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Abstract. We prove existence and regularity of the stochastic flows used
in the stochastic Lagrangian formulation of the incompressible Navier-Stokes
equations (with periodic boundary conditions), and consequently obtain a
Ck,α local existence result for the Navier-Stokes equations. Our estimates
are independent of viscosity, allowing us to consider the inviscid limit. We
show that as ν → 0, solutions of the stochastic Lagrangian formulation (with
periodic boundary conditions) converge to solutions of the Euler equations at

the rate of O(
√

νt).

1. Introduction

Consider an incompressible inviscid fluid with velocity field u in the absence of
external forcing. The evolution of the velocity field is governed by the Euler [3]
equations

∂tu + (u · ∇)u + ∇p = 0(1.1)

∇ · u = 0.(1.2)

Viscosity introduces a diffusive term in the Euler equations and equation (1.1)
becomes

(1.3) ∂tu + (u · ∇) u − ν4u + ∇p = 0.

The Kolmogorov backward and Feynman-Kac formulae [11] show that any lin-
ear, diffusive, second order PDE can be obtained by averaging out a stochastic
perturbation of an ODE. The theory for non-linear PDE’s is not as well developed.
We are interested in interpreting the Navier-Stokes equations as the average of a
suitable stochastic perturbation of the Euler equations.

Many interesting non-linear PDE’s have been interpreted as averaging of sto-
chastic processes, the simplest example being the Kolmogorov reaction diffusion
equation [14]. In two dimensions the same is possible for the Navier-Stokes equa-
tions as the vorticity satisfies a standard Fokker-Plank equation. This combined
with the Biot-Savart law led to the random vortex method [16] and has been used
and studied extensively. In three dimensions the problem is a little harder as the
vorticity equation is no longer of Fokker-Plank type, and the non-linearity causes
trouble.

In [15] Le Jan and Sznitman used a backward in time branching process in
Fourier space to express the Navier-Stokes equations as the expected value of a
stochastic process. This approach led to a new existence theorem, and was later [1]
generalized and physical space analogues were developed.
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An approach more along the lines of this paper was developed by Busnello,
Flandoli and Romito [2] who considered ‘noisy’ flow paths, and used Girsanov
transformations to recover the velocity field. They obtained the 3-dimensional
Navier-Stokes equations in this form, and generalized their method to work for a
general class of second order parabolic equations. A different technique was used by
Gomes [9] to express the diffusive Lagrangian [5] as the expected value minimizer
of a suitable functional. Finally we mention similar systems have been considered
by Jourdain et al in [10].

Our approach1 is to introduce a Brownian drift into the active vector formulation
[4] of the Euler equations. Peter Constantin and the author showed [7] that this
provides a physically meaningful, explicit stochastic representation of the Navier-
Stokes equations. While long time dynamics of the system we consider are presently
unknown, we hope that techniques used here will lead to control of the growth of
certain quantities with non-zero probability. For example, we would like to find
an exponential bound for ∇X which holds with non-zero probability. Finding an
almost sure bound of this form will lead to global existence.

In this paper, we consider the flow given by the stochastic differential equation

(1.4) dX = u dt +
√

2ν dB

with initial data

(1.5) X(a, 0) = a.

Here ν > 0 represents the viscosity, and B represents a 3-dimensional Wiener
process (we use the letter B to avoid confusion with the Weber operator). We
recover the velocity field from X by

A = X−1(1.6)

u = EP
[

(∇tA) (u0 ◦A)
]

(1.7)

where E denotes the expected value with respect to the Wiener measure, P de-
notes the Leray-Hodge projection [3] on divergence free vector fields, and u0 is the
deterministic initial data. We clarify that by X−1 in equation (1.6) we mean the
spatial inverse of X . We impose periodic boundary conditions, though all theorems
proved here will also work if we work with the domain R

3 and impose a decay at
infinity condition instead.

The motivation for considering the above system arises from the fact that in the
absence of viscosity, the system (1.4)–(1.7) reduces to

∂tA + (u · ∇)A = 0(1.8)

A(x, 0) = x(1.9)

u = P
[

(∇tA)(u0 ◦ A)
]

.(1.10)

Peter Constantin proved [4] that u is a solution of the (deterministic) system (1.8)–
(1.10) if and only if u is a solution of the incompressible Euler equations (1.1)–(1.2)

1In the original version of this paper, our intention was to propose this as a physically mean-

ingful model for the Navier-Stokes equations. We presented a proof that the solution of the system
considered here differs from the solution of the Navier-Stokes equations by O(t3/2). Six months af-
ter submission of the original version of this paper, the author and Peter Constantin [7] discovered
that the equations considered here are exactly equivalent to the Navier-Stokes equations.
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with initial data u0. Thus the system (1.4)–(1.7) can be thought of as superimpos-
ing the Wiener process on the flow map, intuitively representing Brownian motion
of fluid particles. Physically, the Brownian particle interaction is regarded as the
source of viscosity, and the equivalence of (1.4)–(1.7) and the Navier-Stokes equa-
tions proved in [7] confirms this. We remark that equation (1.7) provides an explicit
formula for u in terms of the map X .

In this paper, we provide a self contained proof of a Ck,α local existence theorem
for the stochastic system (1.4)–(1.7). The proof in [7] showing equivalence between
Navier-Stokes and (1.4)–(1.7) relies crucially on spatial regularity of solutions as
stated in Theorem 2.1. We remark that the stochastic representation of Busnello,
Flandoli and Romito does not admit a self contained existence proof as we have
here.

The estimates, and existence time can be chosen independent of the viscosity,
thus enabling us to consider the vanishing viscosity limit. We show that as ν → 0,
the solution of (1.4)–(1.7) converges to the solution of the Euler equations at the
rate of O(

√
νt). We remark that the limit ν → 0 is not well understood in bounded

domains using classical methods. We hope that this stochastic formulation (when
extended to bounded domains) will give us a better handle on computing this limit.

In the next section, we establish our notational convention, and describe precisely
the results we prove in this paper. In section 3 we prove bounds on the Weber
operator, which are essential to all proofs presented in this paper. In section 4
we prove local existence for (1.4)–(1.7) and the vanishing viscosity limit. Finally,
in section 5, we digress and present an alternate proof of local existence for the
Navier-Stokes equations using the diffusive Lagrangian formulation [5].

2. Notational convention and Description of results

In this section we describe the main results we prove. We begin by establishing
our notational convention. We let I denote the cube [0, L]3 with side of length L.
We define the Hölder norms and semi-norms on I by

|u|α = sup
x,y∈I

Lα |u(x) − u(y)|
|x − y|α

‖u‖Ck =
∑

|m|6k

L|m| sup
I

|Dmu|

‖u‖k,α = ‖u‖Ck +
∑

|m|=k

Lk |Dmu|α

where Dm denotes the derivative with respect to the multi index m. We let Ck de-
note the space of all k-times continuously differentiable spatially periodic functions
on I, and Ck,α denote the space of all spatially periodic k + α Hölder continuous
functions. The spaces Ck and Ck,α are endowed with the norms ‖ · ‖Ck and ‖ · ‖k,α

respectively.
We use I to denote the identity function on R

3 or I (depending on the context),
and use I to denote the identity matrix. The first theorem we prove addresses local
(in time) existence for the system (1.4)–(1.7):

Theorem 2.1. Let k > 1 and u0 ∈ Ck+1,α be divergence free. There exists a time

T = T (k, α, L, ‖u0‖k+1,α), but independent of viscosity, and a pair of functions
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λ, u ∈ C([0, T ], Ck+1,α) such that u and X = I + λ satisfy the system (1.4)–(1.7).
Further ∃U = U(k, α, L, ‖u0‖k+1,α) such that t ∈ [0, T ] =⇒ ‖u(t)‖k+1,α 6 U .

We prove this theorem in section 4. Our proof will also give a local existence
result for the Euler equations, or any stochastic perturbation similar to the one
considered here. We remark that the estimates required for this theorem along
with Constantin’s diffusive Lagrangian formulation [5] also gives us local existence
for the Navier-Stokes equations. In section 5, we digress and present this proof.

We remark that Theorem 2.1 is still true when k = 0. The only modification
we need to make to our proof is to the inequalities in Lemma 4.1 which we do not
carry out here.

Since our estimates, and local existence time are independent of viscosity, we
can address the question of convergence in the limit ν → 0.

Proposition 2.2. Let u0 ∈ Ck+1,α be divergence free, and U , T be as in Theorem

2.1. For each ν > 0 we let uν be the solution of the system (1.4)–(1.7) on the time

interval [0, T ]. Making T smaller if necessary, let u be the solution to the Euler

equations (1.1)–(1.2) with initial data u0 defined on the time interval [0, T ]. Then

there exists a constant c = c(k, α, U, L) such that for all t ∈ [0, T ] we have

‖u(t) − uν(t)‖k,α 6 cU
L

√
νt

At present we are unable to extend the above proposition to domains with bound-
aries. In this case, possible detachment of the boundary layer creates analytical
obstructions to understanding the inviscid limit. We present a proof of Proposi-
tion 2.2 at the end of section 4, and are presently working on extending it to work
for domains with boundaries.

3. The Weber operator and bounds.

In this section we define and obtain estimates for the Weber operator which will
be central to all subsequent results.

Definition 3.1. We define the Weber operator W : Ck,α × Ck+1,α → Ck,α by

W(v, `) = P
[(

I + ∇t`
)

v
]

where P is the Leray-Hodge projection [3] onto divergence free vector fields.

Remark 3.2. The range of W is Ck,α because multiplication by a Ck,α function is
bounded on Ck,α, and P is a classical Calderon-Zygmund singular integral operator
[17] which is bounded on Hölder spaces.

Remark. In the whole space, or with periodic boundary conditions, the Leray-Hodge
projection commutes with derivatives. This is not true for arbitrary domains [6].

Formally it seems that W(v, `) should have one less derivative than `. However
we prove below that W(v, `) has as many derivatives as `. The reason being, when
we differentiate W(v, `), we can use ‘integration by parts’ to express the right hand
side only in terms of first order derivatives.

Lemma 3.3 (Integration by parts). If u, v ∈ C1,α then

P
[(

∇tu
)

v
]

= −P
[(

∇tv
)

u
]
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Proof. This follows immediately from the identity
(

∇tu
)

v +
(

∇tv
)

u = ∇(u · v)

and the fact that P vanishes on gradients. �

Corollary 3.4. If k > 1 and v, ` ∈ Ck,α then W(v, `) ∈ Ck,α and

‖W(v, `)‖k,α 6 c
(

1 + ‖∇`‖k−1,α

)

‖v‖k,α .

Proof. Notice first that W(v, `) ∈ Ck−1,α by Remark 3.2. Now

∂iW(v, `) = P
[

(∇t∂i`)v + ∇t` ∂iv
]

= P
[

−∇tv ∂i` + ∇t` ∂iv
]

.

Now the right hand side has only first order derivatives of ` and v, hence ∇W(v, `) ∈
Ck−1,α and the proposition follows. �

Proposition 3.5. If k > 1 and `1, `2 ∈ Ck,α and v1, v2 ∈ Ck,α, are such that

‖∇`i‖k−1,α 6 d

and ‖vi‖k,α 6 U

for i = 1, 2, then there exists c = c(k, d, α) such that

(3.1) ‖W(v1, `1) −W(v2, `2)‖k,α 6 c
(

U
L ‖`1 − `2‖k,α + ‖v1 − v2‖k,α

)

.

If k = 0, the inequality (3.1) still holds provided we assume

‖∇`i‖α 6 d

and ‖vi‖1,α 6 U

for i = 1, 2.

Proof of Proposition 3.5. The main idea in the proof is to use ‘integration by parts’
to avoid the loss of derivative. By definition of W we have

W(v1, `1) −W(v2, `2) = P
[

(I + ∇t`1)v1 − (I + ∇t`2)v2

]

= P
[

(I + ∇t`1)(v1 − v2) + ∇t(`1 − `2)v2

]

= P
[

(I + ∇t`1)(v1 − v2) −∇tv2(`1 − `2)
]

.(3.2)

Further, differentiating we have

∂i [W(v1, `1) −W(v2, `2)] = ∂iP
[

(I + ∇t`1)(v1 − v2) −∇tv2(`1 − `2)
]

= P
[

∇t∂i`1(v1 − v2) + (I + ∇t`1)∂i(v2 − v1)−
−∇t∂iv2(`1 − `2) −∇tv2∂i(`2 − `1)

]

= P
[

−∇t(v1 − v2)∂i`1 + (I + ∇t`1)∂i(v2 − v1)+(3.3)

+ ∇t(`1 − `2)∂iv2 −∇tv2∂i(`2 − `1)
]

.

Note that we used Lemma 3.3 to ensure that the right hand sides of (3.2) and
(3.3) have only first order derivatives of ` and v. Thus taking the Ck−1,α norms of
equations (3.2) and (3.3), and using the fact that multiplication by a Ck,α function
and P are bounded on Ck,α, the proposition follows. �
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4. Local existence for the stochastic formulation.

In this section we prove local in time Ck,α existence for the stochastic system
(1.4)–(1.7) as stated in Theorem 2.1. We conclude by proving Proposition 2.2,
showing how the stochastic system (1.4)–(1.7) behaves as ν → 0. We begin with a
few preliminary results.

Lemma 4.1. If k > 1, then there exists a constant c = c(k, α) such that

‖f ◦ g‖k,α 6 c ‖f‖k,α

(

1 + ‖∇g‖k−1,α

)k+α

‖f ◦ g1 − f ◦ g2‖k,α 6 c ‖∇f‖k,α

(

1 + ‖∇g1‖k−1,α + ‖∇g2‖k−1,α

)k+1

‖g1 − g2‖k,α

and

‖f1 ◦ g1 − f2 ◦ g2‖k,α 6 c
(

1 + ‖∇g1‖k−1,α + ‖∇g2‖k−1,α

)k+1

·

·
[

‖f1 − f2‖k,α + min
{

‖∇f1‖k,α , ‖∇f2‖k,α

}

‖g1 − g2‖k,α

]

.

The proof of Lemma 4.1 is elementary and not presented here. We subsequently
use the above lemma repeatedly without reference or proof.

Lemma 4.2. Let X1, X2 ∈ Ck+1,α be such that

‖∇X1 − I‖k,α 6 d < 1 and ‖∇X2 − I‖k,α 6 d < 1.

Let A1 and A2 be the inverse of X1 and X2 respectively. Then there exists a constant

c = c(k, α, d) such that

‖A1 − A2‖k,α 6 c ‖X1 − X2‖k,α

Proof. Let c = c(k, α, d) be a constant that changes from line to line (we use this
convention implicitly throughout this paper). Note first ∇A = (∇X)−1 ◦ A, and
hence by Lemma 5.2

‖∇A‖C0 6
∥

∥(∇X)−1
∥

∥

C0
6 c.

Now using Lemma 5.2 to bound ‖(∇X)−1‖α we have

‖∇A‖α =
∥

∥(∇X)−1 ◦ A
∥

∥

α
6

∥

∥(∇X)−1
∥

∥

α
(1 + ‖∇A‖C0) 6 c

When k > 1, we again bound ‖(∇X)−1‖k,α by Lemma 5.2. Taking the Ck,α norm
of (∇X)−1 ◦ A we have

‖∇A‖k,α 6
∥

∥(∇X)−1
∥

∥

k,α

(

1 + ‖∇A‖k−1,α

)k

.

So by induction we can bound ‖∇A‖k,α by a constant c = c(k, α, d). The Lemma
now follows immediately from the identity

A1 − A2 = (A1 ◦ X2 − I) ◦ A2

= (A1 ◦ X2 − A1 ◦ X1) ◦ A2

and Lemma 4.1. �

Lemma 4.3. Let u ∈ C([0, T ], Ck+1,α) and X satisfy the SDE (1.4) with initial

data (1.5). Let λ = X − I and U = supt ‖u(t)‖k+1,α. Then there exists c =
c(k, α, ‖u‖k+1,α) such that for short time

‖∇λ(t)‖k,α 6
cUt

L
ecUt/L and ‖∇`(t)‖k,α 6

cUt

L
ecUt/L.
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Proof. From equation (1.4) we have

X(x, t) = x +

∫ t

0

u(X(x, s), s) ds +
√

2νBt

=⇒ ∇X(t) = I +

∫ t

0

(∇u) ◦ X · ∇X.(4.1)

Taking the C0 norm of equation (4.1) and using Gronwall’s Lemma we have

‖∇λ(t)‖C0 = ‖∇X(t) − I‖C0 6 eUt/L − 1.

Now taking the Ck,α norm in equation (4.1) we have

‖∇λ(t)‖k,α 6 c

∫ t

0

‖∇u‖k,α

(

1 + ‖∇λ‖k−1,α

)k (

1 + ‖∇λ‖k,α

)

.

The bound for ‖∇λ‖k,α now follows from the previous two inequalities, induction
and Gronwall’s Lemma. The bound for ‖∇`‖k,α then follows from Lemma 4.2.

We draw attention to the fact that the above argument can only bound ∇λ, and
not λ. Fortunately, our results only rely on a bound of ∇λ. �

Lemma 4.4. Let u, ū ∈ C([0, T ], Ck+1,α) be such that

sup
06t6T

‖u(t)‖k+1,α 6 U and sup
06t6T

‖ū(t)‖k+1,α 6 U.

Let X, X̄ be solutions of the SDE (1.4)–(1.5) with drift u and ū respectively, and

let A and Ā be the spatial inverse of X and X̄ respectively. Then there exists

c = c(k, α, U) and a time T = T (k, α, U) such that

∥

∥X(t) − X̄(t)
∥

∥

k,α
6 cecUt/L

∫ t

0

‖u − ū‖k,α(4.2)

∥

∥A(t) − Ā(t)
∥

∥

k,α
6 cecUt/L

∫ t

0

‖u − ū‖k,α(4.3)

for all 0 6 t 6 T ′.

Proof. We first use Lemma 4.3 to bound ‖∇X − I‖k,α and ‖∇X̄ − I‖k,α for short
time T ′. Now

X(t) − X̄(t) =

∫ t

0

u ◦ X − ū ◦ X̄

=⇒
∥

∥X(t) − X̄(t)
∥

∥

k,α
6

∫ t

0

∥

∥u ◦ X − ū ◦ X̄
∥

∥

k,α

6 c

∫ t

0

(

‖u − ū‖k,α +
U

L

∥

∥X − X̄
∥

∥

k,α

)

and inequality (4.2) follows by applying Gronwall’s Lemma. Inequality (4.3) follows
immediately from (4.2) and Lemma 4.2. �

We now provide the proof of Theorem 2.1. We reproduce the statement here for
convenience.

Theorem (2.1). Let k > 1 and u0 ∈ Ck+1,α be divergence free. There exists a time

T = T (k, α, L, ‖u0‖k+1,α), but independent of viscosity, and a pair of functions

λ, u ∈ C([0, T ], Ck+1,α) such that u and X = I + λ satisfy the system (1.4)–(1.7).
Further ∃U = U(k, α, L, ‖u0‖k+1,α) such that t ∈ [0, T ] =⇒ ‖u(t)‖k+1,α 6 U .
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Proof. Let U be a large constant, and T a small time, both of which will be specified
later. Define as before U and L by

U =
{

u ∈ C([0, T ], Ck+1,α)
∣

∣ ‖u(t)‖k+1,α 6 U, ∇ · u = 0 and u(0) = u0

}

and L =
{

` ∈ C([0, T ], Ck+1,α)
∣

∣ ‖∇`(t)‖k,α 6 1

2
∀t ∈ [0, T ] and `(·, 0) = 0

}

.

We clarify that the functions u and ` are required to be spatially Ck+1,α, and need
only be continuous in time.

Now given u ∈ U we define Xu to be the solution of equation (1.4) with initial
data (1.5) and λu = Xu − I be the Eulerian displacement. We define Au by
equation (1.6) and let `u = Au − I be the Lagrangian displacement. Finally we
define W : U → U by

W (u) = EW(u0 ◦ Au, `u).

We aim to show that W : U → U is Lipschitz in the weaker norm

‖u‖U = sup
06t6T

‖u(t)‖k,α

and when T is small enough, we will show that W is a contraction mapping.

Let c be a constant that changes from line to line. By Corollary 3.4 we have

‖W (u)‖k+1,α 6 cE
[(

1 + ‖∇`u‖k,α

)

‖u0 ◦ Au‖k+1,α

]

6 c ‖u0‖k+1,α sup
Ω

(

1 + ‖∇`u‖k,α

)k+2

.(4.4)

Here Ω is the probability space on which our processes are defined. We remark that
Lemma 4.3 gives us a bound on ‖∇`u‖k,α. A bound on E‖∇`u‖k,α instead would
not have been enough.

Now we choose U = c( 3

2
)k+2‖u0‖k+1,α, and then apply Lemma 4.3 to choose T

small enough to ensure `u, λu ∈ L. Now inequality 4.4 ensures that W (u) ∈ U .
Now if u, ū ∈ U , Lemma 4.4 guarantees

‖`u(t) − `ū(t)‖k,α 6 cecUt/L

∫ t

0

‖u − ū‖k,α .

Thus applying Proposition 3.5 we have

‖W (u)(t) − W (ū)(t)‖k,α 6 c
(

U
L ‖`u(t) − `ū(t)‖k,α + ‖u0 ◦ Au(t) − u0 ◦ Aū(t)‖k,α

)

6
cU

L
‖`u(t) − `ū(t)‖k,α

6
cU

L
ecUt/L

∫ t

0

‖u − ū‖k,α .

So choosing T = T (k, α, L, U) small enough we can ensure W is a contraction.

The existence of a fixed point of W now follows by successive iteration. We
define un+1 = W (un). The sequence (un) converges strongly with respect to the
Ck,α norm. Since U is closed and convex, and the sequence (un) is uniformly
bounded in the Ck+1,α norm, it must have a weak limit u ∈ U . Finally since W is
continuous with respect to the weaker Ck,α norm, the limit must be a fixed point
of W , and hence a solution to the system (1.4)–(1.7). �
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We conclude by proving the vanishing viscosity behavior stated in Proposi-
tion 2.2. We reproduce the statement here for convenience.

Proposition (2.2). Let u0 ∈ Ck+1,α be divergence free, and U , T be as in Theorem

2.1. For each ν > 0 we let uν be the solution of the system (1.4)–(1.7) on the time

interval [0, T ]. Making T smaller if necessary, let u be the solution to the Euler

equations (1.1)–(1.2) with initial data u0 defined on the time interval [0, T ]. Then

there exists a constant c = c(k, α, U, L) such that for all t ∈ [0, T ] we have

‖u(t) − uν(t)‖k,α 6 cU
L

√
νt

Proof. We use a subscript of ν to denote quantities associated to the solution of
viscous problem (1.4)–(1.7), and unsubscripted letters to denote the correspond-
ing quantities associated to the solution of the Eulerian-Lagrangian formulation
of the Euler equations (1.8)–(1.10). We use the same notation as in the proof of
Theorem 2.1.

Now from the proof of Theorem 2.1 we know that for short time `ν , ` ∈ L. Using
Lemma 4.2 and making T smaller if necessary, we can ensure λν , λ ∈ L. We begin
by estimating E‖λν − λ‖k,α:

λν(t) − λ(t) =

∫ t

0

[uν ◦ Xν − u ◦ X ] +
√

2νBt

=⇒ ‖λν(t) − λ(t)‖k,α 6 c

(
∫ t

0

[

‖uν − u‖k,α + U
L ‖λν − λ‖k,α

]

+
√

ν|Bt|
)

and so by Gronwall’s lemma

‖λν(t) − λ(t)‖k,α 6 c

(√
ν|Bt| +

∫ t

0

‖uν − u‖k,α

)

ecUt/L.

Using Lemma 4.2 and taking expected values gives

(4.5) E ‖`ν(t) − `(t)‖k,α 6 c

(√
νt +

∫ t

0

‖uν − u‖k,α

)

ecUt/L.

To estimate the difference uν − u, we use (1.7), and (1.10) to obtain

uν − u = EW(u0 ◦ Aν , `ν) −W(u0 ◦ A, `)

=⇒ ‖uν − u‖k,α 6 cE
(

U
L ‖`ν − `‖k,α + ‖u0 ◦ Aν − u0 ◦ A‖k,α

)

6 cU
L E ‖`ν − `‖k,α

=⇒ ‖uν(t) − u(t)‖k,α 6 cU
L ecUt/L

(√
νt +

∫ t

0

‖uν − u‖k,α

)

and the theorem follows from Gronwall’s lemma. �

5. Local existence for the Navier-Stokes equations.

Proposition 3.5, along with Peter Constantin’s diffusive Lagrangian formulation
[5] immediately gives us a local in time Ck,α existence and uniqueness result for
the Navier-Stokes equations using classical PDE methods. We conclude this paper
by presenting the proof in this section.
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Definition 5.1. Let k > 2 and T > 0. We define Lk,α
T by

Lk,α
T =

{

` ∈ Ck,α(I × [0, T ], I)
∣

∣ ‖∇`(t)‖k−1,α 6 1

2
∀t ∈ [0, T ] and `(·, 0) = 0

}

.

Given ` ∈ Lk,α
T , and u ∈ Ck,α(I × [0, T ], I) divergence free we define the virtual

velocity v = vu,` to be the unique solution of the linear parabolic equation

(5.1) ∂tvβ + (u · ∇) vβ − ν4vβ = 2νCi
j,β∂jvi

with initial data

(5.2) v(x, 0) = u(x, 0)

where

(5.3) C
p
j,i = (I + ∇`)−1

ki ∂k∂j`p

are the commutator coefficients.
Finally we define the operator W : Ck,α(I × [0, T ])×Lk,α

T → Ck,α(I × [0, T ]) by

(5.4) W(u, `) = W(vu,`, `).

Remark. We clarify that by ` ∈ Ck,α(I × [0, T ], I) we only impose a Ck,α spatial

regularity restriction. We do not assume anything about time regularity. This will
be the case for the remainder of this section.

Remark. Observe that ‖∇`‖k−1,α 6 1

2
guarantees that the matrix I +∇t` in equa-

tion (5.3) is invertible. Further note that all coefficients in equation (5.1) are of
class Ck,α and hence by parabolic regularity [12], v ∈ Ck,α.

Lemma 5.2. Let X be a Banach algebra. If x ∈ X is such that ‖x‖ 6 ρ < 1 then

1 + x is invertible and ‖(1 + x)−1‖ 6 1

1−ρ . Further if in addition ‖y‖ 6 ρ then

∥

∥(1 + x)−1 − (1 + y)−1
∥

∥ 6
1

(1 − ρ)2
‖x − y‖

Proof. The first part of the Lemma follows immediately from the identity (1 +
x)−1 =

∑

(−x)n. The second part follows from the first part and the identity

(1 + x)−1 − (1 + y)−1 = (1 + x)−1(y − x)(1 + y)−1. �

We generally use Lemma 5.2 when X is the space of Ck,α periodic matrices. We
finally prove that the Weber operator W is Lipschitz, which will quickly give us the
existence theorem.

Proposition 5.3. If `, ¯̀∈ Lk,α
T and u, ū ∈ Ck,α, are such that

sup
06t6T

‖u(t)‖k,α 6 U and sup
06t6T

‖ū(t)‖k,α 6 U

then there exists c = c(k, α, L, ν, U) and T ′ = T ′(k, α, L, ν, U) such that

∥

∥W(u, `)(t) −W(ū, ¯̀)(t)
∥

∥

k,α
6 c ‖u(0) − ū(0)‖k,α +

+
cU

L

[(

1 +
νt

L2

)

∥

∥`(t) − ¯̀(t)
∥

∥

k,α
+ t ‖u(t) − ū(t)‖k−2,α

]

for all 0 6 t 6 T ′.
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Proof. Let v and v̄ be the virtual velocities associated to u, ` and ū, ¯̀ respectively.
Let C and C̄ be the commutator coefficients associated to ` and ¯̀ respectively.
Since equation (5.1) is a linear parabolic equation with Ck,α coefficients, standard
regularity theory [12] ensures that there exists T ′ = T ′(ν, U) such that

sup
06t6T ′

‖v(t)‖k,α 6 2U and sup
06t6T ′

‖v̄(t)‖k,α 6 2U.

Hence by proposition 3.5 we have
∥

∥W(u, `) −W(ū, ¯̀)
∥

∥

k,α
=

∥

∥W(v, `) −W(v̄, ¯̀)
∥

∥

k,α

6 c
(

U
L

∥

∥` − ¯̀
∥

∥

k,α
+ ‖v − v̄‖k,α

)

(5.5)

Now let ṽ = v − v̄. The evolution equation of ṽ is given by

∂tṽβ + (u · ∇) ṽβ − ν4ṽβ − 2νCi
j,β∂j ṽi = 2ν(C̄i

j,β − Ci
j,β)∂j v̄i + ((ū − u) · ∇)v̄β

with initial data
ṽ(x, 0) = u(x, 0) − ū(x, 0).

We estimate the Ck−2,α norm of the right hand side. Let c be some constant which
changes from line to line. By definition,

C̄k
j − Ck

j = (I + ∇t ¯̀)−1∇∂j
¯̀
k − (I + ∇t`)−1∇∂j`k

=
[

(I + ∇t ¯̀)−1 − (I + ∇t`)−1
]

∇∂j
¯̀
k + (I + ∇t`)−1

[

∇∂j
¯̀
k −∇∂j`k

]

.

Note that by Lemma 5.2 we can bound ‖(I+∇t`)−1‖k−1,α and ‖(I+∇t ¯̀)−1‖k−1,α.
Further, by Lemma 5.2 again we have

∥

∥(I + ∇t ¯̀)−1 − (I + ∇t`)−1
∥

∥

k−1,α
6 c

∥

∥∇` −∇¯̀
∥

∥

k−1,α
.

Combining these estimates we have
∥

∥C − C̄
∥

∥

k−2,α
6

c

L

∥

∥∇` −∇¯̀
∥

∥

k−1,α
.

Finally note

‖((ū − u) · ∇)v̄‖k−2,α 6
cU

L
‖u − ū‖k−2,α

Thus by parabolic regularity [12],

(5.6) ‖ṽ(t)‖k,α 6
cUt

L

( ν

L

∥

∥∇`(t) −∇¯̀(t)
∥

∥

k−1,α
+ ‖u(t) − ū(t)‖k−2,α

)

+

+ ‖u(0) − ū(0)‖k,α

and substituting equation (5.6) in (5.5), the proposition follows. �

Theorem 5.4. Let k > 2 and u0 ∈ Ck,α(I, I) be divergence free. Then there exists

T = T (k, α, L, ν, ‖u0‖k,α) and u ∈ Ck,α(I × [0, T ], I) which is a solution of the

Navier-Stokes equations with initial data u0.

Proof. Let U > ‖u0‖k,α. We define the set U by

U =
{

u ∈ C([0, T ], Ck,α)
∣

∣ ‖u(t)‖k,α 6 U, ∇ · u = 0, and u(0) = u0

}

.

Given u ∈ U , let `u to be the unique solution of the equation

∂t`u + (u · ∇) `u − ν4`u + u = 0

with initial data
`u(x, 0) = 0.
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Our aim is to produce u ∈ U such that u = W(u, `u), which from [5] we know must
be a solution to the Navier-Stokes equations.

We define the map W by

W (u) = W(u, `u).

If U is endowed with the strong norm

‖u‖U = sup
06t6T

‖u(t)‖k,α

we will show as before that for sufficiently small T , W maps the U into itself.
Finally we will show that W is a contraction under a weaker norm, producing the
desired fixed point.

First note that by parabolic regularity [12], we have

‖`u(t)‖k,α 6 cUt.

The constant c of course depends on U , but we retain the U on the right for

dimensional correctness. Thus choosing T small will guarantee `u ∈ Lk,α
T .

Let v = v`,u be the virtual velocity defined by equation (5.1), with initial data

u0. Standard parabolic estimates [12], (and the fact that ` ∈ Lk,α
T ), show

‖v(t) − u0‖k,α 6
cU2

L
t

Now by definition,

W (u) = P
[(

I + ∇t`u

)

v
]

= P
[(

I + ∇t`u

)

(v − u0) +
(

I + ∇t`u

)

u0

]

= P[u0] + P
[(

I + ∇t`u

)

(v − u0)
]

+ P[(∇t`u)u0]

Since u0 is divergence free, P(u0) = u0. Using Corollary 3.4, the preceding two
estimates for `u and v − u0, we obtain

‖W (u)(t)‖k,α 6 ‖u0‖k,α + c
U2

L
t.

Thus choosing T < L
cU2 (U − ‖u0‖k,α), we can ensure that W maps U into itself.

To see that W has a fixed point, let u, ū ∈ U and define ˜̀ = `u − `ū. The
evolution of ˜̀ is governed by

∂t
˜̀+ (u · ∇) ˜̀− ν4˜̀= ((ū − u) · ∇) `ū + ū − u

and parabolic regularity [12] immediately gives
∥

∥

∥

˜̀(t)
∥

∥

∥

k,α
6 ct ‖u(t) − ū(t)‖k−2,α

Combining this with Proposition 5.3, we have

sup
06t6T ′

‖W (u)(t) − W (ū)(t)‖k,α 6
cUT ′

L
sup

06t6T ′

‖u(t) − ū(t)‖k−2,α .

Thus if T ′ is chosen to be smaller than L
cU then W : U → U is a contraction mapping

and has a unique fixed point concluding the proof. �
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Remark. The above estimates along with the active vector formulation of the Euler
equations [4] can be used to prove a Ck,α local existence and uniqueness theorem
for the Euler equations. Since a similar proof of this result can be found in the
original paper [4] by P. Constantin, we do not present it here.
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