknown. Heuristics (from discrete
time) suggest that κ-dependence of the mixing rate is such that the imposed
drift is of size O(d/κ3). The large amplitude of the imposed drift increases the
numerical complexity, and thus we expect this method will be most useful in
the initial phase of Monte Carlo methods to rapidly explore the state space.

1. Introduction
Sampling from a given target distribution is a problem that arises in many

modern applications, such as molecular dynamics [TLF77, QP04, LPV15, MS17,
ARNB20], machine learning [AdFDJ03], field theory [BKK+85], Bayesian Statistics
and computational physics [GCS+13]. A typical situation of interest is to draw
samples from a probability distribution with density proportional to

(1.1) p = e−U/κ .

Here U is a potential function that is usually regular and explicit, and κ > 0 is a
small parameter.

Even though U is known explicitly, sampling from the above distribution is a
numerically challenging problem with a long history [MRR+53,Has70,Nea96,RRT17,
CCAY+18,BCP+21,CGLL22]. To briefly explain the difficulties involved, note first
that in order to convert p into a probability density function, we need to normalize
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it by setting

(1.2) ρ∞ = p

Z
= e−U/κ

Z
, where Z = Z(κ) =

∫
Rd

p dx .

Unfortunately, the constant Z is not easy to compute explicitly as numerical
integration via quadrature is too expensive in high dimensions (see [Nov16] and
references therein).

Moreover, even if the normalization constant Z is known, the majority of the
mass of ρ∞ is typically concentrated in a region with volume O(κd/2), where p is
relatively larger. In order to effectively sample from ρ∞, we need to identify this
region. There is no obvious way to do this without evaluating p everywhere, a task
that is computationally infeasible in high dimensions.

There are many numerical algorithms designed to address these issues. The first
such algorithm was the celebrated Metropolis–Hastings algorithm [MRR+53,Has70,
LP17] which was designed to sample from the density ρ∞ without knowledge of
the normalization constant Z. Subsequently, numerous methods were developed to
improve the convergence rate and address deficiencies in the Metropolis–Hastings al-
gorithm. Some popular methods include Hamiltonian Monte Carlo (HMC), Langevin
Monte Carlo, Metropolis Adjusted Langevin algorithm (MALA), and various sto-
chastic gradient methods [AdFDJ03,Dia09,Bet17,LP17,GHKM21,GGZ22].

Of these, one that will be of particular interest to us is the Langevin Monte Carlo
method. This method hinges on the fact that ρ∞ is the stationary distribution of
an over-damped Langevin equation, and so one can sample from ρ∞ by performing
Monte Carlo simulations. To elaborate, consider the over-damped Langevin equation
(1.3) dXt = −∇U(Xt) dt+

√
2κ dWt ,

where W is a standard d dimensional Brownian motion. It is easy to see that the
density ρ∞ is stationary for the process X. If X is mixing, then the density of Xt

for large enough t will be close to ρ∞, and so performing Monte Carlo simulations
on (1.3) will allow us to sample from ρ∞.

It is well known that if U is strongly convex, then the process X is exponentially
mixing [BE85]. More generally, if the stationary distribution satisfies a Poincaré
inequality or log-Sobolev inequality (see for instance [Vil09, A.19] and [VW19]),
then the process X is exponentially mixing, and one can sample from ρ∞ by
simulating (1.3). This leads to many sampling results such as [DT12,Dal17a,Dal17b,
DM17,Che23], with guaranteed bounds on the convergence rate.

We will now restrict our attention to studying (1.3) on the d-dimensional torus Td

with non-convex U . In this case, a Poincaré inequality holds so the process X is
always exponentially mixing. The convergence rate, however, could be extremely
slow, and one has to simulate (1.3) for an extremely long time to generate good
quality samples. In particular, if the potential U has multiple wells, the mixing time
of X is eO(1/κ), which (for κ ≪ 1) is too large to be practical. Recall the mixing time,
denoted by tmix = tmix(κ) (defined in (2.9) below), is often used to measure the rate
at which the distribution of X converges to the stationary distribution [MT06,LP17].
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The reason we expect to have tmix = eO(1/κ) is because local minima of the
potential are metastable, and trap trajectories of X for exponentially long periods of
time. Indeed, if X0 starts at a local minimum of U , then the exit time from a small
neighborhood is known to be eO(1/κ) (see [SM79,Sch80]). Thus if ρ∞ is multimodal,
the process X will not mix on time scales smaller than eO(1/κ).

The main contribution of this paper is to add a drift to (1.3) in a manner that
both avoids the metastable traps at local minima and preserves the stationary
distribution ρ∞. As we will shortly see (Theorem 1.1, below), this can be used
to make the mixing time much smaller than eO(1/κ). Explicitly, the modification
of (1.3) we consider is

(1.4) dXt = AvAt(Xt) dt− ∇U(Xt) dt+
√

2κ dWt .

Here A ≫ 1 is a large parameter, and v is a time dependent uniformly C1 flow such
that

(1.5) κ∇ · v − ∇U · v = 0 .

Note equation (1.5) is equivalent to the condition that ∇ · (ρ∞v) = 0, which implies
that the stationary distribution of (1.4) is still ρ∞.

It is known that adding any drift to Langevin dynamics (as in (1.4)) always makes
it converges to equilibrium faster than directly using (1.3), without any drift (see
for example [HHMS93,RBS15,DPZ17,HWG+20]). Prior to our work, the increased
convergence rate was obtained by taking v(x) = J∇U(x) for an antisymmetric
matrix J [LNP13, DLP16, GM16, LS18]. With this approach, the mixing time is
still eO(1/κ), but with smaller constants than the mixing time of (1.3). Using a
different approach, Damak et al. [DFY20] produce a sequence of time independent
flows in R2 which make the mixing time arbitrarily small. Their construction relies
on a strong oscillation of stream lines of the imposed drift, and only applies to the
two dimensional case with a quadratic potential.

The first result in this paper is to provide a quantitative estimate of the mixing
time of X when the deterministic flow of v is exponentially mixing. Here we mean
exponentially mixing in the sense of dynamical systems, and we recall this notion in
Section 2.1, below. We will estimate the mixing time in terms of the dissipation time,
which roughly speaking, measures the rate at which Xt converges to the stationary
distribution in the L2 norm (the precise definition is in Section 2.2, below).

Theorem 1.1. Suppose the vector field v satisfies (1.5) and generates an exponen-
tially mixing flow. Denote the mixing rate by

(1.6) h(t) = De−γt ,

where D and γ are constants that may depend on κ. There exists constants C and
A0 = A0(κ) < ∞ such that

tdis ⩽
C∥∇v∥L∞

γ2A

(
1 + ln2 Dγ2A

κ∥∇v∥L∞

)
,(1.7)

tmix ⩽ Cd
(

1 + ∥U∥osc

κ
− ln(κtdis)

)
tdis ,(1.8)

for all sufficiently small κ > 0. Here ∥U∥osc = maxU − minU ,

∥∇v∥L∞ =
∥∥∥∑

i,j

|∂ivj |2
∥∥∥1/2

L∞
.

Remark 1.2. We clarify that the constant C is independent of both the dimension
and κ. Clearly both tdis and tmix vanish as A → ∞. However, when A is large,
solving (1.4) is computationally expensive, and thus we would like to choose A to be
as small as possible. From the proof (see Remark 2.2, below) we will show that A0
can be chosen according to

(1.9) A0 = C ′κ∥∇v∥L∞

γ2 ln2 C
′D

κ
,

for some constant C ′ which is independent of κ. Thus if we choose A = A0 in
Theorem 1.1, then the bounds (1.7) and (1.8) reduce to the polynomial bounds

(1.10) tdis ⩽
C ′′

κ
and tmix ⩽

C ′′d

κ2 ,

for some constant C ′′ that is independent of κ and d. This is an order of magnitude
smaller than the mixing time of (1.3) which is eO(1/κ) for multi-modal distributions.

We were unable to use the “usual techniques” (e.g. coupling, Cheeger bounds,
etc. [LP17,MT06]) to obtain the mixing time bound (1.8). The proof of Theorem 1.1
instead uses a PDE based Fourier splitting method to obtain the dissipation time
bound (1.7) (see Theorem 2.1, below), and then estimates the mixing time in terms
of the dissipation time (Proposition 2.4, below). Postponing further discussion
of these ideas to Section 2, we now explicitly construct velocity fields that are
exponentially mixing so that Theorem 1.1 may be applied.

Notice first that a large family of velocity fields satisfying (1.5) can be easily
constructed by taking skew gradients. Indeed, if ψ is a periodic stream function,
and i, j ∈ {1, . . . , d} with i ̸= j, then any velocity field v defined by

(1.11) v
def= 1
p

∇⊥
i,j(pψ) = ∇⊥

i,jψ −
ψ∇⊥

i,jU

κ
,

satisfies the measure preserving condition (1.5). Here ∇⊥
i,j is the skew gradient in

the xi-xj plane, and is defined by

(1.12) ∇⊥
i,jψ = −∂jψei + ∂iψej ,

where ei, ej are the standard ith and jth basis vectors respectively. If ψ is a function
of only one coordinate, say ψ(x) = F (xi), and p is identically constant, then the
velocity field v above is simply a shear flow with with magnitude F ′(xi) directed
along the jth coordinate axis. If ψ(x) = F (xi) as above, but p is not identically
constant, then we will call v a “modified shear”. In this case we note that the
velocity field lies in the xi-xj plane, but may not necessarily be directed along ej .
Moreover, the magnitude now depends on all coordinates, and not just xj .

We will now construct exponentially mixing velocity fields using randomly shifted
alternating modified shears, in the spirit of Pierrehumbert [Pie94] who used a
similar construction to study mixing in fluid dynamics. Explicitly, choose αn ∈ [0, 1],
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Figure 1. The function F (left) and its sawtooth shaped deriva-
tive F ′ (right).

βn ∈ [0, 1] and in, jn ∈ {1, . . . , d} to be uniformly distributed, i.i.d. random variables
such that in ̸= jn. Given a periodic function F : R → R define

(1.13) vt(x) def= βn

p(x)∇⊥
in,jn

(
p(x)F (xin

− αn)
)
, when t ∈ [n, n+ 1) .

We will either choose F (x) = sin(2πx) (as in [Pie94]), or choose F so that the
derivative is a sawtooth shaped function (see Figure 1, or the exact formula (6.1) in
Section 6.1, below). We claim that that v is exponentially mixing with probability 1.

Theorem 1.3. Suppose the potential U is C2, and F is the function with sawtooth
derivative shown in Figure 1. If d ⩾ 3, suppose further there exists a small ball
B(x̂, ε̂) ⊆ Td such that

(1.14) U(x) =
d∑

i=1
Ui(xi) for all x ∈ B(x̂, ε̂) .

Then there exists a constant γ = γ(κ, d) < ∞, and a finite random variable D =
D(κ, d) such that almost surely the velocity field (1.13) is exponentially mixing with
rate (1.6).

If instead F (x) = sin(2πx), then the same conclusions hold provided we also
assume the critical points of U are isolated.
Remark 1.4. While the cosine shears (corresponding to F (x) = sin(2πx)) are more
stable numerically, there are many common distributions (such as the Rosenbrock
distribution [Ros61]) where the critical points of U are not isolated. In this case, we
believe the velocity field v is still exponentially mixing for F (x) = sin(2πx), however,
certain technical aspects of our proof break down. When F ′ is a sawtooth-shaped
function no assumption on critical points of U is required.
Remark 1.5. Before proceeding further we briefly comment on the situation when the
state space is Rd, and not the compact torus. Part of Theorem 1.1 can be generalized
to this setting, and we elaborate on this further in Remarks 2.3 and 2.6, below. In
order to apply Theorem 1.1, however, we would need to construct flows on Rd that
are exponentially mixing with respect to the density ρ∞. This is not easy to do, and
we are presently not aware of any such examples. Velocity fields of the form (1.11)
are not suitable because either the trajectories will reach infinity in finite time or
they will be too slow for the mixing effects to be useful. Moreover, the examples of
mixing flows we construct (Theorem 1.3) rely heavily on the compactness of the
state space, and we are presently not aware of any examples of exponentially mixing
flows on Rd that preserve the stationary distribution ρ∞.

Unfortunately, D and γ depend on κ and the dimension, and the proof of
Theorem 1.3 does not provide any information on the asymptotic behavior of D
and γ as κ → 0 and d → ∞. We can, however, study a discrete time version of (1.4),
and produce exponentially mixing maps for which
(1.15) D = eO(1/κ) , γ = O(1) .
(The precise construction is described in Section 5, below.) Suppose, momentarily,
that for one of the velocity fields from Theorem 1.3 we still have (1.15). For such
velocity fields, we note that ∥∇v∥L∞ = O(

√
d/κ). Thus choosing A = A0, where

A0 is given by(1.9), reduces to choosing

A = O
(√

d

κ2

)
,

in order to obtain the polynomial in 1/κ mixing time bounds stated in (1.10). Note
that with this choice, the drift term in (1.4) is of size O(d/κ3).

To illustrate our results numerically, we choose a double well potential U

U
def= (sin2(π(x1 − .75)) + sin2(π(x2 − .7)))(sin2(π(x1 − .75)) + sin2(π(x2 + .7)) ,
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Figure 2. Level sets of p (left), and stream plots of v (center,
right) corresponding to a modified vertical and horizontal shear
respectively.

which has two minima at the points (0.25, 0.3) and (0.75, 0.7). Rather than choosing v
according to (1.13), it is numerically more convenient to choose

(1.16) ψ = Mt

(
sin2(2πωt) sin(2π(x1 −W1,t) + cos2(2πωt) sin(2π(x2 −W2,t))

)
,

and then define v according to (1.11). Here Mt is a mean reverting Ornstein–
Ullenbeck process, Wi,t are independent Brownian motions, and ω > 0 is a parameter.
Note when ωt ∈ πZ, the stream function ψ is only depends on x2, and when
ωt ∈ (π + 1

2 )Z, the stream function ψ only depends on x1. Thus this is a time
continuous way of choosing the velocity fields defined in (1.11), with ω controlling
the frequency at which the fields switch direction. Level lines of the function p
(equation (1.1)), and a stream plot of v at times t = 0 and t = (2π + 1)/(2ω)
are shown in Figure 2. Of particular interest is the fact that v is not 0 at the
local minima of U , and this is what allows solutions to (1.4) to quickly escape the
metastable traps at critical points.

We now solve equation (1.4) numerically with κ = 1/70 and choose the initial
distribution to be the delta measure located at (0.75, 0.7) (one of the local minima
of U). In a short amount of time solutions to both equations fill out a neighborhood
of the local minimum that they start at. However, since local minima of U are
metastable traps for (1.3), very few realizations of solutions to (1.3) are able to leave
this neighborhood. As a result, very few of these points are present in the other
local minimum of U located at (0.25, .3) (see Figure 3, left). In contrast, solutions
to (1.4) are not trapped at critical points for as long, many realizations of solutions
to (1.4) quickly find their way to the other local minimum (see Figure 3, center,
right). At the final time in our simulations (T = 3.14), the distribution of solutions
to (1.4) were close to the stationary distribution, but the distribution of solutions
to (1.3) were not.

Despite the mixing time of (1.4) being an order of magnitude smaller than that
of (1.3), there are a few issues that increase the complexity when solving (1.4)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Equation (1.3) at time T = 3.14

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Equation (1.4) at time T = 0.63
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Figure 3. Distribution of 2000 realizations of solutions to (1.3)
and (1.4) with κ = 1/70 and a double well potential. Solutions
to (1.3) take a very long time to leave a neighborhood of a local
minimum of U , where as solutions to (1.4) leave it quickly and
approach the stationary distribution much faster.

numerically. Explicitly, solving equation (1.3) is relatively easier as the largest
term on the right is of size O(1). Solving equation (1.4), on the other hand,
is relatively harder as the added drift has magnitude O(

√
d/κ). The trade-off

is that one only needs to solve (1.4) for time O(d/κ2), where as, in order to
obtain comparable results with (1.3) one needs to solve it for time eO(1/κ). Thus
we expect that algorithms using (1.4) will be useful in the initial exploratory
phase of Monte Carlo methods, where accuracy is not as important. After rapidly
exploring the state space using (1.4), it may be better to use other methods such
as [RT96,MCF15,BCVD18,FBPR18,BFR19,LLN19,GHKM21,LSW22].

Finally, we conclude this section by stating a few questions that we are presently
unable to address.
(1) The most important question we are unable to address is to rigorously describe

the asymptotic behavior of D and γ as κ → 0. The heuristics (1.15) (which
we can prove for a time discrete example) leads to the polynomial mixing time
bounds (1.10), which is an order of magnitude smaller than the mixing time
of (1.3). We are presently unaware of techniques that provide any rigorous
bounds on D and γ as κ → 0.

(2) Since the numerical complexity increases with A, it is useful to find velocity
fields v where A0 can be chosen to be small. From (1.9) this entails finding
velocity fields for which ∥∇v∥L∞ and D are small, and γ is large. Are there
velocity fields v for which one expects γ = O(1), and D = O(1/κ), as opposed
to the bounds in (1.15)?
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(3) What happens when we work on Rd instead of Td? The current proof techniques
will still allow us to prove (1.7). However, we are unable to prove (1.8), or
Theorem 1.3 in Rd as explained in Remark 1.5.

(4) Even though we can prove that the velocity field in (1.13) is almost surely
exponentially mixing, it is computationally intensive as it involves changing the
velocity field discontinuously at many points in time. It also requires choosing A
large, which further increases the computational cost. Numerically we found
the continuous time modification (1.16), described above, yielded better results,
presumably because of discretization artifacts. In the present work we make no
mention of efficient discretizations of (1.4) for the (chaotic) velocity field (1.13)
(or the time continuous version (1.16)). Discretizations of (1.3) and (1.4) have
been extensively studied by many authors [JKO98,DPZ17,Wib18,Che23], and
an important question is to choose velocity that minimize the computational
cost of such schemes.

Plan of this paper. In Section 2 we precisely define the notion of exponentially
mixing, and split the proof of Theorem 1.1 into two steps: Obtaining dissipation
time bounds (Theorem 2.1), and obtaining mixing time bounds (Proposition 2.4).
We prove Theorem 2.1 in Section 3, and prove Proposition 2.4 in Section 4. In
Section 5 we study a time discrete version of (1.4) and produce exponentially mixing
maps for which the κ-dependence of the mixing rate is known. (This is used to
motivate the heuristics (1.15).) In Section 6 we prove Theorem 1.3 and produce
(random) velocity fields that are (almost surely) exponentially mixing. Finally, in
Appendix A, we show that a family of randomly shifted localized tent shaped shear
flows almost surely generates an exponentially mixing flow for the Lebesgue measure.
We provide this simpler example since the proof is simpler than the proofs done in
Section 6, and does not involve technical calculations checking the Hörmander type
conditions.

Acknowledgements. The authors would like to thank Nathan Glatt-Holtz, Justin
Krometis, and Dejan Slepčev, for helpful comments and discussions.

2. Mixing Time Bounds (Theorem 1.1)
The goal of this section is to fix our notation, precisely recall the notions of

mixing rate, mixing time and dissipation time (used in Theorems 1.1 and 1.3), and
to state two stronger results that immediately imply Theorem 1.1. The first result
(Theorem 2.1, below) obtains a dissipation time bound in terms of the mixing rate
of the imposed velocity field v. When the mixing rate is exponential, this quickly
reduces to the bound (1.7). The second result (Proposition 2.4, below) bounds the
mixing time in terms of the dissipation time, allowing us to deduce (1.8) from (1.7).
The heart of the matter lies in the proofs of Theorem 2.1 and Proposition 2.4, which
we do in Sections 3 and 4 respectively.

2.1. Mixing rates. We begin by fixing our notation and precisely defining the notion
of exponentially mixing, which was used in the statements of both Theorems 1.1
and 1.3. Throughout this paper we will always assume the potential U is a C2

periodic function, p is defined by (1.1), ρ∞ is defined by (1.2), and µ is the probability
measure

µ(dx) = p(x)
Z

dx = ρ∞(x) dx .

Define the L2(µ) inner-product, L2(µ) norm, and Ḣ1(µ) norms by

⟨f, g⟩µ =
∫
Td

fg dµ , ∥f∥2
L2(µ) = ⟨f, f⟩µ , and ∥f∥Ḣ1(µ) = ∥∇f∥L2(µ) .

respectively, and the corresponding spaces are defined in the usual way. Define

L̇2(µ) =
{
f ∈ L2(µ)

∣∣∣ ∫
Td

f dµ = 0
}
,

to be the subspace of µ-mean-zero functions.
Given a (time dependent) C1 velocity field v, define the flow to be the solution

of the ODE
(2.1) ∂tΦs,t = vt ◦ Φs,t , Φs,s(x) = x .

It is easy to verify that Φ preserves the measure µ if and only if v satisfies (1.5). The
notion of mixing in dynamical systems, requires the flow to spread mass concentrated
in a small region to the entire space as t → ∞ (see for instance [KH95,SOW06]).
More precisely, a flow is mixing if for every pair of test functions f, g ∈ L2(µ), we
have
(2.2) lim

t→∞
⟨f ◦ Φ−1

s,s+t, g⟩µ = ⟨f, 1⟩µ⟨g, 1⟩µ .

Since Φ is invertible, one may equivalently replace Φ−1
s,s+t above with Φs,s+t.

The mixing rate is the rate at which the convergence in (2.2) happens for regular
test functions f, g. The standard choice in dynamical systems is to choose f, g to
be Hölder continuous, or C1. However, for our purposes, it is more convenient to
use Sobolev regular functions instead. For convenience, we will further assume the
test functions are mean-zero so the right-hand side of (2.2) vanishes. We define the
flow of v to be mixing with rate h if
(2.3) sup

f,g∈Ḣ1(µ),s∈R
⟨f ◦ Φ−1

s,s+t, g⟩µ ⩽ h(t)∥f∥Ḣ1(µ)∥g∥Ḣ1(µ) .

The function h : [0,∞) → (0,∞) above is called the mixing rate, and it is always
assumed to be a continuous decreasing function that vanishes at infinity. The flow
of v is said to be exponentially mixing if the mixing rate h is in the form (1.6) for
some finite constants D, γ, that may depend on κ.

Constructing exponentially mixing flows is not an easy task, and has been studied
extensively in the dynamical systems literature [Ano67,Pol85,Dol98,Liv04,BW20,
TZ23]. Unfortunately, these results are all on manifolds other than the standard
torus, which is not relevant to the scenario studied in the present paper. Several
authors have recently constructed (time dependent) examples of exponential mixing
on the standard torus [DKK04,ACM19,EZ19,BZ21,BBPS22,BCZG22]. However,
all these examples preserve the Lebesgue measure and not the measure µ as we
require. We will shortly show (Section 6, below) that the flow defined in (1.13) is
exponentially mixing (as stated in Theorem 1.3). Postponing further discussion
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of this to Section 6, we will now show how such flows can be used to improve the
mixing time of (1.4).

2.2. Dissipation time bounds. We now recall the notion of dissipation time, and
provide an upper bound on the dissipation time in terms of the mixing rate of the
flow. The results are similar to those in [FI19]. In our context, the added difficulty
is that the measures µ concentrate in regions with volume O(κd/2), and so we need
to track the dependence on both κ and the mixing rate.

Roughly speaking, the dissipation time (see [FW03,FI19]) measures the rate at
which the distribution of X approaches stationary distribution µ in L2(µ), when the
initial distribution is also L2(µ). Precisely, the dissipation time of the process X is
defined by

tdis
def= inf

{
t ⩾ 0

∣∣∣ sup
s⩾0

∥θt∥L2(µ) ⩽
1
2∥f∥L2(µ) , ∀f ∈ L̇2(µ)

}
,

where

(2.4) θt(x) = E(x,s)f(Xt) =
∫
Td

ρ(x, s; y, t)f(y) dy ,

and ρ(x, s; y, t) denotes the transition density of the process X.
The Poincaré inequality (Lemma 4.6, below) quickly implies that

(2.5) tdis ⩽
1
κ

exp
(∥U∥osc

2κ

)
,

which is too large to be of practical interest. The first result we state is that if v is
mixing, then it can be rescaled to ensure tdis is much smaller than the right-hand
side of (2.5).

Theorem 2.1. Let tdis = tdis(A, κ, v) be the dissipation time of the process X
defined by (1.4). For every sufficiently small κ > 0, there exists A0 = A0(κ) < ∞,
independent of the dimension, such that

(2.6) tdis = tdis(κ,A) ⩽ 16(1 + ln 2)
H(A) for all A > A0(κ) .

Here H(A) = H(A, κ) is defined to be the unique solution of

κ

4H(A) = h
( 1

16

( A

H(A)∥∇v∥L∞

)1/2)
.(2.7)

Remark 2.2. During the course of the proof of Theorem 2.1 we will see that A0
should be chosen so that both

(2.8) A0 ⩾ 256Λ∥∇v∥L∞

(
h−1

( κ

4Λ

))2
, and H(A0) ⩾ κ

4h
(

1
32

√
2∥∇v∥L∞

) .

Here Λ = Λ(κ, d) is a constant that is chosen to ensure a growth condition on
eigenvalues of the generator of (1.3) (see (3.23), below). By Weyl’s law (specifically
from (3.13)) one can check that Λ = O(κ) as κ → 0. Thus, in the case h is given
by (1.6), the bound (2.8) reduces to (1.9) stated in Remark 1.2

Remark 2.3. Theorem 2.1 still holds when the state space is Rd, provided the
spectrum of the generator of (1.3) is discrete and the eigenvalues grow according
to Weyl’s law (as stated in Lemma 3.1, below). It is well known (see for instance
Chapter 4 in [Pav14]) that both these conditions hold provided the potential U
satisfies

lim
|x|→+∞

( |∇U(x)|2

2 − ∆U(x)
)

= +∞ .

The main idea behind the proof of Theorem 2.1 is to obtain bounds on the L2(µ)
decay of solutions to the associated PDE. We do this by a spectral splitting method
that is commonly used in the study of such equations. Namely, we divide the analysis
into two cases: When θ has most of its energy in large frequencies, the standard
energy inequality shows that ∥θ∥L2(µ) decays fast. On the other hand, when θ has
most of its energy in small frequencies, the mixing caused by the convection term
v · ∇θ generate high frequencies, which in turn forces ∥θ∥L2(µ) to decay fast. When
the underlying measure is the Lebesgue measure on Td a similar result was proved
in [FI19], and our proof follows the same structure.

Once Theorem 2.1 is established, proving the upper bound (1.7) in Theorem 1.1
is simply a matter of choosing h to be the exponential (1.6), and simplifying (2.7).
We do this in Section 2.4, below.

Notice that as A → ∞, we must have H(A) → ∞ and hence so tdis can be made
arbitrarily small. This, however, is not always computationally advantageous as
solving (1.4) when A is large is very computationally intensive. Moreover, making tdis
small is not yet sufficient to guarantee solutions to (1.4) escape the metastable traps
at local minima of U . Indeed, if X0 is initially concentrated in a ball B(x0,

√
κ), after

time t ⩾ tdis the process Xt may still be concentrated in a ball of radius B(x0, C
√
κ).

Thus, we are not guaranteed X has explored the state space enough to escape
metastable traps around local minima of U . We are however close: in the next
section we will show that in an additional O(tdis/κ) time, the process X will escape
metastable traps be close to mixed.

2.3. Mixing time bounds. We will now study the relation between tdis and tmix.
Recall [LP17] the mixing time of a Markov process is the time taken for its distri-
bution to become sufficiently close (in the total variation norm) to its stationary
distribution. In our context, the mixing time of X can be defined by

(2.9) tmix
def= inf

{
t ⩾ 0

∣∣∣ sup
x∈Td , s⩾0

∫
Td

∣∣ρ(s, x; s+ t, y) − ρ∞(y)
∣∣ dy ⩽

1
2

}
,

where, as before, ρ is the transition density of X.
The mixing time is a stronger notion than the dissipation time. As mentioned

earlier, waiting for time tdis will not ensure X has escaped the metastable traps at
local minima of U ; however waiting for time tmix will certainly ensure this.

It is easy to see tmix always dominates tdis (see for instance [IZ22, ILN23]). Our
interest, however, is to control the mixing time by the dissipation time. The advan-
tage of this is that the dissipation time can be bounded using L2(µ) based spectral
methods, such as those used in the proof of Theorem 2.1. Thus controlling tmix
by tdis will allow us to use Theorem 2.1 to obtain upper bounds on the mixing time.
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Our next result provides upper (and lower) bounds on the mixing time in terms of
the dissipation time.

Proposition 2.4. There exists a universal (dimension independent) constant C,
that is independent of U , v, κ and A, such that

(2.10) tdis

3 ⩽ tmix ⩽ Cd
(

1 + ∥U∥osc

κ
− ln(κtdis)

)
tdis .

Remark 2.5. The Poincaré Inequality (Lemma 4.6, below), will guarantee that
ln(κtdis) ⩽ ∥U∥osc/(2κ), and so the factor on the right of (2.10) is nonnegative.

The reason for the large factor on the right of (2.10) is as follows. Since the
noise is regular, the density ρ(s, x; s+ t, y) becomes L2(µ) for any t > 0. However,
the L2(µ) norm is typically of order O(1/(κt)d/2), which is large. Waiting for a
large multiple of tdis will now make this small, which is what leads to the large
factor on the right of (2.10).

To carry out these details, we prove a stronger L1(µ) → L∞ bound on the
transition density, with constants that are independent of v. The proof follows
the structure of similar bounds on the torus with respect to the Lebesgue measure
(see [CKRZ08]). The key identity that allows us to make the proof work in our
situation is that the ratio ρ/ρ∞ satisfies an equation that differs from the Kolmogorov
backward equation by only a sign (see Lemma 4.2, below).

Remark 2.6. The lower bound in (2.10) works in a general setting and, in particular,
works when the state space is Rd. The upper bound, however, requires certain
assumptions and our proof does not presently work when the state space is Rd.
Specifically, our proof relies on an L1 → L∞ bound on the transition density (see
Lemma 4.1), with constants that are independent of v. This in turn relies on a Nash
inequality (Lemma 4.4), which is verifiably false in Rd. Indeed, choosing fn = |x|n
shows Lemma 4.4 can not hold on Rd with the potential U = |x|2.

Of course, Proposition 2.4 and the dissipation time bound (1.7) immediately
imply the mixing time bound (1.8) stated in Theorem 1.1. We prove Theorem 1.1
in the next section, and postpone the proofs of Theorem 1.3 and Proposition 2.4 to
Sections 3 and 4 respectively.

2.4. Proof of Theorem 1.1. The proof of Theorem 1.1 now follows by simplify-
ing (2.7) when h is given by (1.6), and using Proposition 2.4. We carry out the
details here.

Proof of Theorem 1.1. By Theorem 2.1 we know tdis is bounded by (2.6) where H(A)
is defined by (2.7). In order to bound H(A), we make the following simple observa-
tion: If T satisfies

(2.11) T = ae−b
√

T ,

for some constants a, b > 0, then we must have

(2.12) T ⩽
1 + ln2(ab2)

b2 .

To see this, note that if T ⩽ 1/b2 there is nothing to prove. If T ⩾ 1/b2, then (2.11)
implies

T = 1
b2 ln2

( a
T

)
⩽

ln2(ab2)
b2 ,

which proves (2.12). Choosing

T = 1
H(A) , a = 2D

κ
, and b = γ

√
A

16
√

∥∇v∥L∞

and using (2.12) in (2.7) immediately implies (1.7) as desired.
The mixing time bound (1.8) follows immediately from (1.7) and Proposition 2.4,

concluding the proof. □

3. Dissipation time bound (Theorem 2.1)
In this section we prove Theorem 2.1. The proof is entirely based on PDE

techniques. Indeed, the function θ defined by (2.4) is the solution to the Kolmogorov
backward equation
(3.1) ∂tθ = Av′ · ∇θ + Lκθ , with initial data θs = f .

Here v′ is the time changed velocity field
(3.2) v′

t = vAt ,

and Lκ, defined by
Lκf = −∇U · ∇f + κ∆f ,

is the generator of (1.3).
The main idea behind the proof is to split the analysis into two cases. When θ

has most of its energy in large frequencies, the operator Lκ will provide a strong
damping effect, and ∥θ∥L2(µ) decays fast. On the other hand, when θ has most of
its energy in small frequencies, the mixing caused by the convection term v′ · ∇θ
generate high frequencies, which in turn forces ∥θ∥L2(µ) to decay fast.

To carry out the details we need a few spectral properties of the operator Lκ,
which we collect here for easy reference.

Lemma 3.1. (1) The operator −Lκ is self-adjoint and nonnegative with respect to
the inner-product ⟨·, ·⟩µ.

(2) For all f, g ∈ H1(Td, µ) we have
−⟨Lκf, g⟩µ = κ⟨∇f,∇g⟩µ . (3.3)

(3) The spectrum of −Lκ is discrete, and the smallest eigenvalue on L̇2(µ) is strictly
positive. Moreover, if 0 < λ0 ⩽ λ1 ⩽ λ2 . . . are the eigenvalues of −Lκ in
ascending order, then

λn
n→∞−−−−→ ∞ and λn+1

λn

n→∞−−−−→ 1 ,

Lemma 3.1 directly follows from Weyl’s law [HS21], and is presented later in this
section. We now state two lemmas which show fast energy decay both when θ has
mainly high frequencies, and when it does not.
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Lemma 3.2. Solutions to (3.1) satisfy the energy inequality

(3.4) ∂t∥θ∥2
L2(µ) = −2⟨Lκθ, θ⟩µ = −2κ∥∇θ∥2

L2(µ) .

Consequently, if for all t ∈ [0, T ] we have

κ∥∇θt∥2
L2(µ) ⩾ λ∥θt∥2

L2(µ) ,

for some constant λ > 0. Then for all t ∈ [0, T ] we must have

(3.5) ∥θt∥2
L2(µ) ⩽ exp

(
−2λt

)
∥θ0∥L2(µ) .

Lemma 3.3. Let λN be the largest eigenvalue of Lκ such that λN ⩽ H(A). If

κ∥∇θs∥2
L2(µ) ⩽ λN ∥θs∥2

L2(µ) ,(3.6)

then

∥θs+t0∥2
L2(µ) ⩽ exp

(
−H(A)t0

8

)
∥θs∥2

L2(µ) ,(3.7)

where t0 is given by

(3.8) t0
def= 2
A
h−1

( κ

4λN

)
.

Since the proof of Lemma 3.2 is short, we present it first.

Proof of Lemma 3.2. Equation (3.4) follows by multiplying (3.1) by θ, integrating
by parts, and using (1.5) and (3.3). Equation (3.5) follows immediately from (3.4)
and Grönwall’s lemma. □

The proof of Lemma 3.3 is more involved and relies on the mixing properties of v.
The main idea is that when the spectrum of θs is concentrated in low frequencies,
then it is close to the solution of the transport equation,

∂tϕ = Av′ · ∇ϕ , ϕ(0) = θ0 .

The mixing assumption on v guarantees that the transport equation moves energy
to high frequencies. These high frequencies are then dissipated faster by Lκ, leading
to the faster decay stated in Lemma 3.3. Postponing the proof of Lemma 3.3 to
Section 3.2, we now prove Theorem 2.1.

Proof of Theorem 2.1. We claim that any solution of (3.1) with θ0 ∈ L̇2(µ) satisfies

∥θs+t∥L2(µ) ⩽ exp
(

−H(A)t
16 + 1

)
∥θs∥L2(µ) ,(3.9)

which immediately implies (2.6).
To prove (3.9), we may without loss of generality assume s = 0. Choose λN as in

Lemma 3.3, choose λ = λN , and repeatedly apply Lemmas 3.2 and 3.3 to obtain an
increasing sequence of times t′k → ∞ such that t′k+1 − t′k ⩽ t0 and

(3.10) ∥θt′
k+1

∥2
L2(µ) ⩽ exp

(
−(t′k+1 − t′k) min

{
λN ,

H(A)
8

})
∥θt′

k
∥2

L2(µ) ,

By Lemma 3.1 there exists Λ = Λ(κ) such that
λn+1 ⩽ 8λn whenever λn+1 ⩾ Λ .

Let A0 be defined by (2.8), and note that for A ⩾ A0 we have H(A) ⩾ Λ. This
implies

H(A)
8 ⩽ λN ⩽ H(A) ,

and hence (3.10) implies

(3.11) ∥θt′
k+1

∥2
L2(µ) ⩽ exp

(
−(t′k+1 − t′k)H(A)

8

)
∥θt′

k
∥2

L2(µ) .

By construction of t′k, for any t ⩾ 0 there exists k ∈ N such that t− t0 ⩽ t′k ⩽ t.
Iterating (3.11) shows

(3.12) ∥θt∥L2(µ) ⩽ exp
(

−H(A)t′k
16

)
∥θ0∥L2(µ) ⩽ exp

(
− H(A)(t− t0)

16

)
∥θ0∥L2(µ) .

By choice of t0 and λN , we note

H(A)t0 = 2
A
h−1

( κ

4λN

)
H(A) ⩽ H(A)

8
√
AλN ∥∇v∥L∞

⩽
( H(A)

8A∥∇v∥L∞

)1/2
= 1

32
√

2∥∇v∥L∞h−1( κ
4H(A) )

⩽ 1 .

Using this in (3.12) implies (3.9) as desired. □

The remainder of this section is devoted to proving Lemmas 3.1 and 3.3.

3.1. Spectral bounds on Lκ (Lemma 3.1). The operator Lκ can be conjugated
to a Schrödinger operator and well-known results spectral results (e.g. [HS21]) for
Schrödinger operators will imply Lemma 3.1.

Proof of Lemma 3.1. The first two assertions of Lemma 3.1 are direct computations.
Indeed,

−Lκ = −κ∆ + ∇U · ∇ = −κeU/κ∇ · (e−U/κ∇) ,
and hence for all f, g ∈ H1(Td, µ), we have

−⟨Lκf, g⟩µ = −κ
∫
Td

eU/κ∇ · (e−U/κ∇f)g ρ∞ dx = −κ
Z

∫
Td

∇ · (e−U/κ∇f)g dx

= κ

Z

∫
e−U/κ∇f · ∇g dx = κ⟨∇f,∇g⟩µ .

This immediately implies the first two assertions.
To study the spectrum, let L2 = L2(Td) denote the space of all square-integrable

functions with respect to the Lebesgue measure, and ⟨·, ·⟩ the associated inner-
product. Define the operator U : L2(µ) → L2 by

Uf = 1√
Z
e−U/2κf .

Clearly ⟨f, g⟩µ = ⟨f, g⟩, and so U is an isometry. Define the operator H : L2 → L2

by H def= ULκU−1. We compute

−Hf = −κ∆f +
(1

4 |∇U |2 − 1
2∆U

)
f .



SPEEDING UP LANGEVIN DYNAMICS BY MIXING 9

Thus Lκ is unitarily equivalent to the operator H, and hence the operators L and U
have the same spectrum.

The operator H is a Schrödinger operator and has been extensively studied. In
particular, the eigenvalues of H satisfy Weyl’s law [HS21] (see also [Ray54, Theorem
VI]), which states that

N(λ) def=
∑

λn<λ

1 = ωd

(2π)d

(λ
κ

) d
2 +O

(λ
κ

) d−1
2
,(3.13)

asymptotically, as λ → ∞. Here ωd is the volume of the unit ball in Rd. This
immediately implies the third assertion in Lemma 3.1, finishing the proof. □

3.2. Low frequency energy decay (Lemma 3.3). To prove Lemma 3.3, we
will first show (Lemma 3.4, below) that when (3.6) holds, θ is sufficiently close to
solutions to the transport equation (3.14). By the mixing assumption on v this
will move energy to high frequencies, which will then be dissipated faster by the
diffusion operator Lκ.

Lemma 3.4. Let θ be the solution of (3.1) with initial data θ0 ∈ L̇2(µ), and let ϕ
be a solution of the transport equation
(3.14) ∂tϕ = Av′ · ∇ϕ , ϕ(0) = θ0 ,

with the same initial data. For any t ⩾ 0 we have

∥θ − ϕ∥2
L2(µ) ⩽

√
2κt∥θ0∥L2(µ)

(
2A∥∇v∥L∞

∫ t

0
∥∇θ∥2

L2(µ) ds+ ∥∇θ0∥2
L2(µ)

)1/2
.

Proof. Multiplying (3.1) by −Lκθ and integrating over space gives
κ

2∂t⟨∇θ,∇θ⟩µ = −1
2∂t⟨θ,Lκθ⟩µ = −⟨∂tθ,Lκθ⟩µ

= −∥Lκθ∥2
L2(µ) −A⟨v′ · ∇θ,Lκθ⟩µ .(3.15)

For the last term, we note

⟨v′ · ∇θ,Lκθ⟩µ = κ

Z

∫
Td

v′ · ∇θ∇ · (e−U/κ∇θ) dx

= − κ

Z

∫
Td

∇(v′ · ∇θ) · ∇θe−U/κ dx

= κ

2Z

∫
Td

v′e−U/κ · ∇(|∇θ|2) dx+ κ

∫
Td

(∇θ · ∇)v′ · ∇θ dµ

= κ

∫
Td

(∇θ · ∇)v′ · ∇θ dµ ,

since v′ satisfies (1.5). Consequently,∣∣⟨v′ · ∇θ,Lκθ⟩µ

∣∣ ⩽ κ

∫
Td

|∇v′||∇θ|2 dµ ⩽ κ∥∇v∥L∞∥∇θ∥2
L2(µ) ,

and substituting this in (3.15), we have

∥Lκθ∥2
L2(µ) ⩽ Aκ∥∇v∥L∞∥∇θ∥2

L2(µ) − κ

2∂t⟨∇θ,∇θ⟩µ .(3.16)

On the other hand, ∥θ − ϕ∥L2(µ) satisfies

∂t∥θ − ϕ∥2
L2(µ) = 2⟨Lκθ, θ − ϕ⟩µ ⩽ −2⟨Lκθ, ϕ⟩µ ⩽ 2∥Lκθ∥L2(µ)∥ϕ∥L2(µ)

⩽ 2∥Lκθ∥L2(µ)∥θ0∥L2(µ) .(3.17)

To obtain the last equality above we used the fact that ∥ϕt∥L2(µ) = ∥ϕ0∥L2(µ), which
is true because v′ satisfies (1.5). Integrating (3.17) and applying (3.16), we have

∥θ − ϕ∥2
L2(µ) ⩽ 2∥θ0∥L2(µ)

∫ t

0
∥Lκθ∥L2(µ) ds

⩽ 2
√
t∥θ0∥L2(µ)

( ∫ t

0
Aκ∥∇v∥L∞∥∇θ∥2

L2(µ) − κ

2∂t⟨∇θ,∇θ⟩µ ds
)1/2

⩽
√

2κt∥θ0∥L2(µ)

(
2A∥∇v∥L∞

∫ t

0
∥∇θ∥2

L2(µ) ds+ ∥∇θ0∥2
L2(µ)

)1/2
,

concluding the proof. □

We now use Lemma 3.4 to prove Lemma 3.3.

Proof of Lemma 3.3. For simplicity, and without loss of generality, we assume s = 0.
We claim our choice of λN and t0 will guarantee

κ

∫ t0

0
∥∇θ∥2

L2(µ) ds ⩾
λN t0

8 ∥θ0∥2
L2(µ) .(3.18)

To prove this, assume, for sake of contradiction, that

κ

∫ t0

0
∥∇θ∥2

L2(µ) ds <
λN t0

8 ∥θ0∥2
L2(µ) .(3.19)

Let PN be the orthogonal projection from L̇2(µ) to the space spanned by the first N
eigenfunctions {e1, . . . , eN }, recall (3.3) and notice∫ t0

0
∥∇θ∥2

L2(µ) ds ⩾
λN

κ

∫ t0

t0
2

∥(I − PN )θ∥2
L2(µ) ds

⩾
λN

2κ

∫ t0

t0
2

∥(I − PN )ϕ∥2
L2(µ) ds− λN

κ

∫ t0

t0
2

∥(I − PN )(θ − ϕ)∥2
L2(µ) ds

⩾
λN t0
4κ ∥θ0∥2

L2(µ) − λN

2κ

∫ t0

t0
2

∥PNϕ∥2
L2(µ) ds− λN

κ

∫ t0

t0
2

∥θ − ϕ∥2
L2(µ) ds .(3.20)

We will now bound each of the negative terms on the right of (3.20). For the
second term in (3.20), we first note that the mixing rate of the rescaled velocity
field Av′ = AvAt is h(At). Thus, by (2.3),

∥PNϕs∥2
L2(µ) = ⟨ϕs, PNϕs⟩L2(µ) = ⟨θ0 ◦ Φ−1

0,s, PNϕs⟩L2(µ)

⩽ h(As)∥θ0∥Ḣ1(µ)∥PNϕs∥Ḣ1(µ) ⩽
√
λN/κh(As)∥θ0∥Ḣ1(µ)∥ϕs∥L2(µ)

=
√
λN/κh(As)∥θ0∥L2∥θ0∥Ḣ1(µ) .
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Combining this with (3.6) implies∫ t0

t0
2

∥PNϕ∥2
L2(µ) ds ⩽

√
λN/κ

∫ t0

t0
2

h(As)∥θ0∥Ḣ1(µ)∥θ0∥L2(µ) ds(3.21)

⩽
λN t0
2κ h

(At0
2

)
∥θ0∥2

L2(µ) .

For the last term in (3.20), applying Lemma 3.4 and inequality (3.19), we note∫ t0

t0
2

∥θ − ϕ∥2
L2(µ) ds

⩽
∫ t0

t0
2

√
2κτ∥θ0∥L2(µ)

(
2A∥∇v∥L∞

∫ τ

0
∥∇θ∥2

L2(µ) ds+ ∥∇θ0∥2
L2(µ)

)1/2
dτ

⩽

√
2κt3/2

0 ∥θ0∥L2(µ)

2

(AλN t0∥∇v∥L∞

4κ ∥θ0∥2
L2(µ) + ∥∇θ0∥2

L2(µ)

)1/2
.

Using (3.6) this gives∫ t0

t0
2

∥θ − ϕ∥2
L2(µ) ds ⩽

√
2κt3/2

0 ∥θ0∥2
L2(µ)

2

(AλN t0∥∇v∥L∞

4κ + λN

κ

)1/2

⩽

√
2t3/2

0 ∥θ0∥2
L2(µ)

2

(AλN t0∥∇v∥L∞

2

)1/2
.(3.22)

To obtain the last inequality above, we used the fact that by the choice of t0 in (3.8)
guarantees At0 ≫ 1.

Using (3.21) and (3.22) in (3.20) gives

κ

∫ t0

0
∥∇θ∥2

L2(µ) ds = λN t0
4 ∥θ0∥2

L2(µ)

(
1 − λN

κ
h

(At0
2

)
− 2t0

√
AλN ∥∇v∥L∞

)
= λN t0

4 ∥θ0∥2
L2(µ)

(
1 − 1

4 − 4h−1
( κ

4λN

)√
λN ∥∇v∥L∞

A

)
,

where we used (3.8) to obtain the last equality. Since the function

λ 7→
√
λh−1

( κ

4λ

)
is increasing, the definition of H(A) (equation (2.7)) and the fact that λN ⩽ H(A)
imply

κ

∫ t0

0
∥∇θ∥2

L2(µ) ds = λN t0
4 ∥θ0∥2

L2(µ)

(
1 − 1

4 − 1
4

)
⩾
λN t0

8 ∥θ0∥2
L2(µ) .

This contradicts (3.19), and hence concludes the proof of (3.18).
Finally, to obtain (3.7) we use Lemma 3.1 to find Λ = Λ(κ) such that

(3.23) λn+1 ⩽ 2λn whenever λn+1 ⩾ Λ .

If A0 is chosen according to (2.8), then we will have H(A) ⩾ Λ, and hence
H(A)

2 ⩽ λN ⩽ H(A) .

Combining this with (3.18) we obtain

κ

∫ t0

0
∥∇θ∥2

L2(µ) ds ⩾
H(A)t0

16 ∥θ0∥2
L2(µ) .

Now the energy equality (3.4) implies (3.7) as desired. □

4. Bounding tmix in terms of tdis (Proposition 2.4)
4.1. The lower bound. It is natural to expect that the mixing time controls the
dissipation time in a general setting, and a similar result appeared recently in [IZ22].
Roughly speaking, to bound the mixing time, we need to start X with any initial
distribution and show that the distribution of X becomes close to the invariant
distribution in the total variation norm. To bound the dissipation time, we only
need to consider L2 initial distribution and bound the distance to the invariant
distribution in a weaker sense. As a result, the lower bound in Proposition 2.4 is
true in a more general setting, and the proof we present doesn’t rely on the specific
structure of (1.4).

Proof of the lower bound in Proposition 2.4. Let f ∈ L̇2(µ), and define

θt(x) = E(x,s)f(Xs+t) =
∫
Td

ρ(x, s; y, s+ t)f(y) dy .

In order to prove the lower bound in (2.10), we need to show that for any t ⩾ 3tmix,
we have

(4.1) ∥θt∥L2(µ) ⩽
1
2∥f∥L2(µ) .

To prove this, we may without loss of generality assume s = 0. For notational
convenience, we write

(4.2) ρt(x, y) = ρ(x, 0; y, t) .

Since f ∈ L̇2(µ) we note

θt(x) =
∫
Td

ρt(x, y)f(y) dy =
∫
Td

(
ρt(x, y) − ρ∞(y)

)
f(y) dy

and hence

∥θt∥2
L2(µ) =

∫
Td

(∫
Td

(ρt(x, y) − ρ∞(y)) f(y) dy
)2

ρ∞(x) dx

⩽
∫
Td

(∫
Td

|ρt(x, y) − ρ∞(y)|f(y)2 dy

∫
Td

|ρt(x, y) − ρ∞(y)| dy
)
ρ∞(x) dx .

Since tmix is the mixing time, for any t ⩾ n tmix we must have

sup
x∈Td

∫
Td

|ρt(x, y) − ρ∞(y)| dy ⩽
1
2n

.

This implies

∥θt∥2
L2(µ) ⩽

1
2n

∫
Td

∫
Td

|ρt(x, y) − ρ∞(y)|f(y)2ρ∞(x) dy dx
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⩽
1
2n

∫
Td

∫
Td

(ρt(x, y) + ρ∞(y)) f(y)2ρ∞(x) dx dy .(4.3)

Since ρ∞ is the density of the invariant measure, we know∫
Td

ρt(x, y)ρ∞(x) dx = ρ∞(y) and
∫
Td

ρ∞(x) dx = 1 .

Using this in (4.3) implies
∥θt∥2

L2(µ) ⩽ 21−n∥f∥2
L2(µ) ,

and choosing n = 3 implies (4.1) as desired. □

4.2. The upper bound. To control the mixing time by the dissipation time we
need to use the regularizing effects of the noise. More precisely, given any initial
distribution, the noise regularizes it and the density becomes square-integrable, but
with a large L2 norm. Now waiting some multiple of the dissipation time will ensure
mixing.

We implement the above idea by starting with an L1 → L∞ bound on the
transition density ρ. This is the analog of the well-known drift independent L1 → L∞

estimates in [CKRZ08] in the case where the underlying measure is µ instead of the
Lebesgue measure.

Lemma 4.1. When d ⩾ 3, for every x ∈ Td, s > s′ ⩾ 0, and t > 0 we have

(4.4)
∥∥∥ρ(x,s′)

s+t

ρ∞
− 1

∥∥∥
L∞

⩽
C1(d)
(κt)d/2 exp

(2d∥U∥osc

κ

)∥∥∥ρ(x,s′)
s

ρ∞
− 1

∥∥∥
L1(µ)

,

where ρ
(x,s)
t denotes the transition density ρ(x, s; ·, t), and C1 is a dimensional

constant that can be bounded by
(4.5) C1(d) ⩽ C2d ,

where C is a universal constant independent of d. When d = 2, the inequality (4.12)
needs to be replaced by

(4.6)
∥∥∥ρ(x,s′)

s+t

ρ∞
− 1

∥∥∥
L∞

⩽
C ′

1(ε)
(κt)1+ε

exp
( (4 + 4ε)∥U∥osc

κ

)∥∥∥ρ(x,s′)
s

ρ∞
− 1

∥∥∥
L1(µ)

,

where ε > 0, and C ′
1(ε) is an ε-dependent constant.

Momentarily postponing the proof of Lemma 4.1, we now prove the upper bound
in Proposition 2.4 and control the mixing time in terms of the dissipation time.

Proof of the upper bound in Proposition 2.4. For simplicity, and without loss of gen-
erality, we will again assume s = 0, and abbreviate the transition density as in (4.2).
We will also assume d ⩾ 3. The proof when d = 2 is similar, and follows by
choosing ε > 0 and replacing our use of (4.4) with (4.6).

When d ⩾ 3, inequality (4.4) implies

∥ρt(x, ·) − ρ∞∥L1 =
∫
Td

|ρt(x, y) − ρ∞(y)| dy ⩽
∥∥∥ρt(x, ·)

ρ∞
− 1

∥∥∥
L∞

⩽ C1

( 4
κt

) d
2 exp

(2d∥U∥osc

κ

)∥∥∥ρ3t/4(x, ·)
ρ∞

− 1
∥∥∥

L1(µ)

⩽ C1

( 4
κt

) d
2 exp

(2d∥U∥osc

κ

)∥∥∥ρ3t/4(x, ·)
ρ∞

− 1
∥∥∥

L2(µ)
.

Here C1 = C1(d) is the constant form Lemma 4.1.
The above implies that for any t ⩾ 4ntdis, we have

∥ρt(x, ·) − ρ∞∥L1

⩽ C1

( 4
κtdis

) d
2 exp

(2d∥U∥osc

κ
− n

)∥∥∥ρt/2(x, ·)
ρ∞

− 1
∥∥∥

L2(µ)

⩽ C2
1

( 4
κtdis

)d

exp
( (4d∥U∥osc

κ
− n

)∥∥∥ρt/4(x, ·)
ρ∞

− 1
∥∥∥

L1(µ)

⩽ 2C2
1

( 4
κtdis

)d

exp
(4d∥U∥osc

κ
− n

)
.

Choosing

n =
⌈4d∥U∥osc

κ
+ (2d+ 2) log 2 + 2 lnC1 − d ln(κtdis)

⌉
(4.7)

yields

∥ρt(x, ·) − ρ∞∥L1 ⩽
1
2 , at t = 4ntdis .

Using (4.5) we note that n in (4.7) can be bounded by

n ⩽ Cd
(

1 + ∥U∥osc

κ
− ln(κtdis)

)
,

for some dimension independent constant C, and this implies the upper bound
in (2.10) as desired. □

It remains to prove Lemma 4.1, which we do in the next sub-section.

4.3. The L1 → L∞ bound on the transition density (Lemma 4.1). To prove
Lemma 4.1, we first compute an evolution equation for the ratio ρ(x,s)

t /ρ∞. Recall
that in the variables y, t, the transition density ρ is a solution to the forward equation
(4.8) ∂tρ = −∇ ·y (Av′ ρ) + L∗

κ,yρ ,

where v′ is the time rescaled velocity field (3.2), L∗
κ is defined by

(4.9) L∗
κf = ∇ · (f∇U) + κ∆f .

We clarify that and the notation Lκ,y refers to the fact that Lκ uses derivatives with
respect to variable y in (4.8). While the operator Lκ is self adjoint with respect to
the L2(µ) inner-product, it is not self-adjoint with respect to the standard L2 inner-
product. Indeed, the adjoint of Lκ with respect to the standard L2 inner-product is
precisely L∗

κ.

Lemma 4.2. Let φ be a solution of the forward equation
(4.10) ∂tφ = −∇ · (Av′φ) + L∗

κφ ,

where we recall L∗
κ is defined in equation (4.9). The function θ, defined by

θt(x) def= φt(x)
ρ∞(x) ,
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is a solution of the equation

∂tθ +Av′ · ∇θ − Lκθ = 0 .(4.11)

Remark. The equation (4.11) differs from the backward equation (3.1) only in the
sign of the convection term Av′ · ∇θ.

Proof. The proof is a direct calculation. Substituting φ = ρ∞θ in (4.10) yields

ρ∞∂tθ = θ
(

L∗
κρ∞ − ∇ · (Av′ρ∞)

)
+ ρ∞

(
(∇U +Av′) · ∇θ + κ∆θ

)
+ 2κ∇ρ∞ · ∇θ .

Using (1.5), and the fact that

L∗
κρ∞ = 0 , κ∇ρ∞ = −ρ∞∇U ,

we obtain
ρ∞∂tθ = ρ∞

(
−Av′ · ∇θ + Lκθ

)
.

Since ρ∞ > 0, this implies (4.11) concluding the proof. □

The next lemma we need is an L1 → L∞ bound on the semigroup operator
of (3.1). This is the analog of the results in [CKRZ08,Zla10, IXZ21,FKR06] when
the underlying measure is µ and not the Lebesgue measure.

Lemma 4.3. When d ⩾ 3, every solution to (4.11) with µ-mean zero initial data
satisfies

∥θs+t∥L∞ ⩽
C1(d)
(κt)d/2 exp

(2d∥U∥osc

κ

)
∥θs∥L1(µ) .(4.12)

where C1(d) is as defined in (4.5).
When d = 2, the inequality (4.12) needs to be replaced by

∥θs+t∥L∞ ⩽
C ′

1(ε)
(κt)d/2+ε

exp
( (2d+ 4ε)∥U∥osc

κ

)
∥θs∥L1(µ) ,(4.13)

where ε > 0 and C ′
1(ε) is an ε-dependent constant.

Of course Lemma 4.2 and 4.3 immediately imply Lemma 4.1.

Proof of Lemma 4.1. For any fixed x ∈ Td, s′ ⩾ 0, we know that the transition
density ρ(x, s′; y, t) satisfies the forward equation (4.10) in the variables y, t. Thus,
by Lemma 4.2, the function θ defined by

θt(y) def= ρ(x, s′; y, t)
ρ∞(y) − 1 ,

satisfies equation (4.11). Clearly θ has µ-mean zero. Also, for any for any s >
s′, θs ∈ L1(µ), and so Lemma 4.3 applies. The bounds (4.4) and (4.6) follow
immediately from (4.12) and (4.13) respectively. □

It remains to prove Lemma 4.3. For this we will need a Nash inequality with
respect to the measure µ.

Lemma 4.4 (Nash Inequality). For d ⩾ 3 and any µ-mean zero function f we have

(4.14) C2∥∇f∥2
L2(µ) ⩾

∥f∥2+ 4
d

L2(µ)

∥f∥
4
d

L1(µ)

,

where C2 = C2(d, U, κ) is a dimensional constant that can be bounded by

C2 ⩽ 22+ 8
dC2

d exp
(4∥U∥osc

κ

)
where

Cd
def= 1√

πd(d− 2)

( Γ(d)
Γ( d

2 )

)1/d

.(4.15)

When d = 2, the inequality (4.14) needs to be replaced by

C ′
2∥∇f∥2

L2(µ) ⩾
∥f∥4−δ

L2(µ)

∥f∥2−δ
L1(µ)

,(4.16)

where δ ∈ (0, 2) is arbitrary, and C ′
2 = C ′

2(δ, U, κ) can be bounded by

C ′
2 ⩽ C ′′

2 (δ) exp
(4∥U∥osc

κ

)
,

for some δ-dependent constant C ′′
2 .

Momentarily postponing the proof of Lemma 4.4, we finish the proof of Lemma 4.3.

Proof of Lemma 4.3. Multiplying equation (4.11) by ρ∞θ and integrating gives

(4.17) ∂t∥θ∥2
L2(µ) = −2κ∥∇θ∥2

L2(µ) ⩽ − 2κ
C2

∥θ∥
2(d+2)

d

L2(µ)

∥θ∥
4
d

L1(µ)

.

We claim ∥θt∥L1(µ) ⩽ ∥θ0∥L1(µ). To see this, let θ+
t and θ−

t be solutions of (4.11)
with initial data max{θ0, 0} and − min{θ0, 0} respectively. By the comparison
principle, we know θ±

t ⩾ 0, and by linearity θt = θt,+ − θt,−. This implies

∥θt∥L1(µ) ⩽
∫
Td

(θ+
t + θ−

t ) dµ =
∫
Td

(θ+
0 + θ−

0 ) dµ = ∥θ0∥L1(µ) .

Using this in (4.17) yields

∂t∥θt∥2
L2(µ) ⩽ − 2κ

C2

∥θt∥
2(d+2)

d

L2(µ)

∥θ0∥
4
d

L1(µ)

.

This is a differential inequality for ∥θt∥2
L2(µ), which can be solved to give

∥θt∥L2(µ) ⩽
(dC2)d/4

(4κt)d/4 ∥θ0∥L1(µ) .(4.18)
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Now let Ps,t(v′) denote the solution operator to (4.11) (i.e. the function ϑt defined
by ϑt

def= Ps,t(v′)(f) solves (4.11) with initial data ϑs = f). From (4.18), we see

∥Ps,s+t(v′)∥L̇1(µ)→L̇2(µ) ⩽
(dC2)d/4

(4κt)d/4

Moreover, since v′ satisfies (1.5) we see that
(Ps,t(v′))∗ = Ps,t(−v′) ,

where Pt(v′)∗ denotes the adjoint of Ptv
′ with respect to the L2(µ) inner-product.

Consequently,
∥Ps,s+2t(v′)∥L̇1→L̇∞ ⩽ ∥Ps+t,s+2t(v′)∥L̇1→L̇2∥Ps,s+t(v′)∥L̇2→L̇∞

= ∥Ps+t,s+2t(v′)∥L̇1→L̇2∥(Ps,s+t(v′))∗∥L̇1→L̇2

⩽
(dC2)d/2

(4κt)d/2 .

This in turn implies

∥θ(t)∥L∞ ⩽
(dC2)d/2

(κt)d/2 ∥θ0∥L1 ,

Recalling the definition of C2, we actually have

(dC2)d/2 ⩽ C2d exp
(2d∥U∥osc

κ

)
,

where C is some universal constant independent of d. which concludes the proof
when d ⩾ 3.

The proof when d = 2 is similar and only involves using (4.16) instead of (4.14).
□

4.4. The Nash and Poincaré inequalities. We conclude this section by proving
the Nash (Lemma 4.4) and Poincaré inequalities.

When d ⩾ 3, recall the standard Nash inequality states

C2
d∥∇f∥2

L2 ⩾
∥f − f0∥

2(d+2)
d

L2

∥f − f0∥
4
d

L1

,(4.19)

where Cd ia as defined in (4.15), and f0 =
∫
Td f dx.

The Nash inequality above can be deduced from the Sobolev inequality and
interpolation. Indeed, the Sobolev inequality (see for instance [Lie83]), implies

(4.20) Cd∥∇f∥L2 ⩾ ∥f − f0∥L2∗ , where 2∗ = 2d
d− 2 .

Since d ⩾ 3 note 2∗ > 2, and hence the interpolation inequality gives

∥f − f0∥L2 ⩽ ∥f − f0∥
d

d+2
L2∗ ∥f − f0∥

2
d+2
L1 .

Combined with (4.20) this implies (4.19) as claimed.
To prove the Nash inequality (4.14) with respect to the measure µ, we first

need an elementary result controlling the Lp(µ) difference to the mean when the
underlying measure µ is changed.

Lemma 4.5. Let ρ̃∞ be a probability density function on Td, and let µ̃ be the
probability measure such that dµ̃ = ρ̃∞ dx. Suppose there exists a constants B1, B2
such that

1
B1

ρ̃∞(x) ⩽ ρ∞(x) ⩽ B2ρ̃∞(x) for all x ∈ Td .

Then, for any p ∈ [1,∞), and any f ∈ Lp(µ), we have
1

2B1/p
1

∥f − f̃∥Lp(µ̃) ⩽ ∥f − f̄∥Lp(µ) ⩽ 2B1/p
2 ∥f − f̄∥Lp(µ̃) .

Here
f̄ =

∫
Td

f dµ and f̃ =
∫
Td

f dµ̃ ,

are the means of f with respect to the measures µ and µ̃ respectively.

Proof. From the triangle inequality, we note

∥f − f̄∥Lp(µ) ⩽ ∥f − f̃∥Lp(µ) + |f̄ − f̃ | ⩽ B
1/p
2 ∥f − f̃∥Lp(µ̃) +

∣∣∣∫
Td

(f − f̃) dµ
∣∣∣

⩽ B
1/p
2 ∥f − f̃∥Lp(µ̃) + ∥f − f̃∥L1(µ) ⩽ 2B1/p

2 ∥f − f̃∥Lp(µ̃) .

The proof of the lower bound is similar. □

We now prove Lemma 4.4.

Proof of Lemma 4.4. To prove (4.14) we note Lemma 4.5 implies

C2
d∥∇f∥2

L2(µ) ⩾ C2
d min(ρ∞)∥∇f∥2

L2 ⩾
∥f − f̄∥

2(d+2)
d

L2(µ)

22+ 8
dB∥f − f̄∥

4
d

L1(µ)

,

where f̄ =
∫
Td f dµ and

B = B(U, κ) = max(ρ∞)1+ 2
d

min(ρ∞)1+ 4
d

⩽
(max(ρ∞)

min(ρ∞)

)1+ 4
d

⩽ exp
((

1 + 4
d

)∥U∥osc

κ

)
.

This finishes the proof when d ⩾ 3.
When d = 2, the Sobolev inequality in (4.20) becomes

C ′∥∇f∥L2 ⩾ ∥f − f0∥Lp ,

for any 2 < p < ∞. And the interpolation inequality gives

∥f − f0∥L2 ⩽ ∥f − f0∥
p

2p−2
Lp ∥f − f0∥

p−2
2p−2
L1 ,

which further yields

C ′2∥∇f∥2
L2 ⩾

∥f − f0∥4− 4
p

L2

∥f − f0∥2− 4
p

L1

.

We then apply Lemma 4.5 and get the desired result. □

Finally, for completeness, we conclude this section by stating the Poincaré
inequality for the measure µ. We do not use this in the proof of our main result, but
only use it in Remark 2.5 to comment that right hand side of (2.10) is nonnegative.
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Lemma 4.6 (Poincaré Inequality). Let λ0 be the smallest eigenvalue of −Lκ on
L̇2(µ). Then λ0 is bounded below by

(4.21) λ0 ⩾ 2π exp
(−∥U∥osc

2κ

)
.

Moreover, for all f ∈ H1 ∩ L̇2(µ), we have
(4.22) λ0∥f∥2

L2(µ) ⩽ ∥∇f∥2
L2(µ) .

Proof. Using (3.3) and standard spectral theory, we know

λ0 = inf
f∈L̇2(µ)−0

∥∇f∥L2(µ)

∥f∥L2(µ)
,

which immediately implies (4.22). To obtain (4.21), let L2
nc denote the set of all

non-constant L2 functions, and note that the above implies

λ0 = inf
f∈L2

nc(µ)
sup
c∈R

∥∇f∥L2(µ)

∥f − c∥L2(µ)
⩾ exp

(−∥U∥osc

2κ

)
inf

f∈L2
nc

sup
c∈R

∥∇f∥L2

∥f − c∥L2

= exp
(−∥U∥osc

2κ

)
inf

f∈L̇2−0

∥∇f∥L2

∥f∥L2
= 2π exp

(−∥U∥osc

2κ

)
. □

5. Explicit asymptotics in discrete time
In this this section we consider a discrete time version of (1.4). Namely, we

will run equation (1.3) (without the drift) for time 1/A; and then we will run
the flow Av′ (without noise) for time 1/A. Running the flow (without noise)
corresponds to applying the µ-measure preserving diffeomorphism Φs,s+1, defined
in (2.1). If instead of applying Φs,s+1 (the flow map of a velocity field), we apply
an arbitrary µ-measure preserving diffeomorphism, then we provide an example
which is exponentially mixing with rate (1.6), where the behavior of both D and γ is
known as κ → 0. This is what leads to the heuristics (1.15) described in Section 1.

Explicitly, suppose Φ : Td → Td is a µ-measure preserving diffeomorphism,
and ρX

t (x, y) is the transition density of the solution to (1.3). Let Y be the Markov
process with transition probability

P (Yn+1 ∈ dy | Yn = x) = ρX
1/A(x, Φ−1(y)) .

Alternately, one can (equivalently) define Yn+1 by letting Z be the solution of (1.3)
with initial data Z0 = Yn, and then defining

Yn+1 = Φ(Z1/A) .
With this notation Yn above serves as a proxy for Xt (the solution to (1.4)) where n
and t are related through

n = At .

The notions of mixing, dissipation time, etc. in discrete time are defined analo-
gously to those in the continuous-time setting. To differentiate from the continuous
time versions, in the discrete-time setting we will use Ndis and Nmix to denote the
dissipation and mixing times respectively. The main results in this section are the
following.

Proposition 5.1. (1) There exists a µ-measure preserving, exponentially mixing
diffeomorphism Φ whose mixing rate is

h(n) = De−γn , (5.1)

where where D = D(d, κ), but γ is independent of both κ and d.
(2) If further U is in the form

U(x) =
d∑

i=1
Ũ(xi) for some Ũ ∈ C2(T) , (5.2)

then D can be bounded by

D ⩽ deO(1/κ) as κ → 0 . (5.3)

Proposition 5.2. If Φ is mixing with rate h, then the mixing time and dissipation
time of Y are bounded above by

Nmix ⩽ Cd
(

1 + ∥U∥osc

κ
− ln

(κNdis

A

))
Ndis , Ndis ⩽

CA

H(A) .

Here

H(A) def= sup
{
λ

∣∣∣ h( √
A

2
√
λ

)
⩽

κ

2λ

}
.

The proof of Proposition 5.2 follows the same method as Proposition 2.1, with
the continuous-time energy decay replaced with the time discrete analogs (see
Lemmas 3.1 and 3.2 in [FI19]). For brevity, we do not present it here. We will prove
Proposition 5.1 below.

The main idea behind the proof of Proposition 5.1 is to construct µ-exponentially
mixing diffeomorphisms as conjugates of Lebesgue exponentially mixing diffeomor-
phisms. There are many examples of Lebesgue exponentially mixing diffeomorphisms,
such as the baker’s map or toral automorphisms [KH95,SOW06]. In the time in-
homogeneous case, they can also be constructed as flow maps of alternating shear
flows as in Section A or [BCZG22]. To prove Proposition 5.1, however, we will need
a Lebesgue exponentially mixing map with mixing rate that is independent of the
dimension. While many of the examples mentioned above likely have a mixing rate
that can be bounded independent of the dimension, it is easiest to prove this for an
explicit toral automorphism. Once this has been established, a direct calculation
will show that the pre-factor D in (5.1) may depend on κ, but the exponential rate γ
does not.

Lemma 5.3. There exists a diffeomorphism Ψ : Td → Td which is Lebesgue expo-
nentially mixing with a rate that is independent of the dimension.

Proof. We will choose Ψ to be a toral automorphism. Recall, given any A ∈ SL(d,Z),
a toral automorphism with matrix A is the map Ψ : Td → Td defined by

Ψ(x) = Ax (mod Zd) .

The mixing properties of these maps are well known (see for instance [Lin82,FW03,
FI19]). In particular, if all eigenvalues of A are irrational and at least one lies
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outside the unit disk, then Ψ is Lebesgue exponentially mixing. To prove this, note
that a Fourier series expansion immediately shows

(5.4) ⟨f ◦ Ψn, g⟩ ⩽ sup
k∈Zd−0

1
|Ank||k|2

∥f∥Ḣ1∥g∥Ḣ2 ,

for all test functions f ∈ Ḣ1, g ∈ Ḣ2 (see for instance equation (4.7) in [FI19]).
Now using Diophantine approximation results one can show

(5.5) |Ank||kd−1| ⩾ |λ1|n

Cd
,

where λ1 is an eigenvalue of A with the largest modulus, and Cd is a dimensional
constant (see for instance the inequality immediately after (4.8) in [FI19]). This can
be used to show Ψ is Lebesgue exponentially mixing, however, constants appearing
in the mixing rate will depend on the dimension.

We will now choose A in a specific form that will ensure the mixing rate is
independent of the dimension. Let

A1 =
(

2 1
1 1

)
and A2 =

2 −1 0
0 1 1
1 0 1


and choose A ∈ SL(d,Z) to be any block diagonal matrix with only 2 × 2 blocks A2,
or 3 × 3 blocks A3 on the diagonal. One can directly check that both A2 and A3
are ergodic toral automorphisms. Since the domain of Am is Tm, for m ∈ {2, 3},
the lower bound (5.5) becomes

|An
mk||k|2 ⩾ |An

mk||k|m−1 ⩾
λn

C
, for all m ∈ {2, 3}, k ∈ Zm − 0 ,

where

λ = min
m∈{2,3}

max{|µ| | µ is an eigenvalue of Am} > 1 ,

and C only depends on A2, A3 (and hence is independent of d).
Now for k ∈ Zd, write k = (k1, . . . , kd′) where each ki ∈ Zmi , mi ∈ {2, 3},

corresponds to the block diagonal structure of A. If k ̸= 0, at least one ki must be
non-zero, and hence

|Ank||k|2 ⩾ |An
mi
ki||ki|2 ⩾

λn

C
.

Combined with (5.4) this immediately implies

∥f ◦ Ψn∥H−2 ⩽ Cλ−n∥f∥Ḣ1 .

By Hölder’s inequality

⟨f ◦ Ψ, g⟩ ⩽ ∥f ◦ Ψ∥1/2
H−2∥f ◦ Ψ∥1/2

L2 ∥g∥Ḣ1 ⩽
√
Cλ−n/2∥f∥1/2

Ḣ1 ∥f∥L2∥g∥Ḣ1

⩽
√
Cλ−n/2∥f∥Ḣ1∥g∥Ḣ1 ,

showing Ψ is Lebesgue exponentially mixing with rate
√
Cλ−n/2. Since C and λ > 1

are independent of d, this concludes the proof. □

Proof of Proposition 5.1. Let Ψ : Td → Td be the Lebesgue exponentially mixing
diffeomorphism from Lemma 5.3. Notice that this is completely independent of κ,
and neither D′, γ, nor Ψ depend on κ.

Let ψ : Td → Td be a diffeomorphism such that the push forward of the measure µ
under ψ is the Lebesgue measure (i.e. for all Borel sets A we have µ(ψ−1(A)) = m(A),
where m is the Lebesgue measure). One can, for instance, prove the existence of
such a map using optimal transport. We claim that

Φ = ψ−1Ψψ ,

is a µ-exponentially mixing map with exponential rate γ. To see this, we note first
that clearly Φ preserves the measure µ. Moreover, for any pair of test functions f, g ∈
Ḣ1(µ), we have

⟨f ◦ Φn, g⟩µ = ⟨f ◦ (ψ−1Ψnψ), g⟩µ = ⟨(f ◦ ψ−1)Ψn, g ◦ ψ−1⟩ .

Since f, g have µ-mean zero, the functions f ◦ ψ−1 and g ◦ ψ−1 must be Lebesgue
mean-zero. Since Ψ is Lebesgue exponentially mixing, this implies

⟨(f ◦ ψ−1)Ψn, g ◦ ψ−1⟩ ⩽ D′e−γn∥f ◦ ψ−1∥Ḣ1∥g ◦ ψ−1∥Ḣ1

⩽ D′∥∇ψ−1∥2
L∞e−γn∥f∥Ḣ1(µ)∥g∥Ḣ1(µ) ,

where we clarify that

∥∇ψ−1∥L∞ =
∥∥∥∑

i,j

|∂iψ
−1
j |2

∥∥∥1/2

L∞
.

Hence Φ is µ-exponentially mixing with rate

□(5.6) h(n) = D′∥∇ψ−1∥2
L∞e−γn .

This proves the first assertion of Proposition 5.1.
To prove the second assertion, note from (5.6), that the pre-factor D is bounded

by

D ⩽ D′∥∇ψ−1∥L∞ ,

where ψ is any diffeomorphism that pushes forward µ onto the Lebesgue measure.
When d = 1 such maps are characterized by

∂xψ
−1 = e−U/κ

Z
.

When d > 1 and U is in the form (5.2), we can construct ψ using the one dimensional
maps described above. Explicitly, define φ̃ : R → R by

φ̃(x) = 1
Z̃

∫ x

0
e−Ũ(y)/κ dy , where Z̃

def=
∫ 1

0
e−U(y)/κ dy .

Since U is 1-periodic we note φ̃(x+ 1) = 1 + φ̃(x), and hence φ̃ can be viewed as a
map on the one dimensional torus. We now define ψ−1 : Td → Td by

ψ−1(x) = (φ̃(x1), φ̃(x2), . . . , φ̃(xd)) .
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Clearly the push forward of µ under ψ is the Lebesgue measure, and hence

D ⩽ D′∥∇ψ−1∥L∞ ⩽ dD′ sup
x∈[0,1]

exp
( 1
κ

∫ 1

0
(Ũ(y) − Ũ(x)) dy

)
.

This proves (5.3), concluding the proof.

6. Proof of exponential mixing of sawtooth shears (Theorem 1.3).
The objective of this section is to show that the modified shears in (1.13) are

exponentially mixing with probability 1, as stated in Theorem 1.3. The proof involves
the analysis of geometric ergodicity of a pair of trajectories of the velocity field v.
This study was initiated in [BS88] and further developed in [DKK04, Theorem
4], [BBPS22, Theorem 1.3], and [BCZG22, Theorem 1.1]. Among these results
our proof is closest to Theorem 1.3 in [BBPS22] and differs from Theorem 1.3
in [BBPS22] only in one aspect. The proof in [BBPS22] uses Hörmander’s condition
to obtain irreducibility and a positive Lyapunov exponent of underlying Markov
processes. We cannot use Hörmander’s condition in our context. Instead, we use
the Rashevsky–Chow Theorem [Sac22, Theroem 5] (see Theorem 6.5, below) to
obtain the same results.

6.1. Modified Sawtooth Shears in Two Dimensions. We will first prove that
the modified, randomly shifted, sawtooth shears are almost surely exponentially
mixing in two dimensions. Following this we will prove the remaining conclusions of
Theorem 1.3.

We begin by writing down the function F with the sawtooth shaped derivative
(shown in Figure 1). Define

(6.1) F (x) = F0(x) def=


2x2 x ∈ [0, 1

4 ]
−2(x− 1

4 )(x− 3
4 ) + 1

8 x ∈ [ 1
4 ,

3
4 ]

2(x− 1)2 x ∈ [ 3
4 , 1] ,

and extended periodically to x ∈ R (see Figure 1, right). For α ∈ [0, 1] we define Fα

by

(6.2) Fα(x) def= F0(x− α) .

Given Fα, we define the associated velocity fields vα using (1.11) by replacing F
with Fα. Explicitly, we define

vα,1 = 1
p

∇⊥(pFα(x1)) = 1
κ

(
Ux2Fα(x1)

κF ′
α(x1) − Ux1Fα(x1)

)
,(6.3)

vα,2 = 1
p

∇⊥(pFα(x2)) = 1
κ

(
Ux2Fα(x2) − κF ′

α(x2)
−Ux1Fα(x2)

)
,(6.4)

where ∇⊥ = ∇⊥
1,2 is the skew gradient in two dimensions. Stream plots of these flow

are shown in Figure 2.
For notational convenience, define Vn = vn, where v defined by (1.13). Note

(6.5) Vn = βnvαn,in
,

where (αn, βn, in) are i.i.d. random variables that are uniformly distributed on the
parameter space [0, 1] × [0, 1] × {1, 2}. We will show that the paths of the random
flow obtained by composing the time 1 flows of each of the vector fields V1, . . . , Vn

are almost surely exponentially mixing.

6.2. Conditions Guaranteeing Exponential Mixing. To prove that the paths
of the random flow above is exponentially mixing, it will be convenient to use
Theorem 1.4 from [BCZG22]. For clarity of presentation we introduce the required
preliminaries and restate this result below.

Consider the Markov process X defined by
(6.6) Xn+1 = φVn+1(Xn) .
Here the notation φv denotes time 1 flow map of the vector field v, and the vector
fields Vn were defined in (6.5). Define the random flow ϕn by

(6.7) ϕn
def= φVn ◦ φVn−1 ◦ · · ·φV1 .

Let P1 be the projective space of R2, that is the collection of lines in R2 that
pass through the origin. For initial condition (x, u) ∈ T2 × P1 the projective process
on T2 × P1 is defined by
(6.8) (Xn, Un) = (ϕn(x), Dxϕnu).
Given an initial condition (x, g) ∈ T2 × SL2(R) the rescaled derivative process on
T2 × SL2(R) is defined by

(6.9) (Xn, An) =
(
ϕn(x), Dxϕng

(detDxϕn)1/2

)
.

For initial condition (x, y) ∈ Dc def= T2 ×T2 − {(x, x)} the two point process (Xn, Yn)
on Dc is defined by
(6.10) (Xn, Yn) = (ϕn(x), ϕn(y)).

Remark 6.1. Since each velocity field is Lipschitz, each flow is Lipschitz by Grönwall’s
inequality. That is,
(6.11) |φv

t (x) − φv
t (y)| ⩽ |x− y|etCv

when x and y are sufficiently close. Thus, each flow is differentiable almost everywhere
and the processes, (6.8) and (6.9), are well defined.

Theorem 1.4 in [BCZG22] can now be stated as follows.

Proposition 6.2 (Theorem 1.4 in [BCZG22]). Assume that the single point pro-
cess (6.6) and the projective process (6.8) are uniformly geometrically ergodic. Sup-
pose the two point process (6.10) is V-geometrically ergodic with respect to a Lyapunov
function (6.13) given by
(6.12) V(x, y) = d(x, y)−pχ(x, y) for some small p > 0 ,
and a continuous function χ(x, y) which is bounded both from above and away from
0. Further assume all three processes are aperiodic, and the single point process has
a positive Lyapunov exponent. Let µ be the unique invariant measure of the single
point process. If V ∈ L1(T4, µ× µ) then there exists a deterministic constant γ > 0
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and a random constant D(ω) such that for all mean-zero functions f, g ∈ H1(T2, µ)
we have that

⟨f ◦ ϕn, g⟩µ ⩽ D(ω)e−γn∥f∥Ḣ1∥g∥Ḣ1

almost surely.

Recall a Lyapunov function for a Markov process with state space E is a function

(6.13) V : E → [1,∞) such that Ex[V(X1)] ⩽ λV (x) + C

for some constants 0 < λ < 1, C > 0. If the process is aperiodic, irreducible and
there exists a Lyapunov function V with compact sub-level sets then he process is
V-geometrically ergodic [MT09, Theorem 15.0.1]. That is, there exists γ > 0 and a
unique invariant distribution, µ, such that

(6.14) ∥Pn(x, ·) − µ∥T V ⩽ V(x)e−nγ for all x ∈ E.

If V in (6.14) is constant, the process is said to be uniformly geometrically ergodic.
A Lyapunov exponent is the rate at which tangent vectors are stretched or shrunk
under the iterates of a dynamical system. A general theory of Lyapunov exponents
for random dynamical systems can be found in e.g. [Arn98, Chapter 3].

Remark 6.3. The state space of the two point process is not compact. Thus, showing
geometric ergodicity is not immediate. We take the Lyapunov function of the two
point process to be a specific perturbation of the principle eigenfunction of the
projective process, see [BBPS22, Section 5]. In this case equation (6.13) states that
two particles which are close together move away from each other on average. For
more information on geometric ergodicity of Markov processes with non-compact
state spaces see [MT09, Chapter 15].

Note that the processes (6.6), (6.8), and (6.10) are all aperiodic. Indeed, for
all z in the processes’ state space and every ε > 0, the flow of any vector field v
with sufficiently small amplitude will stay inside an ε-ball centered at its initial
position. This will ensure P (z,B(z, ε)) > 0, showing that the processes (6.6), (6.8),
and (6.10) are all aperiodic. Therefore to prove a sequence of randomly shifted
modified sawtooth shears are mixing we must show the following.

(1) The processes (6.6) and (6.8) are uniformly geometrically ergodic.
(2) The existence of a positive Lyapunov exponent for (6.6).
(3) Existence of a Lyapunov function as in equation (6.12).
(4) The process (6.10) is V-geometrically ergodic with respect to a function of

the form (6.12).
To prove the first item it suffices to prove the processes, (6.6) and (6.8), are

irreducible and Feller (see for example Theorem 15.0.1 in [MT09]). We prove
irreducibility in Lemma 6.6 using the Rachevsky–Chow theorem, and prove the
Feller condition in Lemma 6.11. The second item follows from irreducibility, and is
shown in Lemma 6.10 below. The third item follows from [BBPS22] Section 5, since
the projective process is irreducible and uniformly geometrically ergodic. Finally,
the fourth item follows from section 6 in [BBPS22], and the fact that both the two
point process (6.6) and the projective process (6.8) are irreducible and Feller.

Remark 6.4. In [BCZG22], the authors needed one more condition to show V-
geometric ergodicity. The condition was on the existence of an open so called small
set [MT09, Chapter 5]. Theorem 5.5.7 and Proposition 6.2.8 in [MT09] imply that
compact sets are small when the process is irreducible, aperiodic, and Feller. Thus,
any small enough open ball is an open small set.

6.3. Irreducibility. In order to prove irreducibility, we will use a controllability
result of Rachevsky [Ras38] and Chow [Cho40], which shows that if a collection of
vector fields satisfies a Hörmander condition, then any two points are connected by
a composition of flows.

Theorem 6.5 (Rashevsky–Chow (Theorem 5 in [Sac22])). Let M be a smooth
connected manifold, and F a collection of vector fields on M . Suppose that for every
x ∈ M , the Lie algebra Liex(F) spans the tangent space TxM . Then for every x, y ∈
M there exists a sequence of times t1, t2, . . . tn and vector fields v1, v2, . . . vn ∈ F
with flows φi such that

φn
tn

(φn−1
tn−1

(· · · (φ1
t1

(x)) · · · )) = y.

Recall that Lie algebra Liex F is defined by

Liex F = span
(⋃

n
{v(x) | v ∈ Fn}

)
,

where F0 = {v}v∈F , and Fn is defined inductively by

Fn+1
def= Fn ∪ {[v1, v2] | v1 ∈ Fn, v2 ∈ F} .

Here the notation [v1, v2] denotes the Lie bracket of two vector fields v1, v2 on a
smooth manifold M . Recall the Lie bracket is the derivative of v2 along the flow
of v1, and can be computed by

[v1, v2] = Dv1 v2 − Dv2 v1 ,

where Dv is the directional derivative in the direction of v.
We will now use Theorem 6.5 to prove irreducibility.

Lemma 6.6. The single point process (6.6), the projective process (6.8), the rescaled
derivative process (6.9), and the two point process (6.10) are all irreducible.

Proof. To show the irreducibility of the single-point process we need to demonstrate
that the Lie algebra generated by vector fields vα,1 and vα,2 (equations (6.3) and (6.4),
respectively), is two-dimensional for every point x ∈ T2. It is straightforward to
verify directly, and we do not explicitly do that. Instead, we conclude it from the
irreducibility of the two-point process. The irreducibility of the projective process
follows from that of the rescaled derivative process. Thus we only need to show
irreducibility of the two-point process and the rescaled derivative process.

The proofs of irreducibility of the rescaled derivative process and the two-point
process are similar, and we consider the two-point process first. We need to show
that for a dense connected subset of Dc, the corresponding Lie algebra generated by
the vector fields

{(vT
α,i, v

T
α,i)T }
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has dimension 4. We will choose this dense connected subset to be the set M defined
by

(6.15) M
def= Dc − {(x, y) ∈ T2 × T2 | x1 = y1 or x2 = y2}.

Fix a pair (x, y) ∈ M , x = (x1, x2), y = (y1, y2). For our x1 and y1 we can choose
α ∈ [0, 1] so that the stream function (6.2) satisfies

Fα(x1) = −2(x1 − α)
(
x1 −

(
α+ 1

4

))
+ 1

8 ,

Fα(y1) = 2(y2 − α)2 ,

respectively. This gives that (vT
α,1(x), vT

α,1(y)) is a quadratic polynomial in α. That
is,

(6.16)
(
vα,1(x)
vα,1(y)

)
= w0(x, y) + aw1(x, y) + a2w2(x, y) ,

for some vector fields w0, w1, w2 on T2 × T2. This implies that the span of
(vα,1(x), vα,1(y))T is contained in

Span{w0(x, y), w1(x, y), w2(x, y)}.
By taking α̃ ≡ α+ 1/2 (mod 1), we have that (vα,1(x), vα,1(y))T is also a quadratic
polynomial in α̃. Thus we write(

vα,1(x)
vα,1(y)

)
= w̃0(x, y) + ãw̃1(x, y) + ã2w̃2(x, y) ,

for some vector fields w̃0, w̃1 and w̃2 on T2 × T2. Thus, the 6 vector fields
w0(x, y), w1(x, y) , w2(x, y), w̃0(x, y) w̃1(x, y), w̃2(x, y)

are all contained in the Lie algebra at (x, y). Similarly, for our x2 and y2 we can
choose another α ∈ [0, 1], and obtain another 6 vector fields from vα,2. We can
directly compute and check that the span of these 12 vector fields has dimension 4
if x1 ̸= y1 and x2 ̸= y2. Since the calculation is somewhat tedious to verify, we do
this symbolically and the code verifying this can be found [CFIN23].

Also note that the set M (defined in (6.15)) is connected. Thus we can apply the
Rachevsky-Chow Theorem 6.5 and conclude irreducibility of the two-point process.

We now show the rescaled derivative process is irreducible. The corresponding
Lie algebra is in the tangent space at (x,A) ∈ T2 × SL2R. Let At(v, x) be the
derivative matrix of the flow v at x and time t rescaled by its determinant, and a1,
. . . , a4 be the individual entries of this matrix. That is, define

(6.17) At(v, x) def= Dxφ
v
t√

detDxφv
t

=
(
a1 a2
a3 a4

)
.

We consider the vector fields of the form

(6.18) ṽα,1 =


vα,1
∂ta1
∂ta2
∂ta3
∂ta4

 , ṽα,2 =


vα,2
∂ta1
∂ta2
∂ta3
∂ta4

 .

That is, the vector fields have the first two coordinates from the vectors vα,1 or vα,2
and last four coordinates as the time derivatives of the corresponding matrix At.

We now show the collection of these vector fields satisfies the conditions of
Theorem 6.5. For this, it suffices to show that for every x ∈ T2, the Lie algebra at
(x, Id) has dimension 5. Since the rescaled derivative process is a matrix flow, given
any other g ∈ SL2(R), the Lie algebra also has dimension 5.

Since each v is piecewise-smooth, we compute the Lie bracket on each smooth
piece. By selecting α1 and α2 such that

Fα1(x1) = −2(x1 − α1)
(
x1 −

(
α1 + 1

4

))
+ 1

8 ,

Fα2(x2) = −2(x2 − α2)
(
x2 −

(
α2 + 1

4

))
+ 1

8 ,

we get 12 vectors that are contained in the Lie algebra at (x, Id) from the same
methodology as that done in the case of the two point process.

It turns out that the span of these 12 vector fields is contained in the span of

(6.19)


κ
0
0
0
∂1U
∂1U

 ,


0
κ
0
0

−∂2U
−∂2U

 ,


0
0
1
0
2
1

 ,


0
0
0
1
0
0

 ,


0
0
0
0

∂1U∂2U + κ∂1,1U
∂1U∂2U + κ∂1,1U

 .

While this can also be directly checked, the computation is somewhat tedious. Thus
we include code verifying this symbolically [CFIN23].

The span of the five vectors shown in (6.19) may be less than five-dimensional.
If, however, the 5th vector is non-zero, the span is five-dimensional. It is not easy to
verify that the the 5th vector is non-zero on a connected dense set. Therefore, we
use different vectors to obtain the full rank.

Computing the Lie bracket of ṽα1,1 and ṽα2,2, defined in (6.18), we obtain a
quadratic polynomial in α1 and α2. Similar to (6.16), we now obtain a collection
of 9 vectors that lie in our Lie Algebra. Using a computer to perform symbolic
Gauss-Jordan elimination, we can use these 9 vectors and (6.19) to obtain another
set of 9 vectors, such that their first 4 coordinates are 0. (The code for this can also
be found [CFIN23].) The resulting vectors, and the last vector in (6.19) yields the
following non-degeneracy condition: the dimension of the Lie algebra at (x, Id) is 5
if at least one of the following five inequalities hold

0 ̸= ∂1,2U

0 ̸= ∂1U∂2U + κ∂1,2U

0 ̸= ∂1U∂2U + (∂1U)2 + 3κ∂1,2U

0 ̸= 16κ+ ∂2,2U + ∂1,1U − 3∂1,2U

0 ̸= κ∂2,2U + κ∂1,1U + 4 (∂1U)2 + κ∂1,2U .

We claim that for any κ ̸= 0, at least one of the above non-degeneracy conditions
must hold. Indeed if all the above non-degeneracy conditions fail, then we must
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have
∆U(x) = 0 and ∆U(x) = −16κ ,

which is impossible. Thus, the Lie algebra at (x, Id) has dimension 5 and we can
apply the Rachevsky–Chow Theorem. This completes the proof of irreducibility of
the rescaled derivative process (6.9). □

Remark 6.7. Note that we demonstrated controllability of the two point process
only on a connected dense set of Dc, but controllability of the rescaled derivative
process was shown on the entire set T2 × SL2(R).

6.4. Positivity of top Lyapunov Exponent. Controllability of the rescaled
derivative process implies that the top Lyapunov exponent is positive. This follows
from the following version of Furstenberg’s criterion.

Theorem 6.8 (Furstenberg’s criterion). For a sequence of elementary events ω =
(ω1, ω2, . . . ) ∈ ΩN, continuous random dynamical system f = fω(x), x ∈ X and
measurable A : Ω ×X → SLd(R) consider a linear cocycle

fn
ω = fωn ◦ · · · ◦ fω1 and An

ω,x = Awn,fn−1
ω (x) ◦ . . . Aω1,x.

Suppose An
ω,x is integrable, and π is the invariant measure of the Markov process

corresponding to f . Then An
ω,x has two Lyapunov exponents. Let λ+ ⩾ 0 be the larger

of the two. Then λ+ can only be 0 if there exists a family of probability measures
{νx}x∈supp{π} on P1 varying measurably in x such that for every x ∈ Support(π),
n ⩾ 1, and all pairs

(6.20) (y,A) ∈ Support(Law(fn
ω (x), An

ω,x))

we have that the pushforward of νy satisfies

(6.21)
(
AT

)
∗ νy = νx.

Remark 6.9. There are many versions of the Furstenberg’s criterion. We rescale
the derivative process to use this version of Furstenberg’s criterion. The version
of Furstenberg’s criterion given by Theorem 6.8 is a combination of Proposition 2
and Theorem 3 in [Led86] with one difference. This version has an extra conclusion
that Equation (6.21) holds for all elements in the support of the n-step transition
probabilities. The conclusion follows from arguments done in Bougerol’s paper
[Bou88], and was explicitly proven by A. Blumenthal et al. [BCZG22, Proposition
2.9].

Let us recall definitions of notions that arise in Theorem 6.8(refer to [Arn98,
Chapter 3]). Briefly recall that a continuous random dynamical system (with
independent increments in our case) on a metric space X, over a probability space
(Ω,G,P ), is a mapping (ω, x) 7→ fω(x) such that for every fixed x ∈ X the function
fω(x) is a random variable in ω, and for every fixed ω ∈ Ω the function fω(x) is
continuous in x. Such random dynamical systems correspond to Markov processes
with transition probabilities

P (x,A) = P (fω(x) ∈ A) .

A cocycle is integrable if∫ (
ln+∥Aω,x∥ + ln+∥A−1

ω,x∥
)
dP (ω) dπ(x) .

Note that the rescaled derivative process (6.9) is a continuous random dynamical
system with integrable linear cocycle, and so we can apply Theorem 6.8 to show
that the single point process (6.6) has a positive Lyapunov exponent.

Lemma 6.10. The top Lyapunov exponent of the single point process (6.6) is
positive.

Proof. Suppose towards contradiction that the top Lyapunov exponent of the single
point process (6.6) is 0. This implies that the top Lyapunov exponent of the linear
cocycle An (defined in (6.9)) is 0. Indeed, since U is bounded the measure µ is
equivalent to the Lebesgue measure on T2. So the µ-measure preserving map ϕn

satisfies
0 < C1 ⩽ detDxϕn(x) ⩽ C2 < ∞ ,

uniformly in n ∈ N, x ∈ T2 and the parameters (α, β, i) ∈ [0, 1] × [0, 1] ×{0, 1}. This
implies that the top Lyapunov exponent of the single point process is the same as
the top Lyapunov exponent of the rescaled derivative process (6.9). Indeed, for any
v ∈ R2 we have

lim
n→∞

1
n

ln∥Anv∥ = lim
n→∞

1
n

(ln∥Dxϕnv∥ − ln (detDxϕn)) = lim
n→∞

1
n

ln∥Dxϕnv∥,

almost surely with respect to P × µ.
Now assume that the top Lyapunov exponent of the linear cocycle An is 0.

Suppose νx is a family of probability measures produced by Theorem 6.8. Identify
P1 with S1 by considering the elements of elements of P1 as unit vectors in R2. Let
ε > 0 be arbitrary and fix x ∈ T2. Further suppose that U ⊂ P1, U = (a− ε, a+ ε)
such that νx(U) > 0. We can select Bk ∈ SL2(R) such that Bk contracts U into U
by mapping a− ε to a− ε/k, and a+ ε to a+ ε/k. In other words, we claim we can
find Bk ∈ SL2(R) such that

(6.22) BkU ⊂ U , a ∈ BkU , and Leb (BkU) < ε

k
,

for an arbitrary k ∈ N. Set Ak =
(
BT

k

)−1. By controllability of the rescaled
derivative process (see Remark 6.7), we can reach (x,Ak) from (x, Id) in finite
time. Therefore, (x,Ak) satisfies condition (6.20) and so equation (6.21) for each
Bk becomes

νx (U) = νx (BkU) .
Since k was arbitrary

νx({a}) = νx(U) > 0.
Select any c ∈ U , c ̸= a. Analogous to (6.22), we can select Ck such that

CkU ⊂ U , c ∈ CkU , and Leb (CkU) < ε

k
.

Thus, again νx({c}) = νx(U) > 0, but νx(U) ⩾ νx({a}) + νx({c}). So we have
reached a contradiction and the top Lyapunov exponent of the rescaled derivative
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process is positive. This implies the top Lyapunov exponenent of the single point
process is positive. □

6.5. Feller Property. To prove that the modified, randomly shifted, sawtooth
shears are exponentially mixing it remains to show that that the single point,
projective and two point processes are Feller. Recall, a process is Feller if the
function x 7→ Ex[f(X1)] is continuous for every bounded continuous function f .

Lemma 6.11. The single point process (6.6), projective process (6.8), and two point
process (6.10) are Feller.

Remark 6.12. No randomness is needed to show that the single point and two-point
processes are Feller. We will, however, use randomness to show that the projective
process is Feller. We will capitalize on the fact that the parameter α in (6.2) is
uniformly distributed on [0, 1].

Proof of Lemma 6.11. The velocity fields given in (6.3) and (6.4) are uniformly
Lipschitz. Thus, the two point process satisfies a bound similar to equation (6.11)
in Remark 6.1. Therefore, it is Feller. Similarly the single point process is Feller.

We will now show that the projective process is Feller. Note that vα,i(x), and,
therefore, the time 1 flows φβvα,i(x) and its derivatives Dxφ

βvα,i(x) are smooth on
T2 except for three lines: xi = α, xi = α + 1/4, and xi = α + 3/4. In order to
compute the expectation

(6.23) E(x,u)[f(ϕ1(x), Dxϕ1u)] = E(x,u)[f(φV1(x), Dxφ
V1u)],

we need to fix (x, u) ∈ T2 × P1 and integrate over the parameter space, (α, β, i) ∈
[0, 1] × [0, 1] × {1, 2}. The function f(ϕ1(x), Dxϕ1(x)u) is uniformly bounded. It
is also continuous everywhere except xi = α, xi = α + 1/4, and xi = α + 3/4.
Therefore its integral with respect to the parameter α is continuous. Thus the
expectation (6.23) is continuous with respect to x and u.

We now do the formal proof that the projective process is Feller. Fix f ∈ C(T2×P1)
and let ε > 0 be arbitrary. Let d(·, ·) be the product distance on T2 × P1. First
select δ1 > 0 such that 6Cδ1 < ε/2, where C is such that f(z) ⩽ C for all
z ∈ T2 × P1. Now select 0 < δ2 < δ1 so that if (x, u), (y, u′) ∈ T2 × P1 are such that
d((x, u), (y, u′)) < δ2, and x and y are in the same smooth piece of βvα,i we have
that

(6.24) |f(ϕβvα,i

t (x), Dxϕ
βvα,i

t u) − f(ϕβvα,i

t (y), Dxϕ
βvα,i

t u′)| < ε

2
for all α, β ∈ [0, 1] and i ∈ {1, 2}. Let (x, u), (y, u′) ∈ T2 × P1 be such that
d((x, u), (y, u′)) < δ2 and

A = {(α, β, i) ∈ [0, 1] × [0, 1] × {0, 1} | equation (6.24) does not hold} .

Note that P (A) < 6δ1 since there are both vertical and horizontal modified shear
flows, and each modified shear flow has 3 different smooth pieces. This gives∣∣∣E(x,v)[f(X1, V1)] − E(y,v′)[f(X1, V1)]

∣∣∣
⩽

∫
A

|f(ϕ1(x), Dxϕ1(x)v) − f(ϕ1(y), Dxϕ1(y)v′)| dP

+
∫

Ac

|f(ϕ1(x), Dxϕ1(x)v) − f(ϕ1(y), Dxϕ1(y)v′)| dP

<
ε

2 + 6Cδ1 < ε.

Thus, the projective process is Feller. □

6.6. Proof of Theorem 1.3.

Proof of Theorem 1.3 with a sawtooth shear profile in two dimensions. The proces-
ses (6.6), (6.8), and (6.10) are all irreducible by Lemma 6.6. The three processes
are Feller by Lemma 6.11. Thus, both the derivative and single point processes are
uniformly geometrically ergodic. Furthermore, the single point process has a positive
Lyapunov exponent by Lemma 6.10. Finally, the two point process is V-geometrically
ergodic with respect to a function of the form (6.12). This follows from section 6
in [BBPS22], and the fact that the two point process (6.6) is irreducible and Feller.
Thus, by Proposition 6.2 the modified, randomly shifted sawtooth shears are almost
surely mixing. □

We now consider modified, randomly shifted, sine shears. In this case we take
the stream function F0 in (6.1) as

F0(x) = sin(2πx),

and define

(6.25) Fα(x) = F0(x− α) for α ∈ [0, 1].

The vector fields (6.3) and (6.4) are defined using the stream functions given
by (6.25). All other definitions are the same.

Proof of Theorem 1.3 with a sine shear profile in two dimensions. After we prove
that both the two point process and rescaled derivative process are irreducible, the
proof with a sine stream function is identical to the proof with a tent stream function.
We will now show that the two point process is irreducible. As in Lemma 6.6 we
must show that the Lie algebra generated by the vector fields

{(vT
α,i(x), vT

α,i(y))T }

has dimension 4 on a dense connected set. We will show that the Lie algebra has
dimension 4 on the set

M
def= Dc − S,

where

S = {x1 = y1 or x2 = y2} ∪ {x or y is a critical point of U} ⊂ T2 × T2.

By selecting α = x2 and α = x1 we obtain the 2 linearly independent vectors,

(6.26) s2
def= −κ

(
vx2,2(x)
vx2,2(y)

)
=


2πκ

0
2πκ cos(2π(x2 − y2)) + sin(2π(x2 − y2))∂2U(y)

− sin(2π(x2 − y2))∂1U(y)
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and

(6.27) s1
def= κ

(
vx1,1(x)
vx1,1(y)

)
=


0

2πκ
sin(2π(y1 − x1))∂2U(y)

2Πκ cos(2π(y1 − x1)) − sin(2π(y1 − x1))∂1U(y)

 .

Using a computer to perform symbolic Gauss-Jordan elimination with s2 and s1
from (6.27) and (6.26) we can reduce the vector[(

vα,1
vα,1

)
,

(
vβ,2
vβ,2

)]
(x, y)

to a vector L1 with 0 in the first two coordinates. Using trigonometric identities we
can write L1 as a linear combination of trigonometric products in the form

L1 = sin(2π(α− x1)) sin(2π(β − x2))ℓ1 + sin(2π(α− x1)) cos(2π(β − x2))ℓ2

+ cos(2π(α− x1)) sin(2π(β − x2))ℓ3 + cos(2π(α− x1)) cos(2π(β − x2))ℓ4

+ sin(2π(α− y1)) sin(2π(β − y2))ℓ5 + sin(2π(α− y1)) cos(2π(β − y2))ℓ6

+ cos(2π(α− y1) sin(2π(β − y2))ℓ7 + cos(2π(α− y1)) cos(2π(β − y2))ℓ8 ,(6.28)

for some explicit vectors ℓi, i = 1, 2, . . . , 8. Similarly we can reduce(
vα,1
vα,1

)
,

(
vα,2
vα,2

)
,

[(
vα,1
vα,1

)
,

(
vβ,1
vβ,1

)]
(x, y), and

[(
vα,2
vα,2

)
,

(
vβ,2
vβ,2

)]
(x, y)

to the vectors

L2 = sin(2π(α− x1))ℓ9 , L3 = sin(2π(α− x2))ℓ10 ,

L4 = sin(2π(α− β)ℓ11 , L5 = sin(2π(α− β))ℓ12 ,

respectively, for some explicit vectors ℓ9, . . . , ℓ12, which all have a 0 in their first
two coordinates.

On the set M since x1 ̸= y1 and x2 ̸= y2, the trigonometric products in (6.28)
are linearly independent unless

x1 = y1 + 1
2 and x2 = y2 + 1

2 .

We first consider the case when x1 ̸= y1 + 1/2 or x2 ̸= y2 + 1/2. In this case we can
use different choices of α, β in (6.28) and take linear combinations to ensure each
ℓi is contained in the Lie algebra at (x, y). In particular, the vectors ℓ5 and ℓ8 are
contained in the Lie algebra, and we symbolically compute

(6.29) ℓ5

4π2κ2 =


0
0

∂1U(y)
−∂2U(y)

 ,
ℓ8

4π2κ2 =


0
0

−∂2U(y)
∂1U(y)

 .

Thus the Lie algebra has dimension 4 unless

∂1U(y) = −∂2U(y) or ∂1U(y) = ∂2U(y) .

Symbolic computations (see [CFIN23]) show that in either case, the vector
0
0
0
1


is contained in the span of the remaining ℓi. Since in M both ∂1U(y) and ∂2U(y)
can not vanish, using ℓ5 or ℓ8 from (6.29) shows that the Lie algebra has dimension 4
as desired.

Now consider the case where x1 = y1 + 1/2 and x2 = y2 + 1/2. We rewrite (6.28)
as

L1 = sin(2π(α− x1)) sin(2π(β − x2))ℓ′
1 + sin(2π(α− x1)) cos(2π(β − x2))ℓ′

2

+ cos(2π(α− x1)) sin(2π(β − x2))ℓ′
3 + cos(2π(α− x1)) cos(2π(β − x2))ℓ′

4 ,

for some explicit vectors ℓ′
1, . . . , ℓ′

4. We symbolically compute and verify
0
0

16π3κ2

0

 = ℓ11κ
2 + ℓ′

3
κ

and


0
0
0

16π3κ2

 = ℓ12κ
2 − ℓ′

2
κ
,

which implies that the Lie algebra is 4 dimensional on M if x1 = y1 + 1/2 and
x2 = y2 + 1/2. Thus, in either case the Lie algebra is 4 dimensional, and hence the
two point process is irreducible.

We now show that the rescaled derivative process (6.9) is irreducible by showing
that the Lie algebra at (x, Id) is 5 dimensional on the set

M ′ def= {x ∈ T2 | ∇U(x) ̸= 0} .

Since M ′ is connected, this will imply irreducibility of the rescaled derivative process
exactly as in the proof of Lemma 6.6.

We consider the vector fields (6.18) with a sine stream function. That is, vectors
with first two coordinates coming from the coordinates of (6.3) or (6.4) with a sine
stream function, and last four coordinates coming from the corresponding matrix,
At(v, x) (defined in (6.17)). By choosing α = x2, and α = x1 in (6.18) we compute

s̃2
def= −2κṽx2,2 =


4πκ

0
−2π∂1U(x)
−4π∂2U(x)

0
2π∂1U(x)

 and s̃1
def= 2κṽx1,1 =


0

2πκ
π (∂2U(x) − ∂1U(x))

0
−4π∂1U(x)

−2π (∂2U(x) − ∂1U(x))

 .

By performing symbolic Gauss-Jordan elimination on the vectors ṽα,1, ṽα,2, s̃1 and
s̃2, yields the vectors

L̃1 = sin(2π(α− x1))ℓ̃1 and L̃2 = sin(2π(α− x1))ℓ̃2
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for some explicit vectors ℓ̃1 and ℓ̃2 whose first two coordinates are both 0. We
symbolically compute

s̃3
def= 2(ℓ̃1 − ℓ̃2) =


0
0
1
2
2
1

 .

Using the s̃i we symbolically compute and reduce the vectors

[ṽα,1, ṽβ,2], [ṽα,1, ṽβ,1], and [ṽα,2, ṽβ,2]

to the vectors

L̃3 = sin(2π(α− x1)) sin(2π(β − x2))ℓ̃3 + sin(2π(α− x1)) cos(2π(β − x2))ℓ̃4

+ cos(2π(α− x1)) sin(2π(β − x2))ℓ̃5 + cos(2π(α− x1)) cos(2π(β − x2))ℓ̃6 ,

L̃4 = sin(2π(α− β))ℓ̃7 , and L̃5 = sin(2π(α− β))ℓ̃8 ,

respectively, for some explicit vectors ℓ̃3, . . . , ℓ̃8, which all have zeros in the first
three coordinates. By choosing α = x1 + 1/4, x1 − 1/4, x2, x1, x2 − 1/4, and taking
Lie brackets, we obtain three more vectors

ṽx1−1/4,1 , [ṽx1−1/4,1, ṽx2,2] , [ṽx1−1/4,1, ṽx2−1/4,2] and [ṽx1,1, ṽx2,2] .

Again using the s̃i and performing symbolic Gauss-Jordan elimination we obtain
three new vectors, ℓ̃9, ℓ̃10, ℓ̃11, and ℓ̃12 which have zeros in the first three coordinates.
We now symbolically compute and check that the span of span{ℓ̃1, . . . , ℓ̃12} also
contains the vectors

ℓ̃13
def=


0
0
0

1
2

(
8π2κ2 + ∂2U(x)2 − 6∂1U(x)∂2U(x) + 5∂1U(x)2)

2∂1U(x) (∂1U(x) − ∂2U(x))
∂1U(x) (∂1U(x) − ∂2U(x))


and

ℓ̃14
def=


0
0
0

ℓ̃14,4
∂1U(x)∂2U(x) + κ∂1,2U(x)
∂1U(x)∂2U(x) + κ∂1,2U(x)

 ,

where

ℓ̃14,4 = 1
2

(
−4π2κ2−∂2U(x)2−κ∆U(x)+2∂2U(x)∂1U(x)−∂1U(x)2+2κ∂1,2U(x)

)
.

Clearly, the two vectors ℓ̃13, ℓ̃14 are linearly independent unless

∂1U(x)∂2U(x) + κ∂1,2U(x) = 0 or ∂1U(x) (∂1U(x) − ∂2U(x)) = 0 .

In either case we symbolically compute and explicitly verify that the span of the
ℓ̃i is 2 dimensional (see [CFIN23] for details). This shows that the Lie algebra is 5
dimensional, and hence the rescaled derivative process is irreducible. □

Remark 6.13. If the potential is constant then the vectors (6.29) do not prove
irreducibility of the two point process. However, similar symbolic computations can
still be used to show that the two point process is irreducible.

When d > 2, we perform the 2-dimensional dynamics on pairs of coordinates.
That is, for a pair of indices (i, j), i < j we consider the velocity fields

vα,(i,j),1 = 1
p

∇⊥
i,j(pFα(xi)) ,

vα,(i,j),2 = 1
p

∇⊥
i,j(pFα(xj)) ,

where ∇⊥
i,j is the 2-dimensional perpendicular gradient on the coordinate pair (i, j)

and 0 in the other coordinates. We define

Vn = βnvαn,ξn,in
,

where ξn are i.i.d. uniform random variables on the set of pairs of coordinates, and
(αn, βn, in) are again i.i.d. random variables uniformly distributed on the parameter
space [0, 1] × [0, 1] × {1, 2}. All of the associated processes are defined identically to
their 2-dimension counterparts (see (6.6), (6.8), and (6.9)).

Proof of Theorem 1.3 in dimension d ⩾ 3. The proof in high dimensions follows
from the proof done in 2 dimensions. Both the Feller property (Lemma 6.11) and
positivity of the top Lyapunov exponent (Lemma 6.10) are exactly the same as
the proofs done in dimension 2. Irreducibility of the single point and two point
processes also follows immediately from Lemma 6.6. For each pair of coordinates
we can perform the same computations done in Lemma 6.6. This implies that the
span of the vector fields that generate the two point process has dimension 2d, and
so the single point and two point processes are irreducible.

The added assumption in Theorem 1.3 for high dimensions that (1.14) holds
on a small ball, B(x̂, ε̂) allows us to generalize the proof of irreducibility of the
derivative and projective processes. Irreducibility follows if we show irreducibility on
the subset B(x̂, ε̂). Indeed, since the single point process is irreducible we can first
move the position component into B(x̂, ε̂), control the derivative without moving
the single point out of B(x̂, ε̂), and then move the position and derivative pair to
the end condition. Thus, irreducibility on the set B(x̂, ε̂) implies irreducibility of
both processes.

Irreducibility of the processes on the set B(x̂, ε̂) follows from counting the dimen-
sion of the Lie algebra of the rescaled derivative process. Consider the d-dimension
counterparts to (6.17) and (6.18). We will refer to the coordinate that corresponds
to the (i, j) entry of At as coordinate (i, j). Since the potential is separable on
B(x̂, ε̂), the Lie bracket of the d2 + d-dimensional counterparts to (6.18) can only
be non-zero in 6 positions. That is, for a pair of coordinates i < j

[ṽα,(i,j),1, ṽα,(i,j),2]
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can be non-zero in the i, j, (i, i), (j, j), (i, j), and (j, i) coordinates. Thus, for each
pair of coordinates we can perform the same computations done in the 2 dimensional
cases.

First, consider the case of tent shears. Clearly, each coordinate gives rise to
a linearly independent vector (vectors 1 and 2 in (6.19)). For each pair i < j of
coordinates we obtain 2 vectors with nonzero entries in the (i, j) and (j, i) coordinates
(vectors 3 and 4 in (6.19)) that are not in the span of the first d vectors. This
gives d2 linearly independent vectors in total. The computations in Lemma 6.6 for
the coordinate pair i, i− 1 add another d − 1 vectors to the collection of linearly
independent vectors (5th vector found in Lemma 6.6). Thus the dimension of the Lie
algebra of the rescaled derivative process is d2 + d− 1 on B(x̂, ε̂) × Id and so both
the derivative and projective processes are irreducible (see Lemma 6.6 for details).
The conclusion of Theorem 1.3 now follows from the same exact argument done in
the earlier parts of this section. Counting the dimension of the Lie algebra in the
case of sine shears is similar, and omitted for brevity. □

Appendix A. Lebesgue Exponential Mixing of Randomly Shifted
Tent Flows

Studying mixing rates of incompressible flows is an area of active research [Bre06,
CDL08,Thi12,Sei13, IKX14], and examples of exponentially mixing flows were only
constructed recently [YZ17,ACM19,EZ19,BBPS22,BCZG22,Coo22]. We note that
when F is the sawtooth shear (6.1) (shown in Figure 1), then Theorem 1.3 still holds
when U = 0. In this case, µ is simply the Lebesgue measure, and hence the flow v
(defined in (1.13), with F as in (6.1)) is almost surely (Lebesgue) exponentially
mixing. The proof of Theorem 1.3, however, involves technical calculations to check
irreducibility. If instead of using the sawtooth profiles (6.1), we use a localized tent
function, then the proof of irreducibility becomes extremely simple. We devote
this appendix to presenting this, and hence obtain a short, simple, proof showing a
family of incompressible flows is almost surely (Lebesgue) exponentially mixing.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0
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Figure 4. Profile of the localized tent function ψ0.

Let F0 be the localized tent function shown in Figure 4. Explicitly, F0 a piece-wise
linear periodic function such that

(A.1) F0

(
1
2 ± 1

8

)
= 0 , F0

(
1
2

)
= 1 , and F0(x) = 0 for x ∈

[3
8 ,

5
8

]c

.

For α ∈ [0, 1] define
Fα(x) = F0(x− α) ,

so that Fα is a localized tent function with peak at 1/2 + α. Define the associated
horizontal and vertical shear flows by

(A.2) vα,1(x) =
(
F (x2 − α)

0

)
, and vα,2(x) =

(
0

F (x1 − α)

)
.

respectively. We will now show that if we randomly shift (and modulate) the
localized tent shears flows vα,i then we are (Lebesgue) exponentially mixing almost
surely.

Theorem A.1. Define the velocity field v by
vt = βnvαn,in

when t ∈ [n, n+ 1) ,
where (αn, βn, in) are i.i.d. random variables that are uniformly distributed on
parameter space [0, 1] × [0, 1] × {1, 2}. The flow of v is almost surely (Lebesgue)
exponentially mixing with rate (1.6).

Remark A.2. If instead of localized tent shears (A.1), we use sawtooth shears, then
Theorem 1.3 already guarantees v is almost surely (Lebesgue) exponentially mixing.
The reason we choose localized tent shears here is because the proof of irreducibility
is simpler, and does not rely on the Rachevsky–Chow Theorem (Theorem 6.5). The
local property makes the argument direct and highlights the fact that for a collection
of vector fields to be almost surely mixing you must be able to control 2 points
independently.

Remark A.3. In dimensions d > 2, Lebesgue exponentially mixing flows can be
constructed by setting

vt = ∇⊥
in,jn

Fαin
(xjn) ,

where ∇⊥
i,j is the skew gradient in the xi-xj plane (see (1.12)).

Proof of Theorem A.1. As in Section 6, define Vn by (6.5), with vα,i as in (A.2),
and consider the Markov process Xn defined by (6.6). Using the same notation as
Section 6, define the random flow ϕn by (6.7).

We will prove Theorem A.1 by showing the conditions of Proposition 6.2 hold.
As in Section 6 we need to show that the single point process (6.6) has a positive
Lyapunov exponent, and that the single point process (6.6), two point process (6.10),
and projective process (6.8) are all irreducible and Feller.

Since each velocity field is a shear the single point process is clearly irreducible.
The existence of a positive Lyapunov exponent is immediate due to the classical
result of Furstenberg [Fur63], which we quote below. The version we state is Theorem
4.1 in [BL85].
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Theorem A.4. Let Gn be a sequence of IID random matrices in SL2(R) with
probability measure µ. If the smallest closed subgroup containing the support of µ is
not compact and Gn does not leave a set of one or two lines invariant then there
exists a constant λ+ > 0 such that for any u ∈ R2,

lim
n→+∞

1
n

ln∥GnGn−1 · · ·G1u∥ = λ+,

almost surely.

Since Dxϕn is independent of x it is a random product of shear matrices and
so Theorem A.4 implies that the Lyapunov exponent is positive. (We remark that
this argument is not specific to the localized tent shears, and the randomly shifted
sawtooth shears also have a positive Lyapunov exponent for the same reason.)

Both processes are Feller by the same argument done in Lemma 6.11. We show
irreducibility of the two point process and of the projective process in the following
two Lemmas.

Lemma A.5. The two point process (6.10) is irreducible.

Lemma A.6. The projective process (6.8) is irreducible.

This concludes the proof of Theorem A.1, modulo the above lemmas. □

It remains to prove Lemmas A.5 and A.6. We recall that the proof of irreducibility
for Theorem 1.3 (Lemma 6.6), involved the Rachevsky–Chow theorem, and technical
calculations that were checked symbolically. For localized tent flows and the Lebesgue
measure, the proofs are short and simple.

Proof of Lemma A.5. We show that given (x, y), (w, z) ∈ Dc we can find a sequence
parameters

αn, βn ∈ [0, 1], in ∈ {1, 2}
so that the composition of the time 1 flows of the vector fields βnvαn,in

, defined
in (A.2), map x to w and y to z. Continuity in α and β then implies irreducibility of
the two point process. The key observation of the proof is that the vector fields (A.2)
can move the coordinates of two points (x, y) ∈ Dc independently.

Fix position (x, y), (w, z) ∈ Dc and let d(·, ·) be the distance on S1. Suppose
without loss of generality that x2 ̸= y2. Then we can fine an open interval I =
(a, b) ⊂ [0, 1] so that for all α ∈ I

Fα(x2) = 8(x2 − α) and Fα(y2) = 0 .
Furthermore Fα(x2) at one of the endpoints of I is 0. That is, Fa(x2) = 0 or
Fb(x2) = 0. Thus, we can find a vector field from (A.2) whose time one flow
translates x1 without changing x2, y1, and y2. By repeatedly selecting α ∈ I, we
can map x1 to w1 without changing any other coordinate. By repeating this process
with each coordinate we can map (x, y) to (w, z) as desired. □

Proof of Lemma A.6. We show that for any two elements, (x, u), (y, u′) ∈ T2 × P1,
there is a sequence of αn, βn ∈ [0, 1], in ∈ {1, 2} such that the composition of the
time 1 flows of the vector fields, βnvαn,in

, map x to y. Furthermore, the derivative
of the composition of time one flows map u to u′. Continuity in α and β implies

irreducibility of the projective process. The lemma follows by observing that for
any x ∈ T2 we can find vn, defined in (A.2), such that the derivative matrix at x is
given by

(A.3) Aβ =
(

1 8β
0 1

)
or Bβ =

(
1 −8β
0 1

)
,

which is notably independent α. Consider the projective process as elements of
R2 − {0} under the equivalence relation u ∼ u′ if and only if u = cu′ for some
constant c. For u ∈ P1, u ̸= (1, 0) we can rescale u so that the second coordinate is
1. Fix (x, u), (y, u′) ∈ T2 ×P1. Without loss of generality assume that neither u nor
u′ point in the direction e1

def= (1, 0). Indeed, suppose that they they do. Then we
can select a vertical shear so that (x, u) is mapped to say, (x0, u0) ∈ T2 × P1 where
u0 ̸= e1. Similarly, we can select a vertical shear that maps (y0, u

′
0) ∈ T2 × P1,

u′
0 ̸= e1, to (y, u′). By mapping (x0, u0) to (y0, u

′
0) we have a sequence of shears

that maps (x, u) to (y, u′). We may further assume without loss of generality that
u1 + 8 < u′

1. This is possible by repeatedly selecting vector fields whose derivative
at x is Bβ , defined in (A.3).

We now give the proof. First map x2 to y2 without mapping u to e1. This is
possible since for any β ∈ [0, 1] there exists α so that the time 1 flow of βvα,2 maps
x2 to y2. Select a vector field v = βvα,2 such that

Dxφ
v(x)u = Aβu = d =

(
u1 + 8β

1

)
and d1 − u′

1 ≡ 0 mod 8. By repeatedly selecting vector fields so that the derivative
is always A1 we can map (x, u) to(

z,

(
u′

1 − 8
1

))
for some z ∈ T2 such that z2 = y2. Now select α such that φvα,1(z) = y and
Dxφ

vα,1 = A1. The sequence of parameters, α, β, i, provide a realization of the
projective process which maps (x, u) to (y, u′). □
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