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Abstract. We consider a uniformly rotating viscous incompressible fluid and
estimate particle transport in the vertical direction (parallel to the rotation
axis). We prove that for short time and regular initial data, strong rotation
suppresses the vertical gradient of flow maps. The proof uses a diffusive La-
grangian formalism, and the suppression of the vertical gradient is a natural
and direct byproduct of the formalism.

1. Introduction

We consider a container filled with a viscous fluid of kinematic viscosity ν, and
rotating with a constant angular velocity Ω. The Navier-Stokes equations written
in a frame rotating with the container are ([4])

∂tu + (u · ∇)u − ν4u + ∇π + 2Ωe3 × u = 0(1.1)

∇ · u = 0(1.2)

where e3 is the vertical unit vector, π = p
%
− 1

2 |Ω × r|2, p is the pressure and % the

density.
In the absence of viscosity and inertia, the Taylor-Proudman theorem [4] implies

that all steady slow motions in a rotating fluid are necessarily two dimensional.
In classical experiments, G. I. Taylor verified this by injecting ink droplets in a
uniformly rotating tank of water. He observed that if the motion was slow and
steady, the ink droplets were drawn into thin sheets which remained parallel to
each other and mutually perpendicular to the axis of rotation.

A well developed mathematical approach to study the effect of strong rotation on
fluids is based on the averaging method. The Coriolis force introduces a linear, anti-
symmetric perturbation to the nonlinear Navier-Stokes equations, and in the limit
of very strong rotation only the resonant terms survive. One class of resonant terms
represent two dimensional motion (see [3]). In the context of fluids, this strategy has
been used by many authors [1, 2, 3, 5, 11, 15]. The averaging method has the benefit
that it leads to effective equations describing all fully three-dimensional resonant
interactions. Global in time regularity of the resonant equations was proved in [3].

In this paper we employ a different approach, based on diffusive Lagrangian
transformations [9]. For short time and regular initial data (u0 ∈ H

7

2
+), the sup-

pression of vertical transport in the presence of rotation is a natural and direct
byproduct of the formalism.

We consider maps representing the particle motion. We show that for short
time, and regular initial data the gradient in the direction of the rotation axis
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(vertical gradient) of the flow map and of the diffusive flow map are suppressed
when the rotation is strong. More precisely, let X̄(a, t) be the position at time t of
a particle in the fluid starting from a at time 0. If the initial velocity is smooth,
then standard theory shows the existence of a time interval [0, T ] (independent of
the forcing rotation Ω) where the flow map X̄ is smooth. We show that for all
t ∈ [0, T ]

∣

∣

∣

∣

∂

∂a3

(

X̄(a, t) − a
)

∣

∣

∣

∣

6 K
(

ρ + νt‖C‖2
L∞(I×[0,T ]) + νt‖∇C‖L∞(I×[0,T ])

)

where C are the commutator coefficients (defined in (2.4)), ∂
∂a3

= e3·∇a is derivative
in the vertical direction, K is a non-dimensional constant and ρ is the maximal local
Rossby number. The maximal local Rossby number is defined by

(1.3) ρ = sup
t∈[0,T ]

‖ω(·, t)‖L∞

Ω

where ω is the relative vorticity, ω = ∇ × u. We also remark (in Section 5) that
for given (regular) initial data, the commutator coefficients C can be bounded
independently of Ω. Finally, if X is the diffusive flow map of the fluid (defined
below) we show

∣

∣

∣

∣

∂

∂a3
(X(a, t) − a)

∣

∣

∣

∣

6 K
(

ρ + νt‖C‖2
∞

)

.

As ρ → 0 and ν → 0 one obtains a complete suppression of vertical displacement
in both the traditional and diffusive flow maps. (The traditional and the diffusive
maps coincide when ν = 0.) One should also note that, for smooth flows, the viscous
correction is smaller than O(

√
νt), the correction one would get by superposing

Brownian vertical drift to horizontal rigid body rotation [14].
The Eulerian-Lagrangian formulation of the Euler and Navier-Stokes equations

developed in [8], [9] was extended to rotating fluids in [10]. The suppression of
vertical transport was proved there only for ν = 0. We provide a brief introduction
to the Euler-Lagrangian formulation below, and then proceed to prove suppression
of the vertical gradient in the viscous case.

2. Introduction to the Eulerian-Lagrangian formulation

We first define the diffusive evolution operator Dν,u by

Dν,u = ∂t + (u · ∇) − ν4
where ν > 0 and u is any divergence-free function. In our context, we always think
of ν as the viscosity of the fluid, and u as the velocity. Where there is no ambiguity
about ν and u, we will drop the subscript. Notice that when there is no viscosity,
D0 is the convective derivative.

In [10] it was shown that the equations (1.1) – (1.2) are equivalent to the system
of equations:

Dν,uA = 0(2.1)

u = P((∇A)tv)(2.2)

Dν,uvβ = 2νCi
j,β∂jvi + 2Ων(e3, ∂jA, C ·

j,β)(2.3)

Cα
j,i = (∇A)−1

ki ∂k∂jAα(2.4)
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with initial data

A(x, 0) = x(2.5)

v(x, 0) = u0(x).(2.6)

In the absence of viscosity, A is the inverse of the flow map of the fluid – the
‘back to labels map’ or inverse Lagrangian. That is, if X(a, t) is the position of a
particle starting at a at time t, then A(X(a, t), t) = a for all time. With viscosity,
A is a diffusive analogue. The traditional particle paths are characteristics of the
underlying hyperbolic system. In the presence of viscosity these characteristics no
longer carry enough information. The diffusive maps do.

The velocity u is recovered from the diffusive inverse Lagrangian by means of
the Webber formula (2.2). The P is the Leray-Hodge projector onto divergence
free vector fields. P can be expressed as a combination of Riesz transforms (see for
instance [6] and [16]).

In the absence of viscosity, the evolution equation of v becomes

∂tv + (u · ∇)v = 0.

Thus v is passively advected by the fluid, and hence

(2.7) v = u0 ◦ A.

In the presence of viscosity however, v is no longer passively advected, and the
evolution of v is governed by (2.3) where we use the notation (u, v, w) to denote
the determinant of the 3×3 matrix with columns u, v, and w. We call v the virtual
velocity.

One natural question to ask is about the invertability of A(·, t). In the absence
of viscosity, A is the inverse of the flow map of the fluid: it is invertible. In the
presence of viscosity, it is known [9] that

(2.8) D ln det(∇A) = νCi
k;sC

s
k;i

showing that for small time t, the determinant of ∇A is non zero, and hence A is
locally invertible.

Global invertability is a more topological question. If for short time T the
velocity u is differentiable enough, then parabolic regularity [12] will ensure A is
continuous as a function of space and time. In this case the map A(·, t) provides
a continuous homotopy between the identity map and A(·, T ) showing that the
topological degree [13] of A is 1. For short time the determinant of ∇A is non zero
(hence positive), so A is always orientation preserving. Combined with the fact
that the degree of A is 1, A must be bijective. Thus for short time T , one can
invert A spatially. Long times would require resettings; this is not in the scope of
the present work.

As A can be inverted, we consider the coordinate frame given by the map A.
We define the Lagrangian gradient ∂A to be the gradient in the coordinates given
by A. The commutator coefficients Ck

j,i arise from the commutator relation

(2.9) ∂A
i ∂j − ∂j∂

A
i = [∂A

i , ∂j ] = Ck
j,i∂

A
k

between the Eulerian gradient ∂ and the Lagrangian gradient ∂A. In [9] the com-
mutator relation between the Lagrangian gradient ∂A and the diffusive evolution
operator Dν was shown to be

(2.10) [Dν,u, ∂A
i ] = 2νCk

j,i∂j∂
A
k .
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As only the evolution equation of A is used in proving (2.10), this relation remains
unchanged in the rotating frame.

We define the diffusive Lagrangian X by the equation

X(A(x, t), t) = x

and the diffusive Lagrangian displacements by

`(x, t) = A(x, t) − x

λ(a, t) = X(a, t) − a.

We study the equations (2.1) – (2.6) with spatially periodic boundary conditions
(and period 1) along coordinate directions. For this we demand that the diffusive
Lagrangian displacement ` and the initial data u0 to be periodic. We establish
some notation: we let I = [0, 1]3 be the unit cube and, by convention, all Lp norms
will be in space only (not in space and time), unless explicitly indicated.

In this formulation we show that ‖∂3λ‖∞ 6 O(ρ+νt‖C‖2
L∞(I×[0,T ])). Further, in

the limit Ω → ∞, ‖∂3λ‖∞ 6 O(νt‖C‖2
L∞(I×[0,T ])). We then compare the diffusive

Lagrangian paths and Lagrangian paths, and show that they differ (in C1) by
O(νt[‖C‖2

L∞(I×[0,T ]) + ‖∇C‖L∞(I×[0,T ])]). Combining the two results we obtain

that vertical gradient of the Lagrangian displacement is O(ρ + νt[‖C‖2
L∞(I×[0,T ]) +

‖∇C‖L∞(I×[0,T ])]).

3. Evolution and bounds for the virtual vorticity

We begin by obtaining bounds for the virtual vorticity ζ (defined below) in terms
of the original vorticity ω0 and the forcing rotation Ω.

Definition 3.1. We define the virtual vorticity ζ to be the Lagrangian curl of the
virtual velocity (i.e. ζ = ∂A × v).

Proposition 3.2. The evolution equation for the virtual vorticity is given by

(3.1) Dζγ = 2νCi
j,i∂jζγ − 2νC

γ
j,k∂jζk + νεαβγεkimCi

j,βCk
j,αζm

+ 2Ωνεαβγ(e3, C
·
j,α, C ·

j,β).

Proof. Recall the formula

∇× v = εijk∂ivjek

where εijk is the signature. We apply εαβγ∂A
α to both sides of (2.3) and use the

commutator relation (2.10) to obtain

(3.2) Dζγ = 2νεαβγ∂A
α Ci

j,β∂jvi + 2νεαβγCi
j,β∂A

α ∂jvi + 2νεαβγCi
j,α∂j∂

A
i vβ

+ 2Ωνεαβγ∂A
α (e3, ∂jA, C ·

j,β).

Using equation (2.4) we see

2νεαβγ∂A
α Ci

j,β∂jvi = 2νεαβγ∂A
α ∂A

β ∂jAi∂jvi.

As an interchange of α and β produces a sign change, the term on the right is 0,
and hence

(3.3) 2νεαβγ∂A
α Ci

j,β∂jvi = 0.



TRANSPORT IN VISCOUS ROTATING FLUIDS 5

We now deal with the second and third terms on the right hand side of (3.2).
Interchanging α and β in the third term, and using the commutator relation (2.9)
we have

2νεαβγCi
j,β∂A

α ∂jvi + 2νεβαγCi
j,β∂j∂

A
i vα

= 2νεαβγ

(

Ci
j,β∂j

[

∂A
α vi − ∂A

i vα

])

+ 2νεαβγCi
j,β

[

∂A
α ∂j − ∂j∂

A
α

]

vi

= 2νεαβγεαikCi
j,β∂jζk + 2νεαβγCi

j,βCk
j,α∂A

k vi

= 2νεαβγεαikCi
j,β∂jζk + νεαβγCi

j,βCk
j,α(∂A

k vi − ∂A
i vk)

= 2νCi
j,i∂jζγ − 2νC

γ
j,k∂jζk + νεαβγεkimCi

j,βCk
j,αζm.(3.4)

We finally deal with the last term of (3.2). Using equation (2.9) we have

εαβγ∂A
α (e3, ∂jA, C ·

j,β) = εαβγ(e3, ∂
A
α ∂jA, C ·

j,β) + εαβγ(e3, ∂jA, ∂A
α C ·

j,β)

= εαβγ(e3, C
·
j,α, C ·

j,β) + εαβγ(e3, ∂jA, ∂A
α ∂A

β ∂jA).

Again, note that interchanging α and β, the last term in (3.5) changes sign, and
hence must be 0. Thus

(3.5) 2Ωνεαβγ∂A
α (e3, ∂jA, C ·

j,β) = 2Ωνεαβγ(e3, C
·
j,α, C ·

j,β).

Combining equations (3.3), (3.4) and (3.5) we are done. �

We now prove bounds for the virtual vorticity.

Proposition 3.3. There exists an absolute constant K such that

‖ζ‖L∞(I×[0,T ]) 6 ‖ω0‖∞e
R

T

0
Kν‖C‖2

∞ + Ω
(

e
R

T

0
Kν‖C‖2

∞ − 1
)

where ω0 = ∇×u0 is the initial vorticity. The constant K arises from counting the
number of terms in the expression Ck

j,i and can be computed explicitly.

Proof. We let |∇ζ| denote the Euclidean norm of ∇ζ. Let K be a constant which
changes from line to line. Starting with the product rule for D and using equation
(3.1) we have

Dζ2
γ = 2ζγDζγ − 2ν|∇ζγ |2

=⇒ D|ζ|2 + 2ν|∇ζ|2 6 νK‖C‖∞|ζ||∇ζ| + Kν‖C‖2
∞|ζ|2 + KΩν‖C‖2

∞|ζ|
6 ν|∇ζ|2 + Kν‖C‖2

∞

(

|ζ|2 + Ω|ζ|
)

=⇒ D|ζ|2 + ν|∇ζ|2 6 Kν‖C‖2
∞

(

|ζ|2 + Ω|ζ|
)

Multiplying by |ζ|p−2 and integrating over I gives

(3.6) 2

∫

I

|ζ|p−1∂t|ζ| + 2

∫

I

|ζ|p−1(u · ∇)|ζ| − ν

∫

I

|ζ|p−24|ζ|2

6 Kν‖C‖2
∞

[
∫

I

Ω|ζ|p−1 +

∫

I

|ζ|p
]
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Integrating by parts we find
∫

I

|ζ|p−1(u.∇)|ζ| = −
∫

I

|ζ|(u.∇)|ζ|p−1

= −(p − 1)

∫

I

|ζ|p−1(u.∇)|ζ|

=⇒
∫

I

|ζ|p−1(u.∇)|ζ| = 0.(3.7)

Further, when p > 2,

(3.8)

∫

I

|ζ|p−24|ζ|2 = −2(p− 2)

∫

I

|ζ|p−3
∣

∣∇|ζ|2
∣

∣

2
6 0

Substituting (3.7) and (3.8) in (3.6) we have

2

p

∫

I

∂t|ζ|p 6 Kν‖C‖2
∞

[

Ω‖ζ‖p−1
p−1 + ‖ζ‖p

p

]

=⇒ 2‖ζ‖p−1
p ∂t‖ζ‖p 6 Kν‖C‖2

∞

[

Ω‖ζ‖p−1
p + ‖ζ‖p

p

]

(3.9)

=⇒ ∂t‖ζ‖p 6 Kν‖C‖2
∞ [Ω + ‖ζ‖p]

In (3.9) we used ‖ζ‖p−1 6 ‖ζ‖p, which is true because I has measure 1. Finally,
integrating out the above ODE and solving we obtain

‖ζ‖p 6 ‖ζ0‖pe
R

T

0
Kν‖C‖2

∞ + Ω
(

e
R

T

0
Kν‖C‖2

∞ − 1
)

At time 0 the Lagrangian coordinates and Eulerian coordinates are the same, so
we have

ζ0 = ∂A × v0 = ∇× u0 = ω0.

Finally, as the domain has measure 1,

‖ζ‖∞ = lim
p→∞

‖ζ‖p

and the proposition follows. �

4. Bounds for ∂3` and ∂3λ

Theorem 4.1. Consider a short time T such that

(4.1) ‖∇`‖L∞(I×[0,T ]) = sup
16i,j63

‖∂j`i‖L∞(I×[0,T ]) 6 g.

There exists a constant G depending only on g, and an absolute constant K (which
arises as in Proposition 3.3) such that

‖∂3λ‖L∞(I×[0,T ]) 6 G
[

e
R

T

0
Kν‖C‖2

∞ρ + e
R

T

0
Kν‖C‖2

∞ − 1
]

(4.2)

and ‖∂3`‖L∞(I×[0,T ]) 6 G
[

e
R

T

0
Kν‖C‖2

∞ρ + e
R

T

0
Kν‖C‖2

∞ − 1
]

.(4.3)

Recall that ρ is the Rossby number is defined in (1.3).

Remark. Notice the right hand sides of (4.2) and (4.3) are O(ρ+νT‖C‖2
L∞(I×[0,T ])).

Before beginning the proof, we recall a few preliminaries.
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Definition 4.2. If M is a 3 × 3 matrix, and v ∈ R
3 we define C(M, v) by

C(M, v) =
1

2
εijk(M·j , M·k, v)ei.

Here M·i denotes the ith column of the matrix M , and the notation (u, v, w) refers
to the determinant of the 3 × 3 matrix with columns u, v and w.

Lemma 4.3. If M is invertible, then C(M, v) = det(M)M−1v

Proof. It is enough to show that MC(M, v) = det(M)v. Notice that

MC(M, v) = MniC(M, v)ien

=
1

2
εijkεpqrMniMpjMqkvren

=
1

2
εpqr det(M)δnrvren

= det(M)v. �

We finally recall the Cauchy formula [10], which states

(4.4) ω + 2Ωe3 = C(∇A, ζ + 2Ωe3)

where ω = ∇ × u. The Cauchy formula can be proved by direct computation
starting from (2.2). We do not reproduce it here, and refer the reader to [10]. We
also remark that in the absence of rotation the Cauchy formula [9] is

ω = C(∇A, ζ)

confirming the understanding [4] that in the presence of rotation, ω + 2Ωe3 plays
the same role as ω in the absence of rotation. We are now ready for the proof of
Theorem 4.1.

Proof of Theorem 4.1. From Cauchy formula (4.4) we have

ω + 2Ωe3 = C(∇A, ζ + 2Ωe3)

= C(∇A, ζ) + 2Ω · C(∇A, e3)

= C(∇A, ζ) + 2Ω det(∇A) · (∇Xe3)

=⇒ 1

2Ω
(ω − C(∇A, ζ)) = (det(∇A)∇X − I)e3

= det(∇A)(∇X − I)e3 + (det(∇A)I − I)e3

= det(∇A)∂3λ + (det(∇A) − 1)e3

=⇒ ∂3λ =
det(∇X)

2Ω
(ω − C(∇A, ζ)) + (det(∇X) − 1)e3

=⇒ |∂3λ| 6
det(∇X)

2Ω
|ω − C(∇A, ζ)| + det(∇X) − 1(4.5)

Using equation (2.8) and the maximum principle for D (or an argument similar
to the proof of Proposition 3.3) and det(∇A(·, 0)) = 1 = det(∇X(·, 0)) we obtain

e−
R

T

0
Kν‖C‖2

∞ 6 det(∇A) 6 e
R

T

0
Kν‖C‖2

∞(4.6)

and e−
R

T

0
Kν‖C‖2

∞ 6 det(∇X) 6 e
R

T

0
Kν‖C‖2

∞ .(4.7)

Also, counting terms in the expression C(∇A, ζ) we see that

(4.8) |C(∇A, ζ)| 6 3(1 + 4g + 6g2)‖ζ‖∞.
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Using Proposition 3.3 and equations (4.7), (4.8) in (4.5) we obtain equation (4.2).

The bounds for ∂3` follow from the bounds for ∂3λ quickly. Note that

∂3` = (∇A − I)e3

= ∇A(I −∇X)e3

= −∇A(∂3λ)

=⇒ ‖∂3`‖∞ 6 (1 + 3g)‖∂3λ‖∞(4.9)

and using (4.2), equation (4.3) follows. �

We finally remark that we can deduce the inviscid case from our proof above. In
[10] it was shown that in the absence of viscosity |∂3λ| 6 O(ρ). We deduce this as
follows.

Taking the Lagrangian curl of equation (2.7) immediately gives ζ = ω0◦A, hence
we conclude

(4.10) ‖ζ‖∞ = ‖ω0‖∞.

In the absence of viscosity, X is the flow map of an incompressible fluid, and so
det(∇X) = 1 = det(∇A). Using this, (4.8) and (4.10) in (4.5) we obtain

(4.11) |∂3λ| 6 Gρ

where the constant G depends only on g. Thus |∂3λ| 6 O(ρ).

5. Asymptotic behaviour under fast rotation

We now wish to investigate the behaviour of the fluid as Ω → ∞. We begin by
showing that our assumption in equation (4.1) is satisfied for regular initial data.

Theorem 5.1. Let u0 ∈ Hs be periodic and divergence free. There exists a time
T > 0 depending only on ‖u0‖Hs (but independent of Ω) such that for any Ω > 0,
the Navier-Stokes equations in a rotating frame (1.1) – (1.2) with periodic boundary
conditions and initial data u0 have a solution in C(0, T ; Hs). Further on the interval
[0, T ], we can bound ‖u‖Hs independent of Ω.

We do not provide the proof of this theorem here, however we remark that the
proof follows from the fact that e3 × u is orthogonal to u, and hence if we take
the inner product of equation (1.1) with u and integrate, we no longer have any
Ω dependence. The same holds for higher derivatives of u, and we obtain local
existence through Galerkin approximations [7] in exactly the same manner as we
did in the absence of rotation.

Now, if we start with initial data u0 ∈ Hs, with s > 7
2 , then the Sobolev em-

bedding theorem guarantees u ∈ C2. Given a fixed u ∈ C2, the evolution equation
for A is a linear parabolic equation with C2 coefficients, and standard parabolic
regularity shows two derivatives of A are continuous and bounded (independently
of Ω) showing equation (4.1) is satisfied.

Along these lines we note that if u0 ∈ Hs with s > 7
2 , then ‖ω‖∞ is bounded

uniformly in Ω. Hence as Ω → ∞, ρ → 0. We now exhibit the existence of a limit
as Ω → ∞.
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Theorem 5.2. Let u0 ∈ Hs with s > 7
2 be a fixed divergence free vector field. Let

(Ωn) → ∞, and An be the diffusive Lagrangian map that solves equations (2.1) –
(2.6) on the time interval [0, T ] with spatially periodic boundary conditions. Then
there exists a subsequence (denoted by n for convenience), and a map A such that
An → A strongly in C(0, T ; C2(I)). Further if Cn are the commutator coefficients
associated to An, and we define

g = sup
n∈N

‖∇`n‖L∞(I×[0,T ])

and c = sup
n∈N

‖Cn‖L∞(I×[0,T ]).

Then both c and g are finite, and there exists a constant G depending only on g,
and an absolute constant K which arises as in Theorem 4.1 such that

(5.1) ‖∂3A − e3‖L∞(I×[0,T ]) 6 G
(

eKνTc2 − 1
)

.

Remark. Observe that the right hand side of (5.1) is O(νT ). As remarked ear-

lier, this is smaller than O(
√

νT ) which is the viscous correction one obtains by
superposing a Brownian vertical drift to a laminar flow.

Proof. Let un be the velocity associated to the map An. It is known ([10]) that
un solves the Navier-Stokes equations (1.1) – (1.2) with periodic boundary condi-
tions. From Theorem 5.1 it follows that ‖un‖Hs can be bounded independently of
n, and hence (by the argument preceding the theorem) ‖An‖Hs is bounded inde-
pendently of n on the interval [0, T ]. Now because equation (2.1) does not involve
Ω we can also bound ‖∂tAn‖Hs−2 independently of n on the interval [0, T ]. Thus
there exists a subsequence (denoted by n) such that An converges weakly to A

in C(0, T, Hs). The Sobolev embedding and Rellich theorems show that An → A

strongly in C(0, T ; C2(I)).
This immediately shows g is finite. We now let Cn be the commutator coefficients

associated to An. Note that, by reducing T if necessary, we can ensure ‖∇An −
I‖L∞(I×[0,T ]) < 1

2 , and hence equation (2.4) guarantees c is finite. We conclude
by applying Theorem 4.1 to An with g as above. We know ρ → 0 as Ω → ∞ and
An → A in C2, so taking limits on both sides of (4.3) we are done. �

6. Diffusive Lagrangian paths and Lagrangian paths

We conclude by studying the difference between the Lagrangian paths and the
diffusive Lagrangian paths.

Proposition 6.1. Let X̄ be the flow map of the fluid, and Ā the inverse of X̄. If
X̄ is C3 and for short time T equation (4.1) holds, then there exists a constant G

depending only on g such that

‖A − Ā‖∞ 6

∫ T

0

Gν‖C‖∞(6.1)

and ‖X − X̄‖∞ 6

∫ T

0

Gν‖C‖∞.(6.2)

Proof. Differentiating the identity Ā(X̄(a, t), t) = a with respect to time, we have

∂tĀ + (u · ∇)Ā = 0

Ā(x, 0) = x
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We set δ = A − Ā. Clearly

∂tδ + (u · ∇)δ = ν4A(6.3)

δ(x, 0) = 0(6.4)

From equation (2.4), the definition of C we see that

∂iAkCα
j,k = ∂i∂jAα(6.5)

=⇒ |4A| 6 G‖C‖∞
and hence, integrating (6.3) along particle paths we obtain equation (6.1).

Equation (6.2) follows quickly from this. Take any a in our domain, and let
x̄ = X̄(a, t) and ā = A(x̄, t). Then

|A(x̄, t) − Ā(x̄, t)| 6

∫ T

0

Gν‖C‖∞

=⇒ |ā − a| 6

∫ T

0

Gν‖C‖∞

=⇒ |X(ā, t) − X(a, t)| 6 |∇X |
∫ T

0

Gν‖C‖∞

=⇒ |x̄ − X(a, t)| 6 |∇X |
∫ T

0

Gν‖C‖∞

=⇒ |X̄(a, t) − X(a, t)| 6 |∇X |
∫ T

0

Gν‖C‖∞

As |∇X | is clearly controlled by g, we are done. �

We now investigate the difference in gradients of X and X̄. We first require a
slight variant of Gronwall’s lemma.

Lemma 6.2. If a, b > 0 are two constants, and y : [0, T ] → R is a differentiable
function satisfying

(6.6) y′(t) 6 a + by(t) ∀t ∈ [0, T ]

then for all t ∈ [0, T ] we have

y(t) 6 (y(0) + at)ebt.

Proof. Differentiating y(t)e−bt and using (6.6) immediately yields the Lemma. The
details are elementary and are left to the reader. �

Proposition 6.3. We define C and F by

C = ‖C‖2
L∞(I×[0,T ]) + ‖∇C‖L∞(I×[0,T ]) = sup

06t6T

‖C‖2
∞ + ‖∇C‖∞

and F = ‖∇u‖L∞(I×[0,T ]) = sup
06t6T

‖∇u‖∞

Then with the same notation and assumptions of Proposition 6.1, there exists a
constant G depending only on g such that

‖∇A −∇Ā‖∞ 6 GνtCeF t(6.7)

‖∇X −∇X̄‖∞ 6 GνtCeF t(6.8)
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Proof. Let δ = A − Ā as before. Differentiating (6.3) we obtain

(6.9) ∂t∇δ + (u · ∇)∇δ = ν4∇A − (∇u)t∇δ.

Differentiating equation (6.5) we see

∂p∂i∂jAα = (∂p∂iAk)Cα
j,k + ∂iAk∂pC

α
j,k

=⇒ |4∇A| 6 G(‖C‖2
∞ + ‖∇C‖∞)

6 GC

Further, at time 0, A = Ā and hence ∇δ = 0. Integrating along particle paths and
using Lemma 6.2 we immediately obtain (6.7).

For the proof of (6.8), pick any a ∈ R
3. Let x = X(a, t) and x̄ = X̄(a, t). We let

G denote a constant (which depends only on g) that changes from line to line.

|∇X(a, t) −∇X̄(a, t)| =
∣

∣(∇A)−1(x, t) − (∇Ā)−1(x̄, t)
∣

∣

=
∣

∣(∇A)−1(x, t) − (∇A)−1(x̄, t)+

(∇A)−1(x̄, t) − (∇Ā)−1(x̄, t)
∣

∣

6 G‖C‖∞|x − x̄|+
∣

∣(∇A)−1(x̄, t)
[

∇Ā(x̄, t) −∇A(x̄, t)
]

(∇Ā)−1(x̄, t)
∣

∣

6 G[νCt + νCteF t]

6 GνCteF t �

Corollary 6.4. With the same assumptions as Theorem 4.1, and with C and F as
in Proposition 6.3, there exists a constant G depending only on g, and an absolute
constant K (which arises as in Proposition 3.3) such that

‖∂3
¯̀‖∞ 6 G

[

e
R

T

0
Kν‖C‖2

∞ρ + e
R

T

0
Kν‖C‖2

∞ − 1 + νTCeFT
]

(6.10)

and ‖∂3λ̄‖∞ 6 G
[

e
R

T

0
Kν‖C‖2

∞ρ + e
R

T

0
Kν‖C‖2

∞ − 1 + νTCeFT
]

(6.11)

where λ̄ and ¯̀ are the traditional Eulerian and Lagrangian displacements respec-
tively.

Proof. The corollary follows directly from Theorem 4.1 and Proposition 6.3. �

Remark. From Theorem 5.1 we see that if the initial data u0 ∈ Hs with s > 7
2 then

F can be bounded independently of Ω, and hence the right hand sides of (6.10) and
(6.11) are both O(ρ + νTC) = O(ρ + νT‖C‖2

L∞(I×[0,T ]) + νT‖∇C‖L∞(I×[0,T ])).

7. Conclusion

We showed that the vertical gradient of the diffusive Lagrangian displacement is
bounded uniformly O(ρ + νt‖C‖2

L∞(I×[0,T ])) where ρ is the maximal local Rossby

number, and C are the commutator coefficients. As the magnitude of the imposed
rotation goes to infinity, the Rossby number tends to zero, and we showed that
in the limit (of a subsequence) the vertical gradient of the diffusive Lagrangian is
O(νt‖C‖L∞(I×[0,T ])).

We compared the Lagrangian and diffusive Lagrangian maps. For fixed initial
data (but arbitrary forcing rotation) they differ by O(νt‖C‖2

∞) in the L∞ spatial
norm. In the C1 (spatial) norm however, they differ by O(νt[‖C‖2

L∞(I×[0,T ]) +
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‖∇C‖L∞(I×[0,T ])]). Hence we see that vertical gradient of the flow map is O(ρ +

νt[‖C‖2
L∞(I×[0,T ]) + ‖∇C‖L∞(I×[0,T ])]).
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