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This paper studies the intermediate time behaviour of a small random
perturbation of a periodic cellular flow. Our main result shows that on time
scales shorter than the diffusive time scale, the limiting behaviour of trajecto-
ries that start close enough to cell boundaries is a fractional kinetic process: A
Brownian motion time changed by the local time of an independent Brownian
motion. Our proof uses the Freidlin-Wentzell framework, and the key step is
to establish an analogous averaging principle on shorter time scales.

As a consequence of our main theorem, we obtain a homogenization result
for the associated advection diffusion equation. We show that on intermediate
time scales the effective equation is a fractional time PDE that arises in
modelling anomalous diffusion.

1. Introduction. The purpose of this paper is to study the intermediate time
behaviour of tracer particles passively advected by a periodic cellular flow. Cellular
flows arise in various contexts, most notably as a two-dimensional model for heat
transport in Bernard convection cells. Our interest in studying the intermediate time
behaviour stems from [42] (see also [43]), which proposes a fractional kinetic or
non-Fickian model governing the behaviour on intermediate time scales. This is in
stark contrast to the well known diffusive behaviour on long time scales, and the
deterministic Hamiltonian ODE behaviour on short time scales.

The position of tracer particles diffusing in a cellular flow is governed by the
SDE

(1.1) dX̃t = v(X̃t) dt+
√
ε dWt, with X̃0 ∼ µ.

Here, µ is a probability measure on R2 representing the initial distribution, ε is
twice the molecular diffusivity, W is a standard two-dimensional Brownian motion.
For notational convenience we denote the law of the solution by Pµ

ε , indicating
the µ and ε dependence on the probability measure instead of on the process X̃ ,
which we always take to be the canonical process. Above, v is the velocity field of a
periodic cellular flow. Namely, there exists a periodic function H : R2 → R (known
as the Hamiltonian, or stream function) such that

v = ∇⊥H def
=

(
−∂2H
∂1H

)
.

Moreover, all the critical points of H are non-degenerate, and there is a connected
level set of H , say L = {x ∈ R2 : H(x) = 0}, called the separatrix, which

divides the plane into bounded regions (cells) that are each invariant under the
(deterministic) flow of the vector field v (see Figure 1). For simplicity of notation,
we assume that H has no saddle points inside the cells. An example commonly used
in fluid dynamics is H(x1, x2) = sin(x1) sin(x2), as shown in Figure 2.

FIG 1. A contour plot of the Hamiltonian in a
generic cellular flow.

FIG 2. A contour plot of the Hamiltonian
H(x1, x2) = sin(x1) sin(x2)

The behaviour of X̃ on both short time scales (i.e., time scales of order 1) and long
time scales (i.e., time scales larger than 1/ε) is well known. On short time scales, a
large deviations principle [18, Chap. 4, Thm 1.1] guarantees that the trajectories of
X̃ deviate from the deterministic trajectories of the flow v with an exponentially
small probability. On long time scales, standard homogenization results [19] show
that X̃ behaves like a Brownian motion with an enhanced diffusion coefficient.

This paper concerns the effective behaviour of X̃ on intermediate time scales, i.e.,
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time scales much larger than 1 and much smaller than 1/ε. If the initial condition of
X̃ is chosen in such a way that H(X̃0) 6= 0, then this is again very well understood:
at scales of order 1/εα with α ∈ (0, 1), one sees a Brownian motion on the level
sets of H . At scale 1/ε, one obtains a non-trivial diffusion [17], as long as the
diffusion in question does not reach the set H = 0. This leaves open the question
of the behaviour when the initial condition is chosen close to H = 0, and this is
what we address in this article. For such starting points, the limiting behaviour on
both time scales above is a time changed Brownian motion. This is a surprising and
substantial departure from what is usually expected. The vast majority of results
concerning scaling limits of diffusions obtain a limiting behaviour that is again a
diffusion, if not a rescaled Brownian motion. A time changed Brownian motion was
first obtained in [20] on time scales of order 1/ε, and here we extend this result to
much shorter time scales.

Explicitly, fix α ∈ (0, 1) and consider the time rescaled process

(1.2) Zt = Z(t)
def
= X̃

(α|log ε|t
ε1−α

)
,

where for notational convenience we sometimes denote time as an argument instead
of a subscript. The process Z focuses on the behaviour of X̃ at time scales of order
|log ε|/ε1−α, and the main result of this paper shows that Z can be spatially rescaled
to converge to a time changed Brownian motion, provided X̃ starts on (or very
close to) cell boundaries. The reason for the extra |log ε| factor is the logarithmic
slow-down of the underlying dynamical system as it approaches hyperbolic saddles,
and is revisited in detail later (see also [23]). Our main result (Theorem 3.4) is a
more general version of the following.

THEOREM 1.1. There exists a symmetric strictly positive definite matrix Q such
that, if the initial distribution µε is a delta measure at a point that belongs to the
separatrix L, then the laws of ε

1−α
4 Z converge weakly to the law of WQ

L . Here WQ

is a Brownian motion on R2 with covariance matrix Q, and L is the local time at 0
of an independent Brownian motion.

Note that on the intermediate time scales we consider, if X̃ starts far away from
the separatrix, it will simply make many rotations along the flow lines of v without
escaping from the cell where it starts. Thus the assumption that X̃ starts on (or
very close to) the separatrix is necessary in order to observe a non-trivial limiting
behaviour.

As a direct consequence, we also obtain an intermediate time homogenization
result for the advection diffusion equation. Let θ̃ε satisfy the PDE

(1.3) ∂tθ̃
ε = v · ∇θ̃ε +

ε

2
∆θ̃ε on R2 × (0,∞),

with initial data θ̃ε(x, 0) = θ̃ε0(x). Standard homogenization results [35, 15, 14]
show that on time scales longer thanO(1/ε), θ̃ε converges weakly to the solution of
the standard heat equation, with an enhanced diffusion coefficient. On intermediate
time scales, we show θ̃ε converges to the solution of a time fractional heat equation.
Again, this is somewhat unexpected, as the scaling limits of linear parabolic equa-
tions usually lead to a parabolic (spatially homogeneous) equation, and not a time
fractional equation!

Explicitly, our main PDE result (Theorem 4.1) can be stated as follows.

THEOREM 1.2. For a fixed α ∈ (0, 1), define the rescaled functions θε and θε0
by

(1.4) θε(x, t) = θ̃ε
( x

ε(1−α)/4
,
α|log ε|t
ε1−α

)
and θε0(x) = θ̃ε0

( x

ε(1−α)/4

)
.

If θε0 = θ0 ∈ Cb(R2) is independent of ε, then as ε→ 0, θε converges1 to ϑ, where
ϑ satisfies

(1.5) r0D1/2
t ϑ− 1

2
[Q : ∇2]ϑ = 0, ϑ(x, 0) = θ0(x),

for some constant r0 > 0 that can be computed explicitly in terms of v. Here D1/2
t

denotes the Caputo derivative of order 1/2 (see for instance [10]) and is defined by

(1.6) D1/2
t f =

1√
π

d

dt

∫ t

0

f(s)− f(0)

(t− s)1/2
ds,

and Q : ∇2 =
∑

i,j Qij
∂2

∂xi∂xj
.

Time fractional equations of the form (1.5) often arise when studying anomalous,
or non-Fickian diffusions. In this context, it was first suggested by Young [42]
(see also [41, 43]) and supported by both numerics and a heuristic explanation.
Roughly speaking, on intermediate time scales, the heat near the separatrix diffuses
to neighbouring cells, and also gets trapped in cell interiors. This leads to a coupled
system governing the effective behaviour, and eliminating the heat in cell interiors
from this system leads to (1.5). We elaborate on this and carry out the details in
Section 4. We remark, however, that even though this is a purely deterministic result,
we prove it using our main probabilistic result (Theorem 3.4) and the Kolmogorov
equation. In lieu of a rigorous PDE proof of this result, we provide (in Appendix B)

1The notion by which θε → ϑ is related to the two scale convergence [31] and is described
precisely later. Roughly speaking, one needs to test θε against an ε-dependent measure ν̂ε on R2,
where the family of measures (ν̂ε), when rescaled appropriately, converges to a probability measure
supported on the separatrix.
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a formal asymptotic expansion motivating it. To turn this into a rigorous proof, there
are a few technical obstructions that need to be overcome, and these are described
in Remark B.2.

Plan of this paper. In order to place our results in the context of the existing
literature, Section 2 provides a brief overview of the effective behaviour of tracer
particles on both long and short time scales. This section is independent of the rest
of the paper and can be skipped by the reader familiar with the literature.

In Section 3, we state the main result of our paper (Theorem 3.4) proving the
convergence of X̃ to an effective process on intermediate time scales. An important
step in the proof is Theorem 3.2, which is an analogue of the Freidlin-Wentzell
averaging principle on these time scales. Before proving the two theorems stated
above, we digress and prove an intermediate time homogenization result for the
advection diffusion equation governing the density of tracer particles (Theorem 4.1).
This is presented in Section 4, and is independent of all subsequent sections (except
Appendix B).

The remainder of the paper is devoted to proving our main results. In Section 5
we prove Theorem 3.4, modulo an estimate on how far Z can travel before exiting a
small neighbourhood of the separatrix (Proposition 5.1). In Sections 6 and 7, we
prove the intermediate time averaging principle (Theorem 3.2). In Appendix A we
prove Proposition 5.1. Finally, in Appendix B, we provide a formal asymptotic
expansion, which serves as an alternative, purely PDE, approach to derive our
intermediate time PDE homogenization result (Theorem 4.1).

2. The effective short and long time behaviour of tracer particles. This
section contains a brief review of results concerning the effective behaviour of tracer
particles on long time scales and short time scales. Its main purpose is to place our
results in the broader context of existing literature, and the familiar reader can skip
directly to Section 3.

2.1. Homogenization: Effective behaviour on long time scales. Well known
homogenization results show that on time scales much larger than the diffusive
time scale 1/ε, the effective behaviour of X̃ is that of a Brownian motion with an
enhanced diffusion coefficient. Explicitly, consider the rescaled process Z̃ = Z̃ε,δ,
defined by

(2.1) Z̃t = Z̃ε,δt
def
= δ1/2X̃t/δ,

where for clarity we suppress the dependence of X̃ and Z̃ on the parameters ε and
δ. Freidlin [19] (see also [33, 5, 35]) proved that for fixed ε we have

Z̃ = Z̃ε,δ
L−−−→
δ→0

WDeff(ε),

where Deff(ε) is a constant 2× 2 positive matrix known as the effective diffusivity,
and W is a 2D Brownian motion with the covariance matrix Deff(ε). Intuitively, the
temporal rescaling involves waiting for longer and longer times as δ → 0. In this
time, the process Z̃ spreads out further and further, and rescaling space by a factor of√
δ produces a non-trivial limit. The spatial rescaling is akin to an observer zooming

out until the microscopic details of the cellular flow cannot be seen anymore and
can effectively be replaced by a homogeneous background.

The effective diffusivity Deff(ε) can be computed explicitly by solving a cell
problem, and its asymptotic behaviour as ε→ 0 has been extensively studied [8, 40,
9, 15, 24]. In particular, it is well known that

(2.2) Deff(ε) ≈
√
εD̄eff ,

as ε→ 0. We observe that Deff(ε) is much larger than the molecular diffusivity ε
in (1.1) for small ε.

To address the time scales involved, we consider the double limit of Z̃ as both ε
and δ approach 0. Using [14] (see also [21]) it follows that

(2.3)
Z̃√
Deff(ε)

L−−−−→
ε,δ→0,
δ�ε

W.

Rewriting this in terms of the original process, this means that X̃ behaves like a
rescaled Brownian motion on time scales much larger than 1/ε.

2.2. Averaging and the effective behaviour on the transition time scale. As
discussed in the previous section, X̃ homogenizes on time scales larger thanO(1/ε).
Under a compactness assumption (e.g., if the periodic flow is replaced by a flow on
a torus) classical results of Freidlin (discussed below) show that X̃ averages along
the flow lines of v. In the non-compact setting that we consider, a recent result [20]
shows that X̃ transitions between the homogenized and averaged behaviour in a
very natural way, and we describe this behaviour here.

To study the behaviour on time scales of order t ≈ 1/ε, consider the time rescaled
process X defined by

(2.4) Xt = Xε
t

def
= X̃t/ε.

In this case, X satisfies the SDE

dXt =
1

ε
v(Xt) dt+ dWt, with X0 ∼ µ.

When ε is small, X moves very fast along trajectories of v, and diffuses slowly
across them.
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To explain further, assume that H(x) is 1-periodic in x1 and x2. Let T = R2/Z2

be the two-dimensional torus, and π : R2 → T be the projection map. The Reeb
graph [36] of H (where H is viewed as a function on the torus) is obtained by
mapping the connected components of level sets of H to individual points, and
using a metric that is locally defined by H . For the Hamiltonians we consider, the
Reeb graph is star shaped with each edge corresponding to a cell, and the distance
to the vertex corresponding to the absolute value of the Hamiltonian. One example
is shown in Figure 3.

1

2

3

4

Γ(1)

Γ(2)

Γ(3)

Γ(4)

O = Γ(L)

FIG 3. The graph corresponding to the structure of the level sets of H on T

Given x ∈ T , define Γ(x) to be the point on the Reeb graph corresponding
to the connected component of the level set of H that contains x. Freidlin and
Wentzell [17] proved that

Γ
(
π(X)

) L−−−→
ε→0

Y,

where Y is a diffusion on the Reeb graph with Y0 = Γ(X0) and with a specific
gluing condition at the interior vertex that can be determined explicitly in terms of
the Hamiltonian H . (The exterior vertices are inaccessible and require no boundary
condition.) This is the averaging principle.2

We emphasise that this only determines the effective behaviour of X projected
onto the compact Reeb graph of H , when H is viewed as a function on the torus. A
recent paper [20] showed how this can be used to obtain the effective behaviour of
X on the whole plane R2. The main theorem in [20] shows that

(2.5) ε1/4X
L−−−→
ε→0

WQ
L .

Here Q is a strictly positive definite matrix, and WQ is a Brownian motion with the
covariance matrix Q. The process L is the local time of the limiting diffusion Y at

2Strictly speaking, the classical averaging principle [17] requires H(x) → ∞ as |x| → ∞ instead
of compactness. These results can, however, be readily adapted to the scenario where the domain is
compact.

the vertex of the Reeb graph, and is independent of WQ. The notation WQ
L in (2.5)

above refers to the process WQ, time changed by the process L.
To relate this to the classical homogenization results, note that equation (2.5)

provides information on the effective behaviour of X̃ on time scales of order 1/ε;
the borderline time scale, beyond which homogenization results are valid. In fact,
for the process Z̃ε,δ defined by (2.1), the result of [20] states that for δ = ε, the
limiting process in (2.3) is now a subordinated Brownian motion. In contrast, for
δ � ε (as we had in (2.1)), the limiting process is simply an effective Brownian
motion without any subordination.

In this spirit, even though the construction of the covariance matrix Q in [20] is
not explicit, we can find Q by a matching argument with the existing literature on
the effective diffusivity. Indeed, since the process Y is ergodic on the Reeb graph,
we must have

lim
t→∞

L(t)

t
= ρ,

for some ρ ∈ (0,∞). This implies that for large t, WQ
L(t) has approximately the

same law as a Brownian motion with covariance matrix ρQ. Comparing this with
(2.3) and (2.5), and taking the time change (2.4) into account, we get

(2.6) Q =
1

ρ
· lim
ε→0

Deff(ε)√
ε

.

2.3. Large Deviations: Effective behaviour on short time scales. The next
natural asymptotic regime is “intermediate” time scales for which 1 � t � 1/ε.
This, however, is the main focus of our paper and is described along with our main
results in Section 3. Instead, we conclude this section by briefly describing short
time scales.

On time scales of order 1, the trajectories of X̃ deviate from the flow lines of v
with an exponentially small probability. To elaborate, let φ : R2 × R+ → R2 be3

the flow of the vector field v, defined by the ordinary differential equation

(2.7) ∂tφt(x) = v ◦ φt(x), with φ0(x) = x.

Then, for every T, η > 0, we have

− log
(
Px
ε

(
sup
t∈[0,T ]

|X̃t − φt(x)| > η
))

= O(ε),

where we write Px
ε = Pδx

ε for brevity. For details, we refer the reader to [18, Chapter
4, Theorem 1.1].

3Throughout this paper we use the convention that R+ = [0,∞).
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This is not surprising as the qualitative effect of the noise is a motion across
the flow lines on a time scale of order 1/ε, which is much longer than the order
one natural time scale of the deterministic motion. We remark, however, that at
the slightly longer time scale t ≈ | log(ε)|, an interesting behaviour is observed
near the separatrices. The effective process in this regime is a piecewise constant
non-Markovian process that jumps between the saddle points of H , and we refer
the reader to [3, 2] for details.

3. Main results: Effective behaviour on intermediate time scales. The main
contribution of this paper is the precise description of the effective behaviour of
X̃ on intermediate time scales where 1 � t � 1/ε. As we have outlined earlier,
the effective behaviour of X̃ on these time scales might seem trivial at first glance.
Indeed, convection only transports X̃ along flow lines of v, which are all closed
orbits inside each cell. On the other hand, for diffusion to transport X̃ to a different
cell, it will take time of order 1/ε, which is much longer than the time scales under
consideration. Thus, if X̃ starts at a generic point inside one of the cells, it will
simply make many rotations along the flow lines of v without escaping the cell.

The interesting behaviour is observed when X̃ starts close enough to (or on)
the separatrix. The diffusion is then strong enough to transport X̃ from one cell to
another and, combined with the effect of the drift, the process X̃ can conceivably
travel large distances in a short time. Indeed, a recent result [22] proves that on
time scales for which 1 � t � 1/ε, the variance of X̃t is of order

√
t, up to a

logarithmic correction. The main result of the present article goes much further than
a variance estimate, and provides an effective process on these intermediate time
scales.

For a given α ∈ (0, 1), we study the behaviour of X̃ on time scales of order4

|log ε|/ε1−α using the time rescaled processZ = Zε defined by (1.2). As before, we
suppress the ε-dependence of the process Z and use time as an argument instead of
a subscript when notationally convenient. Clearly, time scales of order |log ε|/ε1−α

are shorter than time scales of order 1/ε, and longer than time scales of order 1.
We describe the effective behaviour of Z in two steps: First, we compactify the

state space by projecting Z onto the periodic torus. In this case, we prove a direct
analogue of the classical Freidlin-Wentzell averaging principle [18] on shorter time
scales, and show that the limiting process is a diffusion Y on a (rescaled) Reeb
graph. This is Theorem 3.2, below.

4Choosing α ∈ (0, 1) and restricting to time scales of order |log ε|/ε1−α is performed mainly
for convenience, and does not have any bearing on the final result. In fact, the main results of this
paper can be formulated more generally by choosing a parameter δ = δ(ε) such that both δ → 0
and ε/δ → 0 as ε → 0. Now a description of X̃ on time scales of order δ can be obtained from
our main results by replacing all occurrences of ε1−α, εα/2 and α|ln ε| with δ, (δ/ε)1/2 and ln(δ/ε)
respectively.

The next step is to identify the behaviour of Z on R2. As explained above, the
process Z only travels large distances in R2 when it is close to the separatrix. This
happens precisely when the graph diffusion Y is at the vertex O. Thus, we expect
that the limiting behaviour of Z is a process that diffuses only when Y is at O.
Indeed, our main result (Theorem 3.4, below) shows that as ε→ 0 the process Z on
R2 converges to an independent two-dimensional Brownian motion time changed
by the local time of Y at the vertex of the rescaled Reeb graph. These steps are
described below in Sections 3.1 and 3.2 respectively.

3.1. Intermediate time averaging on the torus. The purpose of this section is to
state an analogue of the classical Freidlin-Wentzell averaging principle [18] when Z
is projected onto the torus. While we state our result in the context of cellular
flows, it is applicable more generally to behaviour of Hamiltonian systems around
heteroclinic connections.

We begin with some notation describing the geometry of the Hamiltonian and
the projection on the Reeb graph. We recall that we normalised H so that it has
period 1, and the separatrix, denoted by L, is exactly

L = {x ∈ R2 : H(x) = 0},

and is assumed to be connected. Let T def
= R2/Z2 be the torus, π : R2 → T be the

projection map, and define LT = π(L). Let A1, . . . , AM denote the saddle points
of H on the separatrix LT . Then LT (or L) is the union of the saddles {Ai} (or
π−1({Ai}), respectively), and the heteroclinic orbits connecting these saddles. For
notational simplicity in the proof, we assume that there are no homoclinic orbits
(i.e., orbits that connect a saddle to itself).

By Euler’s polyhedron formula (recall that the torus has Euler characteristic zero),
there are exactly M connected components of the complement of the separatrix
T \ LT , and we denote these domains by U1, . . . , UM . (There is, however, no
particular relation between the numbering of the Ui’s and that of the Ai’s.) For
convenience, we further assume that there are no saddle points of H in the interior
of the sets U1, . . . , UM .

We now define the space G that serves as the rescaled Reeb graph of H . Let G be
the topological quotient space obtained from {1, . . . ,M}×R+ by identifying all the
points (1, 0), . . . , (M, 0) with each other. We observe that G is a star shaped graph
with semi-infinite edges Ii

def
= {i} ×R+, corresponding to the rescaled distance into

the interior of Ui, and one interior vertex O = (1, 0) = · · · = (M, 0) corresponding
to the separatrix LT . A natural metric on G is given by

(3.1) dG((i, y), (j, ȳ)) =

{
|y − ȳ| if i = j,

|y|+ |ȳ| otherwise.
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Define the projection Γε : T → G by

(3.2) Γε(x) =
(
i, ε−α/2|H(x)|

)
if x ∈ U i,

and extend it periodically to R2. Note that Γε projects each invariant region Ui into
an edge Ii of the graph and Γε(LT ) = O. Even though the sets U i overlap, the map
Γε is well-defined since the points (i, 0) have all been identified.

We claim that the law of the projected process (Γε ◦ π)(Z) converges weakly to a
process Y on the graph G. The limiting process Y is a diffusion, and it can be char-
acterised by its generator A. We describe this before stating the main convergence
result of this section.

On the i-th edge of the graph, define the operator Ai by

Ai =
ai
2
D2
i .

Here Di denotes the derivative along the i-th edge of G, and the coefficients ai are
defined by

(3.3) ai
def
= qi · lim

ε→0

|log ε|
Ti(ε1/2)

,

where

(3.4) qi =

∮
∂Ui

|∇H| dl and Ti(h) =

∮
{|H(x)|=h}∩Ui

|∇H|−1 dl.

We recall that Ti(h) is the time the flow φ (defined in equation (2.7)) takes to
complete one rotation along the periodic orbit starting from any point x ∈ Ui for
which |H(x)| = h. Since ∂Ui contains hyperbolic saddles, we know that as h→ 0,
the period Ti(h) diverges at a logarithmic rate, and hence ai is finite and strictly
positive.

Now we define the domain D(A) to be the set of all functions F that satisfy the
following conditions:

(a) F ∈ C0(G) ∩ C2(G \ {O}). That is, F is continuous on G, tends to zero
at infinity, and is twice continuously differentiable away from the interior
vertex O.

(b) Writing 1A for the indicator function of a set A, the function

(3.5) y 7→
M∑
i=1

1{y∈Ii}AiF (y),

defined on G \ {O}, extends to a C0 function on all of G.

(c) The function F satisfies the flux condition

M∑
i=1

qiDiF (O) = 0,

Finally, for F ∈ D(A) we define AF to be the unique C0(G) extension of the
function defined in (3.5).

Replicating results from [27] for our one-dimensional operator, we can show that
for every u ∈ D(A) and λ > 0 the resolvent equation λf −Af = u has a unique
solution f ∈ D(A). Since A is a closed operator, the Hille-Yosida theorem [13,
Theorem 2.2 in Ch 4], shows that A generates a strongly continuous positive
contraction semigroup on C0(G) = D(A), the L∞ closure of D(A). Therefore
there is a Fellerian Markov family Y with generator A (see [13, §4.1-4.2]), and
we use the Kolmogorov continuity theorem to replace Y with a modification with
continuous trajectories on G. The process Y will arise in the main result of this
subsection (Theorem 3.2, below) as the weak limit of Γε(Z).

As with the process Z, we transfer the dependence of Y on its initial position to
the associated probability measure. When the law of Y0 is µ, we denote the corre-
sponding probability measure on C(R+,G) by P̄µ, and the associated expectation
operator by Ēµ. When µ is concentrated at a point y ∈ G, we will simply write P̄y

and Ēy as appropriate.

REMARK 3.1. The process Y can alternately be constructed directly as follows.
Take a standard Brownian motion B and decompose it into excursions away from
the origin. Since there are countably many such excursions, we can enumerate them.
Say that the kth excursion happens during the interval (sk, tk), then these intervals
are all disjoint and the complement of their union consists precisely of the null set of
times for which B(t) = 0. Consider now a sequence ik of i.i.d. {1, . . . ,M}-valued
random variables independent of B with P(ik = j) proportional to qj/

√
aj . We

then define a G-valued process Y in the following way. If t ∈ (sk, tk) for some k
and ik = j, we set Yt = (j,

√
aj |B(t)|) ∈ G, otherwise we set Yt = O. In order

to start this process with an initial condition y = (j, c) 6= O, one can perform the
same construction, with the difference that one sets B(0) = c/

√
aj , and we set the

value ik corresponding to the excursion containing time 0 to j. We refer the reader
to [26] for more details and various other constructions.

We can now state the main result of this section.

THEOREM 3.2. Let µε be a family of probability measures on T such that the
push forward measures Γ∗ε µ

ε converge weakly, as ε→ 0, to a probability measure
µ on G. Then the laws of Γε(Z) under Pµε

ε converge weakly to that of the process
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Y under P̄µ. That is, for every bounded continuous f : C(R+;G)→ R, we have

lim
ε→0

Eµ
ε

ε f(Γε(Z·)) = Ēµf(Y·) .

Moreover, for fixed µ and f , the convergence is uniform with respect to all choices
of µε such that Γ∗ε µ

ε = µ.

The proof of Theorem 3.2 is given in Section 6. As mentioned earlier, Theo-
rem 3.2 is not restricted to the cellular flow setting of this paper. It describes the
behaviour of a generic Hamiltonian system around heteroclinic connections, and
serves as a direct analogue of the classical Freidlin-Wentzell averaging principle
[18] at shorter time scales.

3.2. The intermediate time behaviour on the plane. Theorem 3.2, stated in
the previous section, shows that a limiting behaviour of the projection Γε(Z) is a
diffusion on the rescaled Reeb graph G. In this section, we show that the limiting
behaviour of Z itself is an independent Brownian motion on the plane time changed
by the local time of Y at O. We begin by recalling the abstract definition of the local
time of Y .

DEFINITION 3.3. The local time of Y is the unique nonnegative random field

L
def
= {Lt(y) : (t, y) ∈ R+ × G}

such that the following hold:

(a) The mapping (t, y)→ Lt(y) is jointly measurable, and Lt(y) is adapted.
(b) For every y ∈ G, the mapping t→ Lt(y) is non-decreasing and constant on

all open intervals for which Yt 6= y.
(c) For every bounded Borel measurable f : G → R+ and every y0 ∈ G, we

have ∫ t

0
f(Ys)a(Ys) ds = 2

∫
G
f(y)Lt(y) dy P̄y0-a.s.,

where a : G → R+ is defined5 by a(y) = ai if y ∈ Ii.
(d) For every y0 ∈ G, Lt(y) is P̄y0-a.s. jointly continuous in t and y for y 6= O.

Moreover, at O, we have

Lt(O) =

M∑
i=1

lim
y→O,
y∈Ii

Lt(y) .

5Strictly speaking, a(O) is not well defined. This, however, does not affect the left hand side since,
with probability one, the process Y spends time of measure zero at the interior vertex O.

The existence and uniqueness of local time for diffusions on the real line is
relatively well studied (see for instance [38, 39]). These standard results, together
with [16, Lemma 2.2], give the existence and uniqueness of L. Moreover, in view
of Remark 3.1, the process Lt(O) is a constant multiple of the local time of a
one-dimensional Brownian motion B at the origin.

With this definition we state our result concerning the limiting behaviour of Z.
To state our full convergence result, we introduce the state space

Ḡ def
= R2 × G , with metric dḠ((x, g), (x̄, ḡ))

def
= |x− x̄|+ dG(g, ḡ) .

Our main probabilistic convergence result then reads as follows.

THEOREM 3.4. Define Γ̂ε : R2 → Ḡ by

Γ̂ε(x) =
(
ε(1−α)/4x, (Γε ◦ π)(x)

)
,

and let νε be a family of probability measures on R2 such that the push forward
measures Γ̂∗ε νε converge weakly to a probability measure ν̂ on Ḡ. Then, there exists
a pair of processes (W̃Q, Y ) defined on some probability space (Ω̄, F̄ , P̄ν̂) such
that the following hold.

(a) The initial distribution of (W̃Q, Y ) under P̄ν̂ is ν̂.
(b) The process W̃Q

· − W̃Q
0 is a Brownian motion on R2 with strictly positive

definite covariance matrix Q.
(c) The process Y is a diffusion on the graph G with generator A. Moreover,

conditioned on (W̃Q
0 , Y0), the processes W̃Q and Y are independent.

(d) As ε→ 0, the law of the process Γ̂ε(Z·) under Pνε
ε converges weakly to that

of Ξ
def
= (W̃Q

L·
, Y ) under P̄ν̂ , where Lt = Lt(O) is the local time of Y at the

interior vertex O.

Since Lt(O) is simply a constant multiple of Brownian local time, W̃Q
L is a

fractional kinetic process of index 1/2. This process arises naturally as the scaling
limit of many trap models, such as continuous time random walks with heavy tailed
jump times [28, 29] or the Bouchaud trap model [7, 4]. Intuitively, the scaling limit
of the time of an excursion of Xt away from the separatrix (when the process is
trapped inside a cell) is approximately an excursion of a Brownian motion, and its
length is accordingly heavy tailed with index 1/2.

If the support of ν̂ concentrates on R2×{O}, then by Brownian scaling, ĒOLt =
c
√
t for some constant c(ai, qi) > 0. In this case the variance of the limit process

W̃Q
L is proportional to

√
t for all time. This was proved earlier in [22] in the case

H(x1, x2) = sin(x1) sin(x2).
The proof of Theorem 3.4 is presented in Section 5. The first step in the proof is

to choose a small neighbourhood of the separatrix, Uε, and prove a limit theorem



8

for the increment of Z over the period of time it takes the process to exit Uε starting
from the separatrix (Proposition 5.1 below). This is similar to a result in Section 2
of [20], and we sketch a proof and the necessary modifications in Appendix A. The
neighbourhood Uε is chosen to be big enough so that Z makes a large number of
rotations, possibly crossing into other cells, prior to reaching ∂Uε. On the other
hand, Uε is chosen to be small enough so that Z has a large number of crossings
between ∂Uε and the separatrix in finite time. (Precisely, in the notation used in
Section 5, Uε = Γ−1

ε (Vδ), where Vδ ⊆ G is a δ neighbourhood of O and δ > 0 is a
small parameter.)

Intuitively, the main contribution to the displacement of Z comes from the
upcrossings (the travel from the separatrix to ∂Uε), whereas most of the time is
spent during the downcrossings. Using Theorem 3.2, we approximate the trajectory
ofZ using an excursion decomposition that separates the exit from Uε, and the return
to the separatrix (Lemma 5.2, below). Thus, one should expect that Theorem 3.4
will follow directly from these two lemmas. Unfortunately, the precise details of
this are somewhat technical, and involve numerous estimates on the number of (and
the time spent during) upcrossings and downcrossings (Lemmas 5.3–5.6, below).

Some of the ingredients involved in the proof of Theorem 3.4 are similar to ideas
contained in [20]. There are, however, important differences. Our approach relies on
the averaging principle on shorter time scales (Theorem 3.2) instead of the classical
Freidlin-Wentzell averaging principle. At these time scales, the slowdown near the
hyperbolic saddles contributes non-trivially and is responsible for the |ln ε| scaling
factor, which does not appear on the 1/ε time scales considered in [20].

Moreover, at the shorter time scales we consider, the Reeb graph needs to be
rescaled to zoom in on the vertex near the separatrix. As a result, the limiting Reeb
graph is not compact, and the limiting graph diffusion has coefficients that are
constant on each edge of G and are determined completely by averaging ∇H on
the separatrix. At the 1/ε time scale in [20], the Reeb graph is compact (and not
rescaled), the limiting graph diffusion has (in general) non-constant coefficients that
are obtained by averaging∇H on all level sets, and not just the separatrix.

Finally, we remark that in this paper we prove convergence of the joint laws of
the processes ε(1−α)/4Z and the graph projection Γε(Z), whereas [20] only proves
convergence of each process individually. This is important, because it fixes a
minor gap in the proof in [20]. The strategy in both papers is to prove tightness
and convergence of the one dimensional distributions of the above processes. This
implies the convergence in law of the limiting process, provided the limiting process
is Markov. While the limit of the graph projections Γε(Z) and the limit of the joint
process (ε(1−α)/4Z,Γε(Z)) are both Markov, the limit of ε(1−α)/4Z is not. This
leads to the aforementioned gap in [20], which is circumvented here by proving
convergence of the joint distributions.

4. A PDE Application: Intermediate time homogenization of the advection
diffusion equation. This section is devoted to an intermediate time homogeniza-
tion result for the advection diffusion equation. We emphasize that the proof of the
probabilistic result (Theorem 3.4) does not rely on the arguments in this section.
The PDE (1.3) is closely related to the process X̃ , and understanding the behaviour
of X̃ on intermediate time scales yields an intermediate time homogenization result
for (1.3) in a natural way. Since X̃ behaves like a fractional kinetic process on these
time scales, it is natural to expect that θ̃ satisfies the (time) fractional heat equa-
tion (1.5), and this was heuristically derived by Young [42]. We prove it rigorously
below (Theorem 4.1) using Theorem 3.4.

THEOREM 4.1. Let θ̃ε satisfy the PDE (1.3) for x ∈ R2, t > 0 with initial
data θ̃ε0. For α ∈ (0, 1) define the rescaled functions θε and θε0 by (1.4), and suppose
θε0 = θ0 ∈ Cb(R2) and is independent of ε. Define the rescaled projection Γε by
Γε(x) = Γ̂ε(x/ε

(1−α)/4). Then for any family of probability measures ν̄ε on R2

such that Γ
∗
ε ν̄

ε converges weakly to a probability measure ν on Ḡ, we have

(4.1) lim
ε→0

∫
R2

θε(x, t) dν̄ε(x) =

∫
R2×G

θ(x, y, t) dν(x, y).

Here θ is the unique classical solution to the system

∂tθ −Ayθ = 0 for y 6= O, t > 0,(4.2a)

1

2
[Q : ∇2

x]θ +

M∑
i=1

q̄iD
y
i θ = 0 for y = O, t > 0,(4.2b)

θ(x, y, 0) = θ0(x).(4.2c)

Here q̄i = qi/
∑M

j=1 qj , D
y
i = Di denotes the derivative along the ith edge of G,

and Ay is the generator of the process Y acting only on the variable y.
Moreover, if ν = ν ′ × δO, then

lim
ε→0

∫
R2

θε(x, t) dν̄ε(x) =

∫
R2

ϑ(x, t) dν ′(x),

where ϑ(x, t)
def
= θ(x,O, t) satisfies the Caputo time fractional equation

(4.3)
( M∑
i=1

q̄i√
ai/2

)
D1/2
t ϑ− 1

2
[Q : ∇2]ϑ = 0,

with initial data θ0. Here D1/2
t denotes the Caputo derivative of order 1/2 defined

by (1.6).



9

REMARK. Even though this is a purely deterministic result, our proof is proba-
bilistic and relies on Theorem 3.4. In lieu of additionally presenting a direct PDE
proof, we provide in Appendix B a formal asymptotic expansion motivating (4.2).

Well-posedness and regularity of solutions to (4.2) is standard. Parabolic prob-
lems similar to (4.3) and the regularity of their solutions are discussed in, e.g. [1].
The notion of convergence used in equation (4.1) is known as two-scale conver-
gence, and was introduced by Nguetseng [31]. It has proved to be an invaluable
tool in the theory of homogenization and has been applied various contexts. In
most situations, however, the underlying small-scale manifold is the torus. The key
difference in (4.1) is that the underlying small scale naturally arises as the rescaled
Reeb graph of the Hamiltonian.

Before proving Theorem 4.1, we momentarily pause to consider an illustrative
special case. For x ∈ R2, take the sequence of measures ν̄ε defined by

ν̄ε = δ
(
ε(1−α)/4

⌊ x

ε(1−α)/4

⌋)
,

where δ(z) denotes the delta measure supported at the point z ∈ R2, and we assume
that the origin belongs to the separatrix (and therefore so does every point with
integer coordinates). Applying Theorem 4.1 now shows that

θε
(
ε(1−α)/4

⌊ x

ε(1−α)/4

⌋
, t
)

ε→0−−−→ ϑ(x, t),

for all x ∈ R2 and t > 0. That is, at time t the value of the temperature θε at the
corner of the domain of periodicity containing x converges to ϑ(x, t).

At first sight, this is extremely surprising. Long time scaling limits of (1.3) have
been studied extensively, and the limiting behaviour is simply the heat equation with
an enhanced diffusion coefficient. In our situation, the “intermediate time” scaling
limit of (1.3) is a time fractional heat equation (4.3)!

The heuristic explanation of this is as follows. On time scales shorter than 1/ε,
any heat trapped in the interior of one cell will not escape the cell. Thus to observe a
non-trivial limiting behaviour, at these time scales one needs to zoom in close to the
separatrix. Indeed, if the family of measures Γ̂∗ε ν̂

ε converge weakly to a probability
measure (as required in Theorem 3.4), the supports of ν̂ε must asymptotically
concentrate on the separatrix.

Now, in a small neighbourhood of the separatrix, there are two effects at play:
heat diffuses to neighbouring cells, and heat is “trapped” in the cell interior. Thus
the limiting behaviour should be a coupled system balancing these two effects. This
is precisely what (4.2a) and (4.2b) accomplish. Many similar models for anomalous
diffusion have been studied by various authors. For example, Young [42] (see
also [43]) heuristically derived a similar system in the context of cellular flows.
Theorem 4.1 establishes this rigorously, and we prove it below.

PROOF OF THEOREM 4.1. By the Feynman-Kac formula

θε(x, t) = θ̃ε
( x

ε(1−α)/4
,
α|log ε|t
ε1−α

)
= Ex/ε

(1−α)/4
ε θ0(ε(1−α)/4Zt).

Hence, by Theorem 3.4,

(4.4)
∫
R2

θε(x, t) dν̄ε(x) = Eν̂
ε

ε θ0

(
ε(1−α)/4Zt

)
ε→0−−−→ Ēνθ0(W̃Q

L(t)),

where ν̂ε is the rescaled measure defined by

dν̂ε(x) = dν̄ε
(
ε(1−α)/4x

)
,

and W̃Q and L are as in Theorem 3.4. Define the function θ : R2×G×R+ → R by

(4.5) θ(x, y, t)
def
= Ē(x,y)θ0(W̃Q

L(t)),

where we recall Ē(x,y) is the expectation operator with respect to the probability
measure P̄(x,y) under which P̄(x,y)(W̃Q

0 = x & Y0 = y) = 1. Now,

Ēνθ0(W̃Q
L(t)) =

∫
R2×G

θ(x, y, t) dν(x, y)

and hence (4.1) follows from (4.4).
The fact that θ satisfies the system (4.2) follows from (4.5) and an Itô formula

for Y that was proved in [16]. Since this is interesting in its own right, we single it
out as a proposition (Proposition 4.2, below) and defer it to the end of this section.

Finally, to prove (4.3) when ν = ν ′ × δO, we only need to show that given a
solution to (4.2), the function ϑ(x, t)

def
= θ(x,O, t) satisfies (4.3). This follows from

the explicit solution formula for the heat equation on the half line, and similar results
are readily available in the literature (see for instance [30, §4.5]). For convenience,
we derive it below.

Along the ith edge, equation (4.2a) is simply the one dimensional heat equation.
Rearranging (4.2b), we obtain the boundary condition

(4.6) Dy
i θ(x,O, t) = − 1

q̄i

(1

2
[Q : ∇2

x]θ(x,O, t) +

M∑
j 6=i

q̄jD
y
j θ(x,O, t)

)
.

Treating the right hand side of (4.6) as a given function, we can explicitly solve (4.2a)
on the ith edge, with boundary condition (4.6) and constant (in y) initial data θ0(x).
This gives

θ(x,O, t) = θ0(x) +
1

q̄i

( ai
2π

)1/2
∫ t

0

(1

2
[Q : ∇2

x]θ(x,O, s)

+

M∑
j 6=i

q̄jD
y
j θ(x,O, s)

) ds√
t− s

,
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for every i ∈ {1, . . . ,M}. Multiplying both sides by q̄i/
√
ai/2, summing over i

and using (4.2b) yields

M∑
i=1

q̄i√
ai/2

(
θ(x,O, t)− θ0(x)

)
=

1

2
√
π

∫ t

0
[Q : ∇2

x]θ(x,O, s)
ds√
t− s

.

Applying D1/2
t to both sides and using ϑ(x, t) = θ(x,O, t) yields (4.3) as desired.

In the above proof we used the fact that θ defined by (4.5) satisfies the sys-
tem (4.2). We state and prove this next (see also [34] for a related result).

PROPOSITION 4.2. Let θ0 ∈ Cb(Ḡ), and define θ by (4.5). Then θ satisfies the
system (4.2) for t > 0, and is continuous at t = 0.

PROOF. The first step is to obtain an Itô formula for the process Ξ
def
= (W̃Q

L , Y ).
For the process Y alone, an Itô formula is known and can be found in Freidlin and
Sheu [16]. Explicitly, there exists6 a Brownian motion B such that
(4.7)

f(Yt)−f(Y0) =
M∑
i=1

∫ t

0
Dif(Ys)σi(Ys) dBs+

∫ t

0
Ayf(Ys) ds+

M∑
i=1

q̄iDif(O)Lt,

holds any f ∈ C2
b (G). Here σi(y) =

√
ai if y ∈ Ii and σi(y) = 0 otherwise.

Now, since W̃Q and Y are independent, the time changed process W̃Q
L is a

martingale with joint quadratic variations given by

d〈W̃Q,i
L , W̃Q,j

L 〉t = Qi,jdLt and d〈W̃Q,i
L , B〉t = 0

for all i, j ∈ {1, 2}. Here W̃Q,i denotes the ith component of W̃Q, and Qi,j is the
i-jth entry of the matrix Q. For f ∈ C2

b (R2 × G), we thus obtain by Itô’s formula

(4.8) f(Ξt)− f(Ξ0) =
M∑
i=1

∫ t

0
Dy
i f(Ξs)σi(Ys)dBs +

∫ t

0
Ayf(Ξs) ds

+
2∑
i=1

∫ t

0
∂xif(Ξs) dW̃

Q,i
Ls

+

∫ t

0

(1

2
[Q : ∇2

x] +

M∑
i=1

q̄iD
y
i

)
f(Ξs) dLs.

6 The Brownian motion B can be directly obtained from the construction outlined in Remark 3.1.
Indeed, if B̃ denotes the Brownian motion in Remark 3.1, then we have dB = sign(B̃) dB̃.

Now we use the Itô formula to compute AΞ, the generator of Ξ. Indeed, for f ∈
C2
b (R2 × G) we have

AΞf(x, y) = lim
t→0

1

t
Ē(x,y)(f(Ξt)− f(Ξ0))

= lim
t→0

1

t
Ē(x,y)

(∫ t

0
Ayf(Ξs) ds(4.9)

+

∫ t

0

(1

2
[Q : ∇2

x] +

M∑
i=1

q̄iD
y
i

)
f(Ξs) dLs

)
,

since the other two terms on the right of (4.8) are martingales and have expectation 0.
Now, as t→ 0, the first term on the right of (4.9) converges to Ayf(x, y). For the
second term on the right of (4.9), the fact that L is a constant multiple of Brownian
local time gives

Ē(x,y)

∫ t

0

(1

2
[Q : ∇2

x] +

M∑
i=1

q̄iD
y
i

)
f(Ξs) dLs

=


o(t) y 6= O,

O(
√
t)
(1

2
[Q : ∇2

x] +

M∑
i=1

q̄iD
y
i

)
f(x,O) y = O.

After dividing by t and taking the limit as t→ 0, this vanishes without any further
restriction on f if y 6= O. For y = O, this limit only exists provided that the
compatibility condition

(4.10)
1

2
[Q : ∇2

x]f(x,O) +

M∑
i=1

q̄iD
y
i f(x,O) = 0

holds. This shows that if f ∈ C2
b (Ḡ) ∩ D(AΞ), then for every x ∈ R2 we must

have f(x, ·) ∈ D(Ay), AΞf(x, y) = Ayf(x, y) for every y ∈ G \ O, and the
compatibility condition (4.10) must be satisfied as well.

From this, equation (4.2) follows from standard techniques. Indeed, for θ defined
by (4.5), standard results imply that θ is continuous at t = 0 and satisfies the
Kolmogorov equation ∂tθ − AΞθ = 0 giving (4.2a) and (4.2c). Moreover, for
positive time we must have θ(·, t) ∈ C2

b (Ḡ) ∩ D(AΞ), and (4.10) gives the flux
balance condition (4.2b) as desired.

5. Proof of Theorem 3.4. We devote this section to proving Theorem 3.4. Our
first task is to describe how far Z(t) can travel inside a small neighbourhood of the
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separatrix. Given δ > 0, define Vδ ⊂ G by

Vδ def
= {(i, y) ∈ G : |y| 6 δ} ,

and introduce two sequences of stopping times µε,δn and κε,δn corresponding to
successive visits to O and ∂Vδ. Namely, let µε,δ0 = κε,δ−1 = 0 and then define
recursively

µε,δn
def
= inf{t > κε,δn−1 : Γε(Zt) ∈ ∂Vδ}(5.1)

κε,δn
def
= inf{t > µε,δn : Γε(Zt) ∈ O} ,(5.2)

for n > 1 and n > 0 respectively. Let ∆ε
n = Z(κε,δn )− Z(κε,δn−1), be the displace-

ment between successive visits to L. With this notation, the distance covered by
Z(t) before hitting Γ−1

ε (∂Vδ), as well as the cell it then hits can be described as
follows.

PROPOSITION 5.1. There exists a 2× 2 non-degenerate matrix Q and a vec-
tor (p1, . . . , pM ) such that the distributions of (ε

1−α
4 ∆ε

1,Γε(Z(µε,δ1 ))) under Px
ε

converge, as ε → 0, to the distribution of (
√
δξN (0, Q), ζ), uniformly for x ∈ L.

Here, ξ, ζ, and N (0, Q) are three independent random variables such that ξ is
exponentially distributed with parameter one, N (0, Q) is a two-dimensional nor-
mally distributed random variable with mean 0 and covariance matrix Q, and
ζ is a G-valued random variable that is almost surely at distance δ from O and
P(ζ ∈ Ii) = pi.

Moreover, for each η > 0 there is δ0 > 0 such that

(5.3) lim
ε→0

sup
x∈T0

Px
ε

(
ε

1−α
4 sup

06t6κε,δ1

|Zt| > η
)
< η,

whenever 0 < δ 6 δ0.

A similar result was proved in Section 2 of [20]. However, in order to make this
paper self-contained, we sketch the main steps involved in the proof and explain the
necessary modifications in Appendix A. Although we will not use it explicitly, we
remark that the pi’s above are proportional to the qi. This follows from the proof of
Proposition 5.1, and Corollary 2.4 in [16].

Let now XG denote the space of G-valued excursions. In other words, elements
h ∈ XG are continuous functions h ∈ C(R+,G) with the property that, if h(t) = O
for some t > 0, then h(s) = O for all s > t. Furthermore, we impose that
T (h) = inf{t > 0 : h(t) = O} is finite for every h ∈ XG . We turn XG into a
metric space by setting

(5.4) d(h, h̄) = |T (h)− T (h̄)|+ sup
t>0

dG(h(t), h̄(t)) ,

with dG as in (3.1).
We also write X∞ = (R2 × XG)N, endowed with the topology of pointwise

convergence, and we define a “projection” Pδ : C(R+; Ḡ)→ X∞ as follows. Given
an element ω ∈ C(R+; Ḡ), we write ω = (V,G) where V and G are continuous
R2-valued and G-valued functions respectively. We first define the “stopping times”
µδn(ω) and κδn(ω) as in (5.1) and (5.2) respectively, with Γε(Z) replaced by G. We
then write Jn(ω) ∈ XG for the nth downcrossing of the process G. In other words,
suppressing the argument ω for conciseness, we have

Jn(t) =
(
G((t+ µδn) ∧ κδn)

)
,

so that in particular |Jn(ω)(0)| = δ for n > 0 and T (Jn(ω)) = κδn − µδn. We also
define Un(ω) ∈ R2 by Un(ω) = V (µδn+1)− V (κδn). With these notations at hand,
we set

Pδ(ω) =
(
Un(ω), Jn(ω)

)
n>0

.

We then have the following lemma.

LEMMA 5.2. Let ν̂ε be a family of probability measures on T0 such that the
push forward measures Γ∗ε ν̂ε converge weakly, as ε→ 0, to a probability measure
ν̂ on G. Then, the law of Pδ(Γ̂ε(Z)) converges weakly under Pν̂ε

ε , as ε→ 0, to the
law of Pδ(Ξ) under P̄ν̂ .

PROOF. We first note that, under P̄ν̂ , Pδ(Ξ) is a random vector (Un, Jn)n>0

with independent components. The distribution of Un is as in Proposition 5.1, i.e.,
it is equal to the distribution of

√
δξN (0, Q). This follows from the fact that the

distribution of the local time accumulated up to µδ1 under P̄O is the same as that of
δξ. Indeed, exponentiality follows from the fact that Lt can only grow when Yt = 0,
while the expectation is given by applying (4.7) to the function f(y) = dG(y,O),
plugging in t = µδ1, and taking expectations (see e.g. Exercise 4.12 Chapter VI
in [37]). The distribution of J0 is the distribution of J0(Y ) under P̄µ, while the
distribution for each of the Jn for n > 0 is equal to the distribution of J0(Y )
under P̄ζ , where ζ is as in Proposition 5.1. The fact that these are independent
follows from the strong Markov property, combined with the fact that the location
at which the Y -component of the process first hits Vδ is independent of the local
time accumulated until then.

We then see that, by Theorem 3.2, the law of J0(Γ̂ε(Z)) under Pν̂ε
ε does indeed

converge weakly as ε→ 0 to the law of J0(Y ) under P̄µ̂. This is because, although
the map Y 7→ J0(Y ) is not continuous, its points of discontinuity, which consist
precisely of those paths which either never hit O or such that their first hit of O is
not transverse, are of measure 0 under P̄ν̂ .

The convergence of the other components of the random vector (Un, Jn)n>0 to
their respective limits follows in the same way from Proposition 5.1, combined
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with Theorem 3.2. The independence of the components of the limiting vector
immediately follows from the strong Markov property of the process Z, the fact that
the convergences in Proposition 5.1 and Theorem 3.2 are uniform with respect to
the initial condition, and the fact that ζ is independent of the other limiting random
variables in Proposition 5.1.

PROOF OF THEOREM 3.4. We first note that as a consequence of the periodicity
of the problem, we can (and will henceforth) restrict ourselves to the case when the
probability measure νε is concentrated on T0, so that the limiting measure ν̂ is of the
form ν̂ = δ0 ⊗ ν for some probability measure ν on G. We thus only need to prove
that, under the conditions of the theorem, Γ̂ε(Z) converges in law to Ξ with initial
measure δ0⊗ν. We begin by defining a “concatenation” mapRδ : X∞ → C(R+; Ḡ)
as follows. Given δ > 0, U, V ∈ R2 andG = (i, y) ∈ G, we define the interpolation
Lδ(U, V,G) : [0, δ2]→ Ḡ by

Lδ(U, V,G)(t)
def
=
(
U + δ−2t(V − U), (i, δ−2ty)

)
,

so that Lδ(U, V,G)(0) = (U,O) and Lδ(U, V,G)(δ2) = (V,G). Given X =
(Xn)n>0 with Xn = (Un, Jn) ∈ R2 ×XG , we define recursively two sequences of
“excursion times” En, E′n ∈ R+ and locations Wn ∈ R2 by

En(X )
def
= nδ2 +

n−1∑
j=0

T (Jj) , E′n(X ) = En(X ) + T (Jn) , Wn =

n−1∑
j=0

Uj .

with the natural conventions that E0 = 0 and W0 = 0. With these notations at hand,
we then set

Rδ(X )(t)
def
= (Wn, Jn(t− En(X )))

for t ∈ [En(X ), E′n(X )], and

Rδ(X )(t)
def
= Lδ(Wn,Wn+1, Jn+1(0))(t− E′n(X ))

for t ∈ [E′n(X ), E′n(X ) + δ2]. This definition is unambiguous (and the function
Rδ(X ) is continuous) since, at t = E′n(X ), both expressions equal (Wn, O),
while at t = En+1(X ) = E′n(X ) + δ2 both expressions equal (Wn+1, Jn+1(0)).

It is straightforward to see thatRδ is a right inverse for Pδ, i.e. PδRδ = id. On
the other hand, clearlyRδPδ 6= id, however, we will construct a set of trajectories
ω on which (RδPδ)(ω) is close to ω. For this, we need a bit of additional notation.
Given a trajectory ω ∈ C(R+; Ḡ) and times µδn(ω) and κδn(ω) as above, we define
the corresponding downcrossing and upcrossing durations by

T dn,δ = κδn − µδn, T un,δ = µδn − κδn−1, n > 0 .

t
κδ0 µδ1 κδ1 µδ2 κδ2 µδ3

0

0

0

1

1

1

1

2

2

2

2

3

Nδ
t

Dδ
t

FIG 4. Values of Dδ
t and Nδ

t in relation to the stopping times κi and µi. The
highlighted regions are when the upcrossings fromO to Vδ occur. The range of eδ
falls into the non-highlighted regions, while the range of ēδ falls into the region
obtained by shrinking / expanding the highlighted regions in such a way that each
of them has length δ2.

We also define the number of down / upcrossings up to time t by

Dδ
t = inf{n > 0 : κδn > t} , N δ

t = sup{n > 0 : µδn 6 t}

(see Figure 4). Finally define

eδ(t) = t+

N̄δ
t∑

n=1

T un,δ , ēδ(t) = t+ δ2N̄ δ
t ,

and

N̄ δ
t = sup

{
k > 0 : µδk 6 t+

k∑
n=1

T un,δ

}
.

These quantities can be interpreted as follows: we stop a special clock every time
the process hits the vertex O, and re-start it once the process reaches the level set
∂Vδ. Then eδ(t) is the real time that has elapsed when the special clock reaches
time t, N̄ δ

t is the number of upcrossings completed before this happens, and ēδ(t)
is the analogous quantity to eδ(t) when, for every upcrossing, we count δ2 in real
time.

Given η, r, T, δ > 0, we then define a set F(η, r, T, δ) of trajectories ω such that
the following properties hold:

1. For all s, t 6 T + r with |t− s| 6 r, one has dḠ(ω(t), ω(s)) 6 η.
2. One has the bounds eδ(T )− T 6 r and δ2(2 + N̄ δ

T (ω)) 6 η.
3. Writing ω = (V,G) as above, for every n ∈ {0, . . . , N̄ δ

T (ω)}, one has the
bounds

sup
t∈[µδn,κ

δ
n]

|V (t)− V (µδn)| 6 δ2, and |V (0)| 6 δ2 .

The following lemmas are the crucial ingredients for our proof of the theorem.
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LEMMA 5.3. Provided that r > δ2, every ω ∈ F(η, r, T, δ) satisfies the bound

sup
t∈[0,T ]

dḠ
(
ω(t),

(
RδPδω

)
(t)
)
6 4η . (5.5)

LEMMA 5.4. For every η > 0, every T > 0, and every sequence νε of probabil-
ity measures on R2 such that Γ∗ενε is tight, there exist δ0 > 0, r > δ2

0 such that for
δ ∈ (0, δ0), there is ε0 > 0 such that

Pνε
ε

(
Γ̂ε(Z) ∈ F(η, r, T, δ)

)
> 1− η ,

for every ε 6 ε0.

LEMMA 5.5. We have

sup
y∈G

Ēy|eδ(t)− t| = O(δ) and sup
y∈G

Ēy|δ(N̄ δ
t −Dδ

t )|
δ→0−−−→ 0 .

LEMMA 5.6 ([16]). For every t > 0, we have limδ→0 supy∈G Ē
y|δDδ

t − Lt| =
0.

Lemma 5.6 is contained in in the proof of Lemma 2.2 in [16], and we do not prove
it here. For clarity of presentation the proofs of Lemmas 5.3–5.5 are postponed until
the proof of Theorem 3.4 is complete.

The rest of the proof is a standard “triangle” argument. Fix T > 0 and let f be
a uniformly continuous bounded functional on C([0, T ]; Ḡ). Pick any η′ > 0 and
choose η > 0 small enough such that

|f(ω)− f(ω′)| < η′ whenever sup
t∈[0,T ]

dḠ(ω(t), ω′(t)) < 4η.

Note that the reconstruction map Rδ : X∞ → C(R+, Ḡ) is continuous with
the choice of the metric (5.4). Since the restriction operator Π[0,T ] : C(R+, Ḡ) →
C([0, T ], Ḡ) is also continuous, Lemma 5.2 implies that

(5.6) Eνεε f(Π[0,T ]RδPδ(Γ̂ε(Z)))
ε→0−−−→ Ēν̂f

(
Π[0,T ]RδPδ(Ξ)

)
.

On the other hand, Lemma 5.3 and Lemma 5.4 imply that we can find a δ > 0 such
that for any small enough ε > 0, we have

(5.7) |Eνεε f(Π[0,T ]Γ̂ε(Z))−Eνεε f(Π[0,T ]RδPδ(Γ̂ε(Z))| 6 2η‖f‖∞ + η′.

For the limiting process Ξ, standard results on the Brownian modulus of continu-
ity, and Lemmas 5.5–5.6 imply that, by possibly making δ smaller, we have

P̄ν̂
(
Ξ ∈ F(η, r, T, δ)

)
> 1− η .

Together with Lemma 5.3, this implies

(5.8) |Ēν̂f(Π[0,T ]Ξ)− Ēν̂f(Π[0,T ]RδPδ(Ξ)| 6 2η‖f‖∞ + η′.

Combining (5.6), (5.7), (5.8) and noting that η and η′ can be made arbitrarily small
gives the convergence of Π[0,T ]Γ̂ε(Z) in law to Π[0,T ]Ξ. Since T > 0 was also
arbitrary, this finishes the proof.

It remains to prove Lemmas 5.3–5.5.

PROOF OF LEMMA 5.3. For fixed small λ > 0 and any T > 0, consider ω =
(V,G) ∈ F(η, r, T, δ). We want to show that if δ and η are sufficiently small, then,
writing ωδ = (V δ, Gδ) := RδPδω, one has dḠ(ωδ(t), ω(t)) 6 λ for t 6 T .

For this, we first build the time change

fδ(t) = eδ
(
inf{s : ēδ(s) > t}

)
.

(On the range of ēδ, this equals eδ(ē−1
δ (t)).) The second property of F then guaran-

tees that
|fδ(t)− t| 6 r , ∀t 6 T . (5.9)

It also follows from the constructions ofRδ and Pδ that, for all t in the range of ēδ,
one has

Gδ(t) = G(fδ(t)) , V δ(t) =

N̄δ
t∑

n=1

(V (µδn)− V (κδn−1)) . (5.10)

We can rewrite the second identity as

V δ(t) = V (fδ(t))−V (0)−
(
V (fδ(t))−V (µδ

N̄δ
t
)
)
−

N̄δ
t∑

n=1

(
V (κδn−1)−V (µδn−1)

)
.

Since we have fδ(t) ∈ [µδn, κ
δ
n] for n = N̄ δ

t by definition, we can combine this with
the third property ofF , thus yielding the bound |V δ(t)−V (fδ(t))| 6 (2+N̄ δ

t )δ2 6
η. Together with the first equality in (5.10) and the first property of F , this finally
yields

dḠ(ω(t), ωδ(t)) 6 dḠ(ω(t), ω(fδ(t))) + |V δ(t)− V (fδ(t))| 6 2η,

for all times t 6 T belonging to the range of ēδ. It remains to consider times outside
the range of ēδ, which correspond to the upcrossings. Write t0 < t for the start of
the upcrossing, so that |t− t0| 6 δ2 < r by definition. Then, one has

dḠ(ω(t), ωδ(t)) 6 dḠ(ω(t), ω(t0))+dḠ(ω(t0), ωδ(t0))+dḠ(ωδ(t), ωδ(t0)) 6 4η .
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This is because the first and last terms are bounded by η as a consequence of the
first and second properties of F , while the second term is bounded by 2η from
before.

Since Lemma 5.5 is used in the proof of Lemma 5.4, we prove it first.

PROOF OF LEMMA 5.5. By the strong Markov property, the T ui,δ are indepen-
dent and identically distributed under P̄y, while the T di,δ are identically distributed,
but not independent of the upcrossing durations in between. However, when con-
ditioned on the corresponding downcrossing taking place on edge j, they have the
same distribution as the hitting time of the point δ/√aj by a standard Brownian
motion starting at the origin.

We note that for any λ > 0 and K ∈ N, Chebyshev’s inequality implies

P̄y
(
D̄δ
t > K

)
= P̄y

( K∑
i=0

T di,δ < t
)
6 eλtĒye−λ

∑K
i=0 T

d
i,δ = eλt

K∏
i=0

Ēye−λT
d
i,δ ,

where we defined D̄δ
t = Dδ

eδ(t)
. Let j be the index of the slowest edge, that is

aj = mini=1,...,n ai. Then, by the strong Markov property,

Ēye−λT
d
i,δ 6 Ē(j,δ)e−λτ

δ
0 = e−δbλ , bλ =

√
2λ

aj
.

Inserting this into the above yields

P̄y
(
D̄δ
t > K

)
6 exp

(
λt− bλKδ

)
. (5.11)

Next, writing eδ(t)− t =
∑∞

i=1 1i6D̄δt
T ui,δ, we obtain from the Cauchy-Schwartz

inequality,

Ēy|eδ(t)− t| = Ēy(eδ(t)− t) =

∞∑
i=1

√
P(i 6 D̄δ

t )Ē
y(T ui,δ)

2

6 Ceλt/2δ2
∞∑
i=1

e−δbλi/2 6 C(t)δ ,(5.12)

where we used (5.11), combined with the fact that Ēy(T ui,δ)
2 = O(δ4) by the

Brownian scaling.
To prove the second claim, pick an η > 0. By the monotonicity of Dδ

t in t and
since |N̄ δ

t − D̄δ
t | 6 1,

(5.13) Ēy|δ(N̄ δ
t −Dδ

t )| 6 δ + δĒy(Dδ
t+η −Dδ

t ) + δĒy
(
D̄δ
t1{eδ(t)−t>η}

)
.

The expectation δĒy(Dδ
t+η −Dδ

t ) above can be estimated by comparing it to the
local time. Using the Markov property at time t and Lemma 5.6, we have

δĒy(Dδ
t+η −Dδ

t ) 6 ĒyĒY (t)Lη + o(1).

The right hand side of the above can be made arbitrarily small by choosing η small
enough.

On the other hand, the Cauchy-Schwartz inequality implies that the last term on
the right hand side of (5.13) can be estimated from above by

δ
√

Ēy(D̄δ
t )

2 P̄y(eδ(t)− t > η) = o(1).

Indeed, the probability converges to zero by (5.12) and Chebyshev’s inequality,
while the remaining factor can be bounded using (5.11), thus concluding the proof.

Finally, we turn to Lemma 5.4. The proof relies on tightness (stated as Lemma 5.7,
below) and the fact that upcrossing durations are negligible compared to the down-
crossings durations (Lemma 5.5).

LEMMA 5.7. The law of Γ̂ε(Z) under Pνε is tight in C(R+, Ḡ). In particular,
for every T, η > 0, there is an r > 0 and ε0 > 0 such that for ε ∈ (0, ε0], we have

Pνε
(

sup
|t−s|6r
s,t∈[0,T ]

dḠ(Γ̂ε(Z(t)), Γ̂ε(Z(s))) > η
)
< η

PROOF. The tightness of the G-component follows from Theorem 3.2, we only
have to prove the tightness of the R2 component. Using the strong Markov property
and the fact that the displacement is bounded byO(ε) as long as the process remains
inside a cell, tightness of the R2 component reduces to showing the following: for
every η > 0 and r ∈ (0, 1) sufficiently small, there exists ε0 = ε0(η, r) > 0 such
that

(5.14) Px
ε

(
sup

06t6r
|ε

1−α
4 Zt| > η

)
6 rη ,

for every ε 6 ε0 and x ∈ L ∩ T0 (see also Theorem 18.17 in [25]). We prove this
below.

Let Rδ1, Rδ2, etc. be independent, distributed as
√
δξN (0, Q). Doob’s maximal

inequality then shows that there exists a constant C such that

P
(
l−1/2 max

16m6l
|Rδ1 + · · ·+Rδm| > K

)
6
Cδ5

K10
E|Rδ1|

10 ,
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for all K > 0. Choosing K = 1
4η
√
δ/k, we see that for a given η > 0, there exist

k0 ∈ (0, 1) and δ1 > 0 such that

(5.15) P
(

max
16m6k/δ

|Rδ1 + · · ·+Rδm| >
η

4

)
6
k4η

4
,

whenever k ∈ (0, k0) and δ ∈ (0, δ1). From (5.15) and Lemma 5.2, it follows that
there is ε1(k, δ) > 0 such that

(5.16) Px
ε

(
max

16m6k/δ
ε(1−α)/4|∆ε

1 + · · ·+ ∆ε
m| >

η

3

)
6
k4η

3
,

provided that ε 6 ε1(k, δ). Note that this estimate and those below are uniform in
x ∈ L ∩ T0. Combining (5.16) and (5.3), it now follows that there is ε2(k, δ) > 0
such that

(5.17) Px
ε

(
sup

06t6κδ,ε
[k/δ]

ε(1−α)/4|Zt| >
η

2

)
6
k4η

2
.

provided that ε 6 ε2(k, δ).
By Lemma 5.6, for a given η > 0, we can find r > 0 and δ2 = δ2(r) > 0 such

that, for any δ 6 δ2, and ` = [r1/4/δ] we have
(5.18)

sup
y∈G

P̄y(Dδ
r > `) < sup

y∈G
P̄y(Lr > r1/4) +

ηr

4
6 r2ĒO

( Lr
r1/2

)8
+
ηr

4
6
ηr

3
.

Here the second inequality follows from the Chebyshev inequality and the strong
Markov property, while the last inequality follows from the fact that the distribution
of Lr/r1/2 under P̄O does not depend on r > 0 and has Gaussian tails. As a
consequence of Theorem 3.2, there is ε3(r, δ) such that if ε 6 ε3(r, δ), and x ∈ L
we have

(5.19) Px
ε

(
κδ,ε` < r

)
6 P̄O

(
Dδ
r > `

)
+
ηr

6
,

and hence

Px
ε

(
sup

06t6r
ε(1−α)/4|Zt| > η

)
6 Px

ε

(
κδ,ε` < r

)
+ Px

ε

(
sup

06t6κδ,ε`

ε(1−α)/4|Zt| > η
)
.

Applying (5.17), (5.18), and (5.19) with

k = r1/4, δ < min(δ1, δ2) and ε < min(ε1(k, δ), ε2(k, δ), ε3(r, δ)),

we obtain (5.14) as required.

Finally we prove Lemma 5.4.

PROOF OF LEMMA 5.4. Fix η > 0 and T > 0. As a consequence of Lemma 5.7,
we can find ε0 and r > 0 such that the first property is satisfied with probability at
least 1− η, uniformly over ε < ε0. By Lemma 5.5, we then choose δ with δ2 < r
sufficiently small so that the second estimate holds. The third bound immediately
follows from the definitions as soon as ε

1−α
4 6 δ2, thus concluding the proof.

6. The averaging principle on the short time scales. We now turn to the
proof of Theorem 3.2. For notational simplicity, we view Z itself as a process on the
torus T and define set Y ε

t = Γε(Zt). Let Ψ ⊂ C0(G) be the dense subset consisting
of all compactly supported functions that are continuously differentiable on each
edge.

The proof of Theorem 3.2 relies on the following two lemmas (compare with the
result of Freidlin and Wentzell [18, Ch. 8, Lemma 3.1]).

LEMMA 6.1. Let A be the operator on the domain D(A) introduced in Section
3 and D ⊂ D(A) be the subset consisting of all the functions f for which Af ∈ Ψ.
For each f ∈ D, T > 0, we have

(6.1) sup
x∈T

∣∣∣∣Exε [f(Y ε
T )− f(Y ε

0 )−
∫ T

0
Af(Y ε

t ) dt

]∣∣∣∣ ε→0−−−→ 0.

LEMMA 6.2. For each compact set K ⊂ G, the laws of the processes {Y ε}
under the measures Px

ε for ε ∈ (0, 1] and x ∈ Γ−1
ε (K) ⊂ T are tight.

Momentarily postponing the proof of Lemmas 6.1 and 6.2, we use them to prove
Theorem 3.2.

PROOF OF THEOREM 3.2. Lemma 6.1, the Markov property, and the time-
independence of A ensure that any subsequential limit of Y ε solves the martingale
problem with the operatorA′ = A|D. By the Ito formula, Y is a solution of the mar-
tingale problem for A′ and any initial measure µ on G. Since D is a core for A (as
one can easily verify using [13, Ch 1, Proposition 3.1]), Theorem 4.1 in [13, Ch 4]
implies that Y is actually the unique solution to the martingale problem for A with
any initial measure µ on G. Moreover, it also follows that the subsequential limits
are solutions of the martingale problem for A as well. Therefore any subsequential
limit of Y ε must equal Y and Lemma 6.2 and hence Prokhorov’s theorem imply the
convergence of Y ε itself.

The rest of the section is devoted to the proof of Lemma 6.1, while the proofs
of several auxiliary lemmas and of Lemma 6.2 are relegated to the next section.
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Some elements in our proof are similar to those used in [11, 12], where a different
extension of the original averaging principle (Chapter 8 of [18]) was addressed.

For h > 0, we will write L(h) = {x ∈ T : |H(x)| = h}, so that LT = L(0).
Take a function β = β(ε) ∈ (α/2, 1/2) such that

(6.2) β(ε)− α

2
→ 0 and εβ(ε)−α

2 → 0 as ε→ 0.

Denote L̄ = L(εβ) and let σ be the first time when the process Zt reaches LT (this
coincides with βε0 introduced earlier) and τ be the first time when it reaches L̄. We
inductively define the following two sequences of stopping times. Let σ1 = σ. For
n > 1 let τn be the first time following σn when the process reaches L̄. For n > 2
let σn be the first time following τn−1 when the process reaches LT .

We can consider the following discrete time Markov chains ξ1
n = Zσn and

ξ2
n = Zτn with state spaces LT and L̄, respectively. Let P1(x, dy) and P2(x, dy) be

transition operators for the Markov chains ξ1
n and ξ2

n, respectively. It was then shown
in [11, Lem 2.3] that they are uniformly exponentially mixing in the following sense.

LEMMA 6.3. There exist constants 0 < c < 1, ε0 > 0, n0 > 0, and probability
measures ν and µ (which depend on ε) on LT and L̄, respectively, such that for
ε < ε0 and n > n0 we have

(6.3) sup
x∈LT

‖Pn1 (x, ·)− ν‖TV 6 cn, sup
x∈L̄
‖Pn2 (x, ·)− µ‖TV 6 cn,

where ‖·‖TV denotes the total variation norm of a measure.

We will need to control the number of excursions between c and LT before time
T . This is our next lemma.

LEMMA 6.4. There is a constant r > 0 such that for all sufficiently small ε we
have

sup
x∈L̄

Exε exp(−σ) 6 1− rεβ−
α
2 .

The proof of this lemma is given in Section 7. Using the Markov property of the
process and Lemma 6.4, we get the estimate

sup
x∈T

Exε exp(−σn) 6 sup
x∈L̄

Exε exp(−σn−1) 6 (sup
x∈L̄

Exε exp(−σ))n−1

6 (1− rεβ−
α
2 )n−1 .(6.4)

The next lemma, also proved in Section 7, allows us to estimate expressions of the
type (6.1) over the random intervals [0, τ ] and [0, σ].

LEMMA 6.5. For each f ∈ D, we have the following asymptotic estimates

sup
x∈T

∣∣∣∣Exε [f(Y ε
σ )− f(Y ε

0 )−
∫ σ

0
Af(Y ε

t ) dt

]∣∣∣∣→ 0 ,(6.5)

sup
x∈T

∣∣∣∣Exε [f(Y ε
τ )− f(Y ε

0 )−
∫ τ

0
Af(Y ε

t ) dt

]∣∣∣∣→ 0 ,(6.6)

sup
x∈L̄

∣∣∣∣Exε [f(Y ε
σ )− f(Y ε

0 )−
∫ σ

0
Af(Y ε

t ) dt

]∣∣∣∣ = o(εβ−
α
2 ) ,(6.7)

Eνε

[
f(Y ε

τ )− f(Y ε
0 )−

∫ τ

0
Af(Y ε

t ) dt

]
= o(εβ−

α
2 ) ,(6.8)

as ε→ 0. Here ν is the invariant measure on LT given by Lemma 6.3

We prove Lemma 6.1 by splitting the time interval [0, T ] into subsequent upcross-
ing and downcrossing periods. The first downcrossing from the general starting
point is special and the contribution to (6.1) is estimated using (6.5). The estimate
(6.4) gives us sufficient control on the growth rate of the number of upcrossing-
downcrossings, so that by the stronger estimates (6.7), (6.8), we can show that the
contribution from these time intervals to (6.1) is also negligible. In order to be
able to use (6.8), we will use Lemma 6.3 to argue that after many such crossings,
the section of the process on the separatrix can be approximated by its stationary
counterpart. Finally, estimate (6.6) is used to show that the error thus introduced is
negligible for small ε.

PROOF OF LEMMA 6.1. Let f ∈ D, T > 0, and η > 0 be fixed. We would like
to show that the absolute value of the left hand side of (6.1) is less than η for all
sufficiently small positive ε.

First, we replace the time interval [0, T ] by a larger one, [0, σ̃], where σ̃ is the
first of the stopping times σn that is greater than or equal to T , that is

σ̃ = σN+1 , N = max{n : σn < T} .

Using the Markov property of the process, the difference can be rewritten as∣∣∣∣Exε[f(Y ε
σ̃ )−f(Y ε

0 )−
∫ σ̃

0
Af(Y ε

t ) dt
]
−Exε

[
f(Y ε

T )−f(Y ε
0 )−

∫ T

0
Af(Y ε

t ) dt
]∣∣∣∣

=

∣∣∣∣ExεEZTε [f(Y ε
σ )− f(Y ε

0 )−
∫ σ

0
Af(Y ε

t ) dt
]∣∣∣∣ .

Using (6.5) we can ensure that the right hand side of the above is smaller than η
5 for

all sufficiently small ε. Therefore, it remains to show that∣∣∣∣Exε[f(Y ε
σ̃ )− f(Y ε

0 )−
∫ σ̃

0
Af(Y ε

t ) dt
]∣∣∣∣ < 4η

5
,
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for all sufficiently small ε. Using the stopping times τn and σn, we can rewrite the
expectation in the left hand side of this inequality as

Exε

[
f(Y ε

σ̃ )− f(Y ε
0 )−

∫ σ̃

0
Af(Y ε

t ) dt
]

= Exε

[
f(Y ε

σ )− f(Y ε
0 )−

∫ σ

0
Af(Y ε

t ) dt
]

+ Exε

(
N∑
n=1

EZσnε

[
f(Y ε

τ )− f(Y ε
0 )−

∫ τ

0
Af(Y ε

t )dt

])
(6.9)

+ Exε

(
N∑
n=1

EZτnε

[
f(Y ε

σ )− f(Y ε
0 )−

∫ σ

0
Af(Y ε

t )dt

])
,(6.10)

provided that the sums in the right hand side converge absolutely (which follows
from the arguments below). Due to (6.5), the absolute value of the first term on the
right hand side of this equality can be made smaller than η

5 for all sufficiently small
ε. Therefore, it remains to estimate the two sums.

Let us start with the second sum (6.10). Note that

Px
ε (σn < T ) = Px

ε

(
e−σn > e−T

)
6 eT

(
1− rεβ−

α
2
)n−1

,

where the last inequality follows from (6.4) and Chebyshev’s inequality. Taking the
sum in n, we obtain

ExεN 6
∞∑
n=1

eT
(

1− rεβ−
α
2

)n−1
6

K

εβ−
α
2

,

where the constant K depends on T and r. By Lemma 6.5, we can find ε0 > 0 such
that for all ε ∈ (0, ε0) we have

sup
x∈L̄

∣∣∣∣Exε [f(Y ε
σ )− f(Y ε

0 )−
∫ σ

0
Af(Y ε

t )dt

]∣∣∣∣ 6 ηεβ−
α
2

5K
.

Multiplying these two bounds it follows that, for ε < ε0, the term (6.10) is bounded
by η/5.

Next, to estimate the term (6.9), we first note that (6.8) and the above argument
shows

(6.11)

∣∣∣∣∣Exε
N∑
n=1

Eνε

[
f(Y ε

τ )− f(Y ε
0 )−

∫ τ

0
Af(Y ε

t )dt

]∣∣∣∣∣ 6 η

5
.

The left hand side of this inequality, however, is not quite the term (6.9), since the
inner expectation is with respect to the invariant measure ν rather than individual

points. (This limitation is due to (6.8).) Thus, in view of (6.11), to estimate (6.9) we
only need to bound ∣∣∣Exε N∑

n=1

(F (Zσn)− F )
∣∣∣,

where

F (x)
def
= Exε

[
f(Y ε

τ )− f(Y ε
0 )−

∫ τ

0
Af(Y ε

t ) dt

]
and F

def
=

∫
LT

F dν .

Observe∣∣∣Exε N∑
n=1

(
F (Zσn)− F

)∣∣∣ 6 ∣∣∣ ∞∑
n=1

Exε
(
F (Zσn)− F

)∣∣∣+
∣∣∣Exε ∑

n>N

(
F (Zσn)− F

)∣∣∣
=
∣∣∣ ∞∑
n=1

Exε
(
F (Zσn)− F

)∣∣∣+
∣∣∣ExεEZ(τN )

ε

∞∑
n=1

(
F (Zσn)− F

)∣∣∣
6 2 sup

x∈LT
|F (x)|

∞∑
n=1

sup
x∈LT

‖Pn−1
1 (x, ·)− ν‖TV ,

which is smaller than η
5 for all sufficiently small ε due to (6.3) and (6.6). Conse-

quently the term (6.9) is bounded by 2η/5 when ε is sufficiently small.
Combining the above estimates, we see that the absolute value of the left hand

side of (6.1) is less than η for all sufficiently small positive ε. This completes the
proof of Lemma 6.1.

7. Proofs of lemmas used in Section 6. In this section we prove Lemmas 6.2,
6.4, and 6.5. We start with estimates on the transition times and transition probabili-
ties between different level sets of H . Recall that L(h) = {x ∈ T : |H(x)| = h}
and define Li(h) = L(h) ∩ U i. For h > 0, let

τ̄h = τ̄(h)
def
= inf{t > 0 : Zt ∈ L(h)} ,

so in particular, τ̄0 = σ and τ̄(εβ) = τ . For 0 6 h1 6 h2, let U(h1, h2) = {x ∈
T : h1 6 |H(x)| 6 h2} and Ui(h1, h2) = U(h1, h2) ∩ U i.

In what follows, we take a more detailed look at the behaviour of Zt near the
separatrix. Let zt = zεt (x) be the deterministic process

dzt = αεα−1|log ε| v(zt) dt, z0 = x.

This is the same as the process Zt under Px
ε , but with the stochastic term removed.

Let T ε = T ε(x) be the time it takes for the process zεt , starting at x, to make one
rotation along the level set, i.e., T ε(x) = inf{t > 0 : zt = x}.
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LEMMA 7.1. Suppose that λ1(ε), λ2(ε) are such that ελ1(ε), ελ2(ε) = O(εα/2)
and λ1(ε) 6 λ2(ε) < 1/2− c for some c > 0.

(a) There are positive constants c1 and c2 such that c1ε
1−α 6 T ε(x) 6 c2ε

1−α

for all sufficiently small ε and all x ∈ U(ελ2 , ελ1). Moreover, there are
constants ci > 0 such that if α′ > 0 and λ′1(ε), λ′2(ε)→ α′/2 as ε→ 0, then
ε−(1−α)T ε(x)→ ciα

′/α as ε→ 0 uniformly in x ∈ Ui(ελ
′
2 , ελ

′
1).

(b) For each δ > 0, R > 0, and all sufficiently small ε we have
(7.1)
Px
ε

(
sup
t6T (x)

|H(Zt)−H(x)| > ε
1
2
−δ
)
< εR for all x ∈ U(ελ2(ε), ελ1(ε)).

(c) For each δ > 0, R > 0, and all sufficiently small ε we have

Px
ε

(
sup
t6T (x)

|Zt − zεt (x)| > ε
1
2
−λ2(ε)−δ

)
< εR for all x ∈ U(ελ2(ε), ελ1(ε)).

Statement (a) of the above lemma follows from a direct computation for the
deterministic process, and the fact that

ci = lim
ε→0

Ti(ε
1/2)

|log ε|
,

where the limit is the same arising in (3.3). Statement (b) of the above lemma is
basically a large deviation estimate on probability of the stochastic process to move
transversal to the level-sets of H . Statement (c) is a large deviation estimate plus
the fact that purely deterministic flow may separate points by an amount ε−λ2−δ, if
both points are outside the boundary layer |H(x)| 6 ελ2 . Heuristic explanation for
this deterministic separation is as follows. The rotation time T is of the same order
as the time needed to pass the neighbourhood of a saddle and the largest separation
also occurs near saddles. Let us analyse the linearised system ẋ = x, ẏ = −y.
For the linearised system the particle trajectories and separation between particles
behave as the x-component given by x = x0e

t. The time to pass the neighbourhood
of a saddle if found from x0e

t = O(1). Thus the rotation time T = −C log x0,
and separation after one rotation is O(eT ) = c/x0 6 O(ε−λ2). In order to claim
the separation in the nonlinear system occurs at the same rate, one needs to use
the normal forms argument (see e.g. [2]), because eigenvalues of the linearised
system are resonant. Therefore we only obtain an estimate ε−λ2−δ with the linear
approximation argument. The rigorous proof of Lemma 7.1 is identical to that of
Lemma 3.3 in [11], and we do not repeat it here.

LEMMA 7.2. Suppose that λ1(ε) 6 λ2(ε) are such that ελ1(ε), ελ2(ε) =
O(εα/2), λ1(ε), λ2(ε) < 1/2−κ for some κ > 0, and (λ2(ε)−λ1(ε))|log ε| → ∞
as ε→ 0. Then

(a) When λ1(ε)− λ2(ε)→ 0 as ε→ 0, we have the following upper bound on
the expected exit time from a channel.

sup
x∈U(0,ελ2(ε))

Exε (τ̄(ελ1(ε)) ∧ τ̄0) = O(ελ2(ε)+λ1(ε)−α) as ε→ 0.

(b) If λ2(ε) 6 2λ1(ε)− c for some c > 0, the asymptotic behaviour of the exit
probabilities is given by

Px
ε (τ̄(ελ1(ε)) < τ̄0) ∼ ελ2(ε)−λ1(ε) as ε→ 0 uniformly in x ∈ L(ελ2(ε)).

(c) The asymptotic expected exit time from a two sided channel satisfies

sup
x∈U(0,ελ1(ε))

Exε τ̄(ελ1(ε)) = O(ε2λ1(ε)−α) as ε→ 0.

(d) There is a constant c > 0 such that

sup
x∈L(ελ2(ε))

Exε (τ̄(ελ1(ε)) ∧ τ̄0) > cελ2(ε)+λ1(ε)−α.

PROOF. Without loss of generality, we may assume that the initial point x
belongs to Ui, where Ui has the property that H(x) > 0 for all x ∈ Ui. Recall from
Lemma 4.2 (after applying an appropriate time change) in [24] that

(7.2) sup
x∈Ui(0,h)

Exε τ̄(h) 6 cε−αh2 ,

for some c > 0, which implies the third statement. Also, by [24, Lem. 4.3],

(7.3) Px
ε

(
τ̄(h) < τ̄0

)
=
H(x)

h
+O(h|log ε|),

which implies the second statement as λ2(ε) < 2λ1(ε) − c. (Lemma 4.3 in [24]
can be improved to the extent where the assumption λ2(ε) < 2λ1(ε) − c is not
necessary, but we don’t need it here.)

It remains to prove the first and fourth statements. From now on, we write λ1

instead of λ1(ε), and similarly for λ2. We also introduce λ3 = 1
2 − κ for a small

number κ > 0 and set uε(x) = Exε (τex). Note that uε satisfies the boundary value
problem

Lεuε(x) = −1, x ∈ Ui(ελ3 , ελ1),

uε(x) = 0, x ∈ ∂Ui(ελ3 , ελ1),

where

Lε =
αεα|log ε|

2
∆ +

α|log ε|
ε1−α ∇

⊥H · ∇
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is the generator of the process Zt under Px
ε . Let also ũε(x) = ε−α(H(x) −

ελ3)(ελ1 −H(x)). It is not hard to see that

Lεũε(x) = −α|log ε| |∇H(x)|2 + hε(x), x ∈ Ui(ελ3 , ελ1),

ũε(x) = 0, x ∈ ∂Ui(ελ3 , ελ1),

where

hε(x) =
α|log ε|

2
∆H(x)(ελ1 + ελ3 − 2H(x)) = O(ελ1 |log ε|) ,

uniformly in x ∈ Ui(0, ελ1).
Let c > 0 be a constant to be specified later and note that

Lε(uε − cũε)(x) = cα|log ε||∇H(x)|2 − 1− chε(x), x ∈ Ui(ελ3 , ελ1),

uε(x)− cũε(x) = 0, x ∈ ∂Ui(ελ3 , ελ1).

Writing τex = τ̄(ελ1)∧ τ̄(ελ3) for the first exit time from the region Ui(ελ3 , ελ1),
it follows from the Feynman-Kac formula that

uε(x)− cũε(x) = Exε

∫ τex

0

(
1− αc|log ε||∇H(Zt)|2 + chε(Zt)

)
dt.

We will show that for all sufficiently small κ > 0, by choosing c > 0 large (small),
the right hand side can be made positive (negative) for all x ∈ Ui(2ελ3 , ελ2) for
small enough ε, which then implies that there is a constant c > 0 such that
(7.4)
1

c
ε−α(H(x)− ελ3)(ελ1 −H(x)) 6 Exε (τex) 6 cε−α(H(x)− ελ1)(ελ1 −H(x)),

for all x ∈ Ui(2ελ3 , ελ2).
To do this, it clearly suffices to show that there are constants 0 < A < B such

that, for small enough ε, the quantity

I(x, τex, ε) := Exε

∫ τex

0
|log ε||∇H(Zt)|2 dt ,

satisfies

(7.5)
I(x, τex, ε)

Exε
(
τex

) ∈ [A,B] , ∀x ∈ Ui(2ελ3 , ελ2) .

Let us rewrite I(x, τex, ε) by breaking the domain of integration into intervals
corresponding to individual rotations of the unperturbed process zεt . We inductively
define the stopping times

T̂ ε0 = 0 , T̂ εn+1 = T̂ εn + T ε
(
Z(T̂ εn)

)
, T εn = T̂ εn ∧ τ̄0 ∧ τ̄(2εα/2) ,

and note that by part (b) of Lemma 7.1, we have that for every R and small enough
ε,

(7.6) Px
ε (T ε1 6= T ε(x)) 6 Px

ε

(
sup

06t6T ε(x)
|H(Zt)−H(x)| > ελ3

)
6 εR

for x ∈ Ui(ελ3 , ελ1). Setting

T̄ ε = min{T εn : T εn > τex} ,

we replace the exit time in I(x, τex, ε) by T̄ ε in the upper limit of the integration.
We will show later that the error introduced in this way is of order O(ε1−α). We
have the identity

I(x, T̄ ε, ε) =

∞∑
n=0

Exε

[
1{T εn<T̄ ε}E

Z(T εn)
ε

∫ T ε1

0
|log ε||∇H(Zt)|2dt

]

=
∞∑
n=0

Exε

(
1{T εn<T̄ ε}I(Z(T εn), T ε1 , ε)

)
.(7.7)

By (7.6) and part (c) of Lemma 7.1, it is not hard to see that for any y ∈ Ui(ελ3 , ελ1),

(7.8) I(y, T ε1 , ε) = I(y, T ε(y), ε) + o(ε1−α).

Since y ∈ Ui, one can write this as

(7.9) I(y, T ε(y), ε) =
ε1−α

α

∮
Li(H(x))

|∇H| dl =
ε1−α

α

∮
∂Ui

|∇H| dl+o(ε1−α).

Putting together (7.7), (7.8), (7.9), we conclude that there exists a constant c such
that

I(x, T̄ ε, ε) = Exε

( ∞∑
n=0

1{T εn<T̄ ε}
(
cε1−α + o(ε1−α)

))
.

By part (a) of Lemma 7.1, there exist constants 0 < a < b such that, for ε small
enough and on the event {T εn < T̄ ε}, one has εα−1(T εn+1 − T εn) ∈ (a, b) almost
surely. Therefore, there exists a closed interval J ⊂ R+ \{0}, a sequence of random
variables cn(ε) ∈ J and an element c(ε) ∈ J such that

I(x, T̄ ε, ε) = Exε

( ∞∑
n=0

1{T εn<T̄ ε}
(
cn(ε) + o(ε1−α)

)
[T εn+1 − T εn]

)
=
(
c(ε) + o(1)

)
Exε T̄

ε .
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In order to obtain (7.5), we would like to replace T̄ ε by τex. First note that

(7.10) Exε
(
T̄ ε − τex

)
= O(ε1−α) .

It is clear from the analysis in (7.7), (7.8), and (7.9) and part (b) of Lemma 7.1
that this is indeed a small error term compared to each of the stopping times under
the expectation. Indeed, by the conditions on λ1, λ2, it follows that ελ2−λ1 → 0 as
ε → 0. Pick a δ > 0 such that ελ2 + ε1/2−δ < ελ1 for sufficiently small ε. Also
choose 0 < κ̄ < κ ∧ δ and note that in order to get out of Ui(ελ3 , ελ1) with starting
point in Ui(2ελ3 , ελ2) within ε−κ̄ rotations, H(Zt) needs to change by more than
ε1/2+κ̄−(κ∧δ) during at least one of these rotations and thus, writing Rot for the
number of rotations before the exit time, one obtains from part (b) of Lemma 7.1

Px
ε (Rot 6 ε−κ̄) < ε−κ̄εR

for every R > 0. This implies the primitive a priori lower bound on the expected
exit time

Exε (τex) > cε1−αExε (Rot) > cε1−αε−κ̄(1− εR−κ̄),

which, when combining it with (7.10), shows that

Exε
(
T̄ ε − τex

)
= o(1)Exε

(
τex

)
.

Similarly, replacing T̄ ε by τex in the integral produces an error term of order
O(ε1−α|log ε|), which is much smaller than Exε (τex) by exactly the same argument.

This way we have proved

I(x, ε) = c2(ε)Exε (τex) ,

for all x ∈ Ui(2ε
λ3 , ελ2), where c2(ε) ∈ [A2, B2] for some positive constants

A2, B2. Therefore by (7.4),

(7.11)
1

c
H(x)ελ1−α 6 Exε (τex) 6 cH(x)ελ1−α

for all x ∈ Ui(2ε
λ3 , ελ2). This immediately implies the fourth statement of the

lemma. Indeed, if H(x) = ελ2 , then

Exε
(
τ̄(ελ1) ∧ τ̄0

)
> Exε (τex) > c−1ελ1+λ2−α.

Similarly, for x ∈ Ui(2ελ3 , ελ2) we have the upper bound

Exε (τex) = O(ελ1+λ2−α).

To prove the first statement of the lemma, note that

Exε
(
τ̄(ελ1) ∧ τ̄0

)
6 Exε (τex) + sup

x∈Li(ελ3 )

Exε
(
τ̄(ελ1) ∧ τ̄0

)
.

The first term is of the right order by (7.11). To treat the second one, let κ1 > κ. By
(7.2),

(7.12) sup
x∈Li(ελ3 )

Exε
(
τ̄(ελ1) ∧ τ̄0

)
6 cε1−2κ1−α +

+ sup
x∈Li(ελ3 )

Px
ε (τ̄(ε1/2−κ1) < τ̄0) sup

x∈Li(ε1/2−κ1 )

Exε
(
τ̄(ελ1) ∧ τ̄0

)
.

By (7.3), the probability appearing on the right hand side is less than εκ1−κ +
cε1/2−κ1 |log ε|. By this and the third statement of the lemma, we have

sup
x∈Li(ε1/2−κ)

Exε (τ̄(ελ1)∧τ̄0) < c(ε1−2κ1−α+ε2λ1−α+κ1−κ+ε
1
2
−κ1+2λ1−α|log ε|).

It is easy to check by choosing κ and κ1 small enough and recalling that in this case
λ2(ε) − λ1(ε) goes to zero as ε → 0, all three of these terms are O(ελ1+λ2−α),
which finishes the proof for x ∈ Ui(2ελ3 , ελ2(ε)).

Finally if the starting point is somewhere in Ui(0, 2ελ3), then we first wait until
the process gets out of this set. By (7.2), the expected value of how long this takes
is O(ε2λ3−α) which does not change the conclusion.

REMARK 7.3. It is possible to prove the first statement of the previous lemma
without the assumption that λ1(ε)− λ2(ε) → 0 as ε → 0 by iterating (7.12). We
don’t, however, need this here.

Before we proceed, we introduce a little more notation. For x ∈ R2 \ L, write
Ui(x) for the Ui containing π(x) and define Hε

x : R2 → R by

Hε
x(y) =

{
ε−α/2|H(y)| if π(y) ∈ Ui(x),
−ε−α/2|H(y)| otherwise.

The reason for introducing Hε
x is that it provides us with a “signed” version of the

distance dG on G, i.e., |Hε
x(y)−Hε

x(x)| = dG(Γε(x),Γε(y)).

LEMMA 7.4. Suppose that β1 = β1(ε) and β2 = β2(ε) are such that 0 < β2 <
β1 < 1/2 and β1(ε), β2(ε)→ α/2 as ε→ 0. For each f ∈ D,

(7.13) sup
x∈Ui(εβ1 ,εβ2 )

∣∣∣Exε[f(Y ε
T (x))−f(Γε(x))−

∫ T (x)

0
Af(Y ε

t ) dt
]∣∣∣ = o(ε1−α) ,
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as ε→ 0. Moreover,

(7.14) sup
x∈Ui(εβ1 ,εβ2 )

∣∣Exε (Hε
x(ZT (x))−Hε

x(x))
∣∣ = o(ε1−α)

and

(7.15) sup
x∈Ui(εβ1 ,εβ2 )

∣∣Exε [(Hε
x(ZT (x))−Hε

x(x))2 − T (x)ai]
∣∣ = o(ε1−α

2 )

as ε→ 0.

PROOF. Let T ′(x) = min(T (x), σ). By parts (a) and (b) of Lemma 7.1, for
every R,

Px
ε

(
T (x) 6= T ′(x)

)
= o(εR) = o(ε1−α) ,

and

Exε [T (x)− T ′(x)] = Exε1{σ<T (x)}[T (x)− σ]

6 T (x)Px
ε (σ < T (x)) = O(ε1−α)o(εR) = o(ε1−α) ,

uniformly in x ∈ Ui(εβ1 , εβ2). Due to this and the boundedness of f and Af , it is
sufficient to prove (7.13) with T (x) replaced by T ′(x). By Itô’s formula,

Exε

[
f(Y ε

T ′(x))− f(Γε(x))−
∫ T ′(x)

0
Af(Y ε

t ) dt
]

=
α|log ε|

2
Exε

∫ T ′(x)

0

(
|∇H(Zt)|2f ′′(Y ε

t ) + εα/2∆H(Zt)f
′(Y ε

t )
)
dt

−Exε

∫ T ′(x)

0
Af(Y ε

t ) dt .

The contribution from the second term in the first integral on the right hand side can
be ignored due to Part (a) of Lemma 7.1 and the presence of the factor εα/2. To deal
with the first term, we observe that

α| log ε|
2

Exε

∫ T ′(x)

0
(|∇H(Zt)|2f ′′(Y ε

t )− |∇H(zεt (x))|2f ′′(Γε(x))) dt

= O(| log ε|ε
1
2
−β1−δT (x)) = o(ε1−α) ,

as ε→ 0, provided that δ is sufficiently small. This is where we use that H is C2.
We also used the fact that f ′′′ is bounded (since Af ∈ Ψ) and parts (b) and (c) of

Lemma 7.1 for the first equality. We also used part (a) of Lemma 7.1 for the second
one. Thus the first term can be replaced by

α| log ε|
2

f ′′(Γε(x))Exε

∫ T ′(x)

0
|∇H(zεt (x))|2 dt

=
α| log ε|

2
f ′′(Γε(x))

∫ T (x)

0
|∇H(zεt (x))|2dt+ o(ε1−α)

=
ε1−α

2
f ′′(Γε(x))

∮
L(|H(x)|)∩Ui

|∇H| dl + o(ε1−α)

=
ε1−α

2
f ′′(Γε(x))

∮
∂Ui

|∇H| dl + o(ε1−α) ,

as ε→ 0. The last term is treated similarly:

Exε

∫ T ′(x)

0
Af(Y ε

t )dt =
ai
2
T (x)f ′′(Γε(x)) + o(ε1−α)

=
ε1−α

2
f ′′(Γε(x))

∮
∂Ui

|∇H| dl + o(ε1−α) ,

as ε → 0. The last equality above is due to the definition of ai, which is well
defined by part (a) of Lemma 7.1. Note that in the definition of ai in (3.3), Ti(x)
is the period of the unperturbed xxt while here T (x) is the period of the process zεt .
Collecting all the terms, we obtain

Exε

[
f(Y ε

T ′(x))− f(Γε(x))−
∫ T ′(x)

0
Af(Y ε

t ) dt
]

= o(ε1−α)

as ε→ 0, as required for the proof of (7.13).
Formulas (7.14) and (7.15) are proved similarly. For (7.14), we apply the same

arguments to a smooth bounded function f such that f(h) = h − Γε(x) in a
neighbourhood of Γε(x). (Here, we identify the half line in G containing Γε(x)
with R+ with the origin at O.) For (7.15), we apply the above arguments to a
smooth bounded function f such that f(h) = (h− Γε(x))2 in a neighbourhood of
Γε(x).

The following version of Donsker’s theorem will be useful. Suppose {Fn}n>0 is
an increasing sequence of σ-algebras, that ũn and ξ̃n are two families of real-valued
random variables measurable with respect to Fn and Fn+1 respectively, and let
γ > 0 be a (small) parameter. Assume that the ũn are positive and that there exists
a deterministic ū ∈ (0, γ) and such that |ũn − ū| 6 γū almost surely for all n.
The quantities ũn play the role of time steps for a random walk with spatial steps
ξ̃n. Define the partial sums Sn = ũ0 + · · · + ũn−1. Given an interval [a, b] with
0 ∈ (a, b), define R̃0 = 0 and R̃n+1 = R̃n + ξ̃n1R̃n∈(a,b), n > 0. Assume that



22

a2 = r/6 a1 = r/3 b1 b2 = b1 + r/6

K1
i

FIG 5. Intervals K1
i = [a1, b1] and K2

i = [a2, b2].

(a) For each n, |E(ξ̃n|Fn)| 6 γū almost surely.
(b) For each n, |E(ξ̃2

n|Fn)− ū| 6 γū almost surely.
(c) For each λ > 0 and all n, P(|ξ̃n| > λ|Fn) 6 γū, almost surely.

Let n(t) = max(n : Sn 6 t) and define the continuous time process Rt by

Rt = R̃n(t) +
t− Sn(t)

Sn(t)+1 − Sn(t)
ξ̃n(t), t > 0 .

We now claim the above process is close to stopped Brownian motion.

LEMMA 7.5. Let W̃ [a,b] be a standard Brownian motion, stopped when it leaves
[a, b]. For every δ > 0 and every continuous F : C(R+,R) → R there exists γ0

such that, for every γ 6 γ0, one has∣∣EF (R)−EF (W̃ [a,b])
∣∣ 6 δ .

Moreover, for arbitrary positive t0, C, η, and r, there are δ ∈ (0, 1) and γ0 > 0
such that, for every γ 6 γ0 and every a, b with −C 6 a < 0 < b 6 C, one has

(7.16) sup
t∈[0,t0]

P
(

sup
s∈[t,t+δ]

|Rs −Rt| > r
)
6 δη .

PROOF. A standard proof of Donsker’s theorem (see [13, Chap. 7.4] for the
first statement and [6, Chap. 8] for the second one) can be easily adapted to our
situation.

PROOF OF LEMMA 6.2. Recall that we identify one of the edges Ii of the graph
G with the semi-axis R+. Define K1

i = [a1, b1] ⊂ Ii, where a1 = r/3, b1 > a1.
Let K2

i = [a2, b2], where a2 = r/6, b2 = b1 + r/6. For x ∈ (Γε)
−1(K2

i ), define
inductively

y = Γε(x) , uε0 = T ε(x) , uεn = T ε(ZSεn) ,

and
ξεn = Hε

x(Z(Sεn+1))−Hε
x(Z(Sεn)) .

Then Lemma 7.4 (relations (7.14) and (7.15)), parts (a) and (b) of Lemma 7.1,
and the Markov property of the process imply that conditions (a)–(c) preceding
Lemma 7.5 are met for

R̃y,εn = a
−1/2
i

(
Hε
x(ZSεn)−Hε

x(x)
)
, ξ̃n = a

−1/2
i ξεn , ũn = uεn ,

with some constant γ = γε converging to 0 as ε → 0. Therefore, by Lemma 7.5
applied to the segmentK2

i (suitably centred and rescaled) and part (b) of Lemma 7.1,
for arbitrary positive η and r, there are δ > 0 and ε0 > 0 such that

sup
x∈Γ−1

ε (K1
i )

Px
ε

(
sup
s∈[0,δ]

dG
(
Y ε
s ,Γε(x)

)
>
r

3

)
= sup

x∈Γ−1
ε (K1

i )

Px
ε

(
sup
s∈[0,δ]

|Hε
x(Zs)−Hε

x(x)| > r

3

)
6 δη ,

for all ε 6 ε0, where dG stands for distance on G. (There is no need to introduce
the stopping time associated with exiting the segment K2

i since the starting point
belongs to a smaller segmentK1

i .) LetKr/3 ⊂ G be the set of points whose distance
from O does not exceed r/3. Using the strong Markov property for the process Zt,
i.e., stopping it when ε−α/2|H(Zt)| = r/3, we obtain

sup
x∈Γ−1

ε (Kr/3)

Px
ε

(
sup
s∈[0,δ]

dG
(
Y ε
s ,Γε(x)

)
> r
)

6 sup
x∈Γ−1

ε (
⋃n
i=1K

1
i )

Px
ε

(
sup
s∈[0,δ]

dG
(
Y ε
s ,Γε(x)

)
>
r

3

)
6 δη .

For any compact set K ⊂ G, we can ensure K ⊆
⋃n
i=1K

1
i ∪Kr/3 by choosing b1

sufficiently large. Then

sup
x∈Γ−1

ε (K)

Px
ε

(
sup
s∈[0,δ]

dG
(
Y ε
s ,Γε(x)

)
> r
)
6 δη ,

which implies the statement by the Markov property.

PROOF OF LEMMA 6.4. For any β < α/2 conditioning and the strong Markov
property imply

(7.17) Exε
(
e−σ

)
6 1−Px

ε

(
τ̄(εα/2) < τ̄0

)
+

+ Px
ε

(
τ̄(εα/2) < τ̄0

)
sup

y∈L(εα/2)

Eyε
(
e−σ

)
,



23

for any x ∈ L̄ = L(εβ). It follows from Lemma 7.5 and Lemma 7.1(b) that there is
a constant r > 0 independent of ε such that

sup
y∈L(εα/2)

Eyε
(
e−σ

)
6 sup

y∈L(εα/2)

Eyε exp
[
−
(
τ̄(εα/2/2) ∧ τ̄(2εα/2)

)]
6 1− 2r ,

for all sufficiently small ε. Using this in (7.17), we get

Exε
(
e−σ

)
6 1− 2rPx

ε

(
τ̄(εα/2) < τ̄0

)
6 1− rεβ−

α
2 ,

for any x ∈ L̄. The second inequality above follows from the second statement of
Lemma 7.2.

PROOF OF LEMMA 6.5. First, let us show that (6.5) holds. As before, we define
inductively

uε0 = T ε(x), uεn = T ε(ZSεn), Sεn = uε0 + · · ·+ uεn−1.

Recall that τ̄h = τ̄(h) is the first time when Zt reaches L(h). By the third statement
of Lemma 7.2, there is a constant c such that

(7.18) sup
x∈U(0,εα/2r)

Exε τ̄(rεα/2) 6 cr2,

while by (7.3) we have

sup
x∈U(0,εα/2r)

Px
ε

(
τ̄(2rεα/2) < τ̄(εβ)

)
6 sup

x∈L(rεα/2)

Px
ε

(
τ̄(2rεα/2) < τ̄0

)
6

1

2
+O

(
εα/2|log ε|

)
6

2

3
(7.19)

for all sufficiently small ε. We claim that for each r > 0,

(7.20) sup
x∈U(εβ ,rεα/2)

∣∣∣Exε[f (Y ε
τ̄(εβ)∧τ̄(rεα/2)

)
− f(Γε(x))

−
∫ τ̄(εβ)∧τ̄(rεα/2)

0
Af(Y ε

t ) dt
]∣∣∣ ε→0−−−→ 0 .

Indeed, let ñ = min{n : Sεn > τ̄(εβ)∧ τ̄(rεα/2)}. Then, due to (7.1), it is sufficient
to show that

(7.21) sup
x∈U(εβ ,rεα/2)

∣∣∣∣Exε[f(Y ε
Sε
ñ
)− f(Γε(x))−

∫ Sεñ

0
Af(Y ε

t )dt
]∣∣∣∣ ε→0−−−→ 0.

By part (a) of Lemma 7.1 and (7.18), there is c > 0 such that

Exε ñ =
∞∑
n=0

Px
ε

(
Sεn < τ̄(εβ) ∧ τ̄(rεα/2)

)
6
∞∑
n=0

Px
ε

(
n 6

τ̄(εβ) ∧ τ̄(rεα/2)

cε1−α

)
6

Exε τ̄(εβ) ∧ τ̄(rεα/2)

cε1−α 6
Exε τ̄(rεα/2)

cε1−α 6 cr2εα−1

for some constant c and all sufficiently small ε. Now the validity of (7.21) follows
from (7.13). By Lemma 7.2 and (6.2),

sup
x∈U(0,εβ)

Exε
(
τ̄(0) ∧ τ̄(rεα/2)

)
= O(εβ−

α
2 ),

and

(7.22) sup
x∈U(0,εβ)

Px
ε (τ̄(0) > τ̄(rεα/2))

6 sup
x∈L(εβ)

Px
ε (τ̄(0) > τ̄(rεα/2)) = O(εβ−

α
2 ),

as ε→ 0. Therefore, since f ′ and Af are bounded,

(7.23) sup
x∈U(0,εβ)

∣∣∣∣Exε[f(Y ε
τ̄(0)∧τ̄(rεα/2)

)
− f(Γε(x))

−
∫ τ̄(0)∧τ̄(rεα/2)

0
Af(Y ε

t ) dt
]∣∣∣∣ = O(εβ−

α
2 ),

as ε→ 0.
Now take r sufficiently large so that f(Γε(x)) = 0 whenever x /∈ U(0, rεα/2),
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which is possible since f has compact support. By the strong Markov property,

I0
def
= sup

x∈U(εβ ,rεα/2)

∣∣∣∣Exε[f(Y ε
σ )− f(Γε(x))−

∫ σ

0
Af(Y ε

t ) dt
]∣∣∣∣

6 sup
x∈U(εβ ,rεα/2)

∣∣∣∣Exε[f(Y ε
τ̄(εβ)∧τ̄(2rεα/2)

)
− f(Γε(x))

−
∫ τ̄(εβ)∧τ̄(2rεα/2)

0
Af(Y ε

t ) dt
]∣∣∣∣

+ sup
x∈U(εβ ,rεα/2)

Px
ε

(
τ̄(2rεα/2) < τ̄(εβ)

)
·

· sup
x∈L(2rεα/2)

∣∣∣∣Exε[f(Y ε
σ

)
− f(Γε(x))−

∫ σ

0
Af(Y ε

t ) dt
]∣∣∣∣

+ sup
x∈L(εβ)

∣∣∣∣Exε[f(Y ε
σ )− f(Γε(x))−

∫ σ

0
Af(Y ε

t ) dt
]∣∣∣∣

def
= I1 + I2 + I3.

By (7.19), I2 6 2
3I0 for all sufficiently small ε. By (7.22) and (7.23), I3 6 1

6I0 +

O(εβ−
α
2 ) as ε → 0. Therefore, I0 6 6I1 +O(εβ−

α
2 ), which implies that I0 → 0

due to (7.20) used with 2r instead of r. Finally, (6.5) follows by combining this
with (7.23) and using the strong Markov property.

The proof of (6.6) is nearly identical, and we omit it for brevity. For (6.7),
estimate (7.23) is not quite sufficient. Instead, we introduce β′(ε) to be chosen later,
such that 1/2 > β′(ε) > β(ε), and express the supremum in question as

J = sup
x∈L(εβ)

Exε

[
f
(
Y ε
τ̄(rεα/2)∧τ̄(εβ′ )

)
− f(Γε(x))

−
∫ τ̄(rεα/2)∧τ̄(εβ

′
)

0
Af(Y ε

t ) dt
]

+ sup
x∈L(εβ)

Exε

(
1{τ̄(rεα/2)<τ̄(εβ′ )}E

Z(τ̄(rεα/2))
ε

[
f (Y ε

σ )− f(Y ε
0 )

−
∫ σ

0
Af(Y ε

t ) dt
])

+ sup
x∈L(εβ)

Exε

(
1{τ̄(rεα/2)>τ̄(εβ′ )}E

Z(τ̄(rεα/2))
ε EZ(τ̄(εβ

′
))

ε

[
f (Y ε

σ )

− f(Y ε
0 )−

∫ σ

0
Af(Y ε

t ) dt
])

= J1 + J2 + J3 .

Note that (7.22) implies that

sup
x∈L(εβ)

Px
ε (τ̄(rεα/2) < τ̄(εβ

′
)) 6 sup

x∈L̄
Px
ε (τ̄(rεα/2) < τ̄(0)) = O(εβ−α/2).

Together with (6.5), this implies J2 = o(εβ−α/2). On the other hand, we have as
before that

sup
x∈L(εβ′ )

Px
ε (τ̄(0) > τ̄(β)) = O(εβ

′−β),

as ε→ 0. Similarly to (7.23),

sup
x∈L(εβ

′
)

∣∣∣∣Exε[f (Y ε
τ̄(0)∧τ̄(β)

)
− f(Γε(x))−

∫ τ̄(0)∧τ̄(β)

0
Af(Y ε

t ) dt
]∣∣∣∣ = O(εβ

′−α
2 ) ,

as ε→ 0, and therefore

|J3| 6 sup
x∈L(εβ′ )

∣∣∣∣Exε [f (Y ε
σ )− f(Y ε

0 )−
∫ σ

0
Af(Y ε

t )dt

]∣∣∣∣ 6 |J |2 +O(εβ
′−α

2 ) .

For (6.7) we need εβ
′−β → 0, and this can be achieved by choosing β′ appropriately.

Consequently, |J | 6 2J1 + o(εβ−α/2) and it remains to show that |J1| =
o(εβ−α/2). This can be proved by first showing that

J1 = o

(
sup

x∈L(εβ)

Exε τ̄(rεα/2) ∧ τ̄(εβ
′
)

)
,

by breaking up the time interval into individual rotations, using (7.13) and then
applying Lemma 7.2(a). Since this is only a slight modification of the machinery
we used above, we omit the details.

Finally, the left hand side of (6.8) can be written using a Taylor-expansion as

(7.24) εβ−α/2
n∑
i=1

Dif(0)Pν
ε (Zτ ∈ Ui) + o(εβ−α/2) + ‖Af‖∞Exετ.

Recall, that by (78) in [11], there exists a constant c > 0 such that

Pν
ε (Zτ ∈ Ui) = µ(L̄ ∩ Ui) = c(1 + o(1))

∫
∂Ui

|∇H| dl ε→0−−−→ cqi.

Using this, the assumption f ∈ D and the third statement in Lemma 7.2, it follows
that (7.24) is o(εβ−α/2), which proves (6.8).
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APPENDIX A: PROOF OF PROPOSITION 5.1

In this appendix we sketch the proof of our limit theorem regarding the dis-
placement of Zt during an upcrossing. The verification of this result is based on an
abstract lemma that was proved in [20].

Before we state the lemma we introduce its setup. LetM be a metric space that
can be written as a disjoint union

M = X t C1 t . . . t Cn ,

where the sets Ci are closed. Assume also that X is a σ-locally compact separable
subspace, i.e., locally compact that is the union of countably many compact sub-
spaces. Let pε(x, dy), 0 6 ε 6 ε0, be a family of transition probabilities onM
and let g ∈ Cb(M,R2). Later, pε(x, dy) will come up as transition probabilities
of a certain discrete time process associated to Zt. We assume that the following
properties hold:

1. p0(x,X ) = 1 for all x ∈M and pε(x,X ) = 1 for all x ∈M \ X .
2. p0(x, dy) is weakly Feller, that is the map x 7→

∫
M f(y)p0(x, dy) belongs to

Cb(M) if f ∈ Cb(M).
3. (Small escape probability from X .) There exist bounded continuous functions
h1, . . . , hn : X → R+ such that

ε−
1−α
2 pε(x,Ci)→ hi(x) ,

uniformly over x ∈ K for K ⊆ X compact, and there exists a constant
c <∞ such that supx∈X |ε−

1−α
2 pε(x,Ci)| 6 c. We also have

J(x)
def
= h1(x) + · · ·+ hn(x) > 0 for x ∈ X .

4. pε(x, dy) converges weakly to p0(x, dy) as ε → 0, uniformly in x ∈ K if
K ⊆ X is compact.

5. (Doeblin condition) The transition functions satisfy a strong Doeblin con-
dition uniformly in ε. Namely, there exist a probability measure η on X , a
constant a > 0, and an integer m > 0 such that

pmε (x,A) > a η(A) for x ∈M, A ∈ B(X ), ε ∈ [0, ε0].

It then follows that for every ε, there is a unique invariant measure λε(dy) on
M for pε(x, dy), and the associated Markov chain is uniformly exponentially
mixing, i.e., there are Λ > 0, c > 0, such that

|pkε(x,A)− λε(A)| 6 c e−Λk for all x ∈M, A ∈ B(M), ε ∈ [0, ε0].

6. The function g is such that
∫
M g dλε = 0 for each ε ∈ [0, ε0].

LEMMA A.1. (Lemma 2.4 in [20]) Suppose that Properties 1–6 above are
satisfied and let Rx,εk be the Markov chain on M starting at x, with transition
function pε. Let τ = τ(x, ε) be the first time when the chain reaches the set
C = C1 t . . . t Cn. Let e(Rx,εk ) = i if Rx,εk ∈ Ci. Then, as ε→ 0,(

ε
1−α
4 (g(Rx,ε1 ) + · · ·+ g(Rx,ετ )), e(Rx,ετ )

)
→ (F1, F2)

in distribution, uniformly in x ∈ X , where F1 takes values in R2, F2 takes values in
{1, . . . , n}, and F1 and F2 are independent. The random variable F1 is distributed
as (ξ/

∫
X Jdλ

0)
1
2N(0, Q̄), where ξ is exponential with parameter one independent

of N(0, Q̄) and Q̄ is the matrix such that

(g(Rx,01 ) + · · ·+ g(Rx,0k ))/
√
k → N(0, Q̄)

in distribution as k →∞. The random variable F2 satisfies

(A.1) pi = P(F2 = i) =

∫
X hi dλ

0∫
X J dλ

0
, i = 1, . . . , n.

Let us now show that Lemma A.1 is applicable to a certain Markov chain
associated with Zt. Our objective is to define this Markov chain and verify that
it satisfies Properties (1)-(6). We start by explaining what it means for a process
Zt to pass a saddle point. Consider “the projection on the separatrix” mapping
ρ : Vδ,ε → L with

Vδ,ε = {x ∈ R2 : |H(x)| 6 δεα/2} ,

and given by

ρ(x) = L ∩ {Φx
t : t ∈ R} , Φ̇x

t = ∇H(Φx
t ) , Φx

0 = x .

For sufficiently small δ and ε this ρ is uniquely defined because the closure of the
orbit of the gradient flow Φx

t does indeed intersect the separatrix L at exactly one
point. We will say that Z passes a saddle point Ai if its trajectory intersects the
curves

B(Ai) = {x ∈ Vδ,ε, π(ρ(x)) = Ai} ,
where π : R2 → T is the quotient map from the plane to the torus. Set γε0 = βε0 = 0,
and then recursively define

γεn = inf
{
t > βεn−1 : Zt ∈

( ⋃
k 6=i

B(Ak)
)⋃

∂Vδ,ε
}
,

βεn = inf{t > γεn : Zt ∈ L} ,(A.2)
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provided that π(Z(βεn−1)) ∈ {Ai}∪
⋃
j E(Ai → Aj). Here, E(Ai → Aj) denotes

the heteroclinic connection emanating from the saddle Ai and ending at Aj , or the
empty set if no such connection exists. It means the stopping time γεn clocks the
first time after βεn−1 that the process either hits ∂Vδ,ε, or goes past a saddle point
different from the one behind Z(βεn−1). Recall that we assumed that there are no
homoclinic orbits, and therefore the definition of γεn makes sense.

Define an auxiliary metric space M̄ = L t ∂Vδ,ε. Let us define a family of tran-
sition functions p̄ε(x, dy) on M̄. For x ∈ L, we define p̄ε(x, dy) as the distribution
of Zτ̄ (under Px

ε ) with the random transition time τ̄ = µε1 ∧ βε1, where βε1 and µε1
are defined in (A.2) and (5.1), respectively. In other words, it is the measure induced
by the process stopped when it either reaches the boundary of Vδ,ε or reaches the
separatrix after passing by a saddle point. For x ∈ ∂Vδ,ε, we define p̄ε(x, dy) as the
distribution of Zτ̄ (under Px

ε ) with τ̄ = βε1, i.e., the measure induced by the process
stopped when it first reaches the separatrix. We write R̄x,εk for the corresponding
Markov chain starting at x ∈ M̄.

Note that M̄ depends on ε since it contains ∂Vδ,ε, and we would like to get rid
of this dependence in order to use the abstract setup of Lemma A.1. The projection
on the separatrix mapping ρ (when lifted to the torus T ) defines a natural home-
omorphism between π(∂Vδ,ε) ∩ Ui and a circle Si ⊂ π(L) with circumference∫
∂Ui
|∇H| dl. We will assume that the circles Si and Sj are disjoint for i 6= j, and

denote this homeomorphism by ρε.
While we introduced M̄ as a subset of R2, it is going to be more convenient to

keep track of π(R̄x,εk ) and the latest displacement separately. Let N be a bounded
measurable set in R2 such that R2 =

⊔
z∈Z2(N + z). For x ∈ R2, let [x] ∈ Z2 be

such that x ∈ N + [x]. We can choose N in such a way that [x] is constant on each
connected component of π−1(Ui), i.e., N consists of a finite number of cells and
parts of their boundaries. It is then natural to define a metric spaceM independent
of ε by

M = (π(L) t S1 t · · · t Sn)× Z2 =:M1 × Z2 ,

which is indeed of the above type by setting X = π(L) × Z2 and Ci = Si × Z2.
Let ϕ : M̄ → M be given by ϕ(x) = (ρε(π(x)), [x]) for x 6∈ L, and ϕ(x) =
(π(x), [x]) for x ∈ L. We will write ϕ1 : M̄ → M1 and ϕ2 : M̄ → Z2 for the
first and second components of ϕ, respectively. This allows us to define transition
probabilities pε onM by setting pε((x0, k), ·) to be the law of ϕ(Zτ̄ ) under Px̄0

ε

with x̄0 the only element of N with π(x̄0) = x0. Similarly to before, we write Rx,εk
for the Markov chain starting at x ∈M with transition probabilities pε.

We finally define the function g appearing in Property (6) by, for x = (q, ξ) ∈M,
setting g((q, ξ)) = ξ ∈ Z2. This continuous function measures the displacement
during the last step if the chain is viewed as a process on R2, where only the integer
parts of the initial and end points are counted.

The Markov chain is now defined, and it remains to verify that Properties (1)-
(6) are satisfied. Here we will adopt the approach [24]. The thrust of [24] is the
asymptotic analysis of the behaviour of the process Zt in an ε-neighbourhood of
the separatrix. A Markov chain on separatrices, similar to our Rx,εk , also arises
there. In [24] the analysis, however, was done in a scaling slightly different from
ours. More specifically, in [24] the width of the separatrix region is restricted to
be of order εα1 with some α1 ∈ (1/4, 1/2), while our width is δεα/2, α > 0.
It is fairly straightforward to verify that εα1 may be replaced by δεα/2, i.e., the
imposed restriction α > 1/2 is not needed and can be replaced by α > 0. We will,
therefore, simply quote here the corresponding statements from [24] and explain
their modifications necessary to imply our Properties (1)-(6).

Properties (1), (2) and (4). The existence of the limit of the transition functions
pε in the sense of Property (4) was justified in [24, Lem. 3.1]. This limit is denoted
by p0. An explicit formula for the density of p0 was also provided in [24, Eq. (9)],
which implies that Property (2) is satisfied. Observe that the probability of βε1 being
less than µε1 tends to one as ε → 0, uniformly in x ∈ L by [24, Eq. (26)]. This
implies Property (1).

Let us sketch the proof of the Doeblin condition (Property (5)). It suffices to show
that there exists E′ ⊂ L0, a connected segment of the same heteroclinic orbit of H ,
and there are a constant c > 0 and an integer m > 0 such that

(A.3) p̄mε (x,E′) > c|E′| for all x ∈ T0 ∩ M̄, ε ∈ [0, ε0] ,

where |E′| is the arclength of E′. Since p̄ε(x, T0 ∩ L) = 1, if x ∈ T0 ∩ ∂Vδ,ε,
it suffices to show the last estimate immediately holds for all x ∈ T0 ∩ L. For
x ∈ T0 ∩ L we can obtain (A.3) once we show that there is a set J ⊂ R2, that may
depend on ε, such that it has the following two properties. Firstly, there is m > 0
such that

Px
ε

(
Zt ∈ J for some γεm < t < βεm

)
> c > 0 , for all x ∈ T0 ∩ L .

Secondly,

Px
ε

(
Zt ∈ E′ for some t > 0

)
> c > 0 , for all x ∈ J .

We construct J as follows. Suppose a2 and a3 are the endpoints of E′, and a1 lies
on the same heteroclinic orbit of H so that the points are ordered in the direction
of the flow v, as depicted on Figure 6. Let J be a piece of the curve in Vδ,ε, that is
mapped by ρ to a1: J = {x ∈ Vδ,ε

⋂
π−1(Uk) :

√
ε 6 |H(x)| 6 2

√
ε, ρ(x) = a1}

for some k.
Roughly speaking, the first property means that the process has a positive chance

of going to a particular curve at a distance
√
ε from the separatrix, transversal to
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a1 a2 a3

J

E′
vH = 0

H =
√
ε

H = 2
√
ε

FIG 6. Construction of J .

the flow lines, prior to passing by m saddle points. This is not surprising since the
ratio of the parallel advection to the diffusion is of order 1/ε. The proof follows
along the same lines as the proof of [24, Lem. 3.1]. Similarly, the second property
is true, because if the process Z starts on J , then it will take O(ε) time for the
flow v to carry Z past the segment E′, but this is sufficient for diffusion move the
distance O(

√
ε), and to reach the separatrix. The latter argument is the same as the

derivation of (63) in [11]. Thus the Doeblin condition for Rx,εk holds.
With our definition of g,∫

M
g(x) dλε(x)

(∫
M

Eτ̄ dλε(x)

)−1

= lim
t→∞

(EZt/t),

where τ̄ = µε1 ∧ βε1 is the random transition time for our Markov chain, and the
right hand side is the effective drift for the original process starting from an arbitrary
point x. Note that for some C(ε) > 0,

lim
t→∞

EZt
t

= C(ε)

∫
T
v(x) dx = 0,

which implies Property (6).
Small escape probability from X (Property (3)) follows from [24, Lem. 4.1 &

4.3]. Indeed, the first lemma describes the asymptotics of the distribution ofH(Zγε1 ),
while the second describes the probability of the process starting at x to exit the
boundary layer before reaching the separatrix, assuming that H(x) is fixed. The
two lemmas, combined with the Markov property of the process, imply Property (3).
Moreover, our functions hi(x) = hδi (x) depend on δ and can be identified as

(A.4) hδi (x) = lim
ε→0

ε−
1−α
2 P

(
the process starting at Zγε1 reaches

∂Vδ,ε ∩ π−1 (Ui) before reaching L
)
.

PROOF OF PROPOSITION 5.1. From [24, Lemma 4.1 and Lemma 4.3], it fol-
lows that hδi (x) in (A.4) satisfy∫

X
hδi (x) dλ0(x) = δ−1p̄i, i = 1, . . . , n,

for some p̄i > 0. Now Lemma A.1 implies that covariance matrix Q and probabili-
ties pi in (A.1) must satisfy

Q = Q̄/(p̄1 + · · ·+ p̄n) , pi = p̄i/(p̄1 + · · ·+ p̄n).

The non-degeneracy of Q was demonstrated in [20] in the case when α = 0. The
proof does not require modifications in the current case.

It is clear that Lemma A.1 with g and Ci introduced above implies the first
statement of Proposition 5.1. The second statement of Proposition 5.1 requires a
slight strengthening of the abstract Lemma A.1 without major modifications in the
proof (see [20]).

APPENDIX B: A FORMAL ASYMPTOTIC EXPANSION

We devote this appendix to a heuristic derivation of the system (4.2) through a
formal asymptotic expansion. Let δ be a small parameter such that

δ
ε→0−−−→ 0, and

ε

δ

ε→0−−−→ 0.

The typical situation arising throughout this paper is for δ = ε1−α. This specific
choice, however, is unnecessary for the formal asymptotics presented here.

Define ϕ = ϕε,δ by

ϕ(z, t) = θ̃
(
z,
t log(δ/ε)

δ

)
and observe

1

log(δ/ε)
∂tϕ =

1

δ
v · ∇ϕ+

ε

2δ
∆ϕ.

For notational convenience, we suppress the ε and δ-dependence of ϕ and other
quantities below. We perform an asymptotic expansion for ϕ by writing

ϕ(z, t) = ϕ0(x, z, t) + γϕ1(x, z, t) +O(γ2).

where z is the “fast variable”, γ = δ1/4 and x = γz. Using

∇ = γ∇x +∇z and ∆ = γ2∆x + 2γ∇x · ∇z + ∆z,
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we compute

(B.1)
1

log(δ/ε)
∂tϕ =

γ

δ
v(z) · ∇xϕ0 +

1

δ
v(z) · ∇zϕ0 +

ε

2δ
∆ϕ0

+ γ
(γ
δ
v(z) · ∇xϕ1 +

1

δ
v(z) · ∇zϕ1

+
γ2ε

2δ
∆xϕ1 +

γε

δ
∇x · ∇zϕ1 +

ε

2δ
∆zϕ1

)
+O(γ2).

Since there is only one term of order O(1/δ), it must vanish. This gives

(B.2) v(z) · ∇zϕ0 = 0,

and hence, the dependence of ϕ0 on z is only through Γε(z), the projection of z
onto G.7 In view of our rescaling, we expect

θ(x, y, t) = ϕ0(x, z, t) + o(1), where y ∈ G and y = Γε(z).

Consequently, in order to justify (4.2), we will formally obtain equations for the
function θ defined by

θ(x, y, t)
def
= lim

ε→0
ϕ0(x, z, t), where y ∈ G and y = Γε(z).

We begin by balancing the O(γ/δ) terms by choosing ϕ1 to be the solution of

(B.3)
ε

2
∆zϕ1 + v(z) · ∇zϕ1 = −v(z) · ∇xϕ0,

with periodic boundary conditions in z. In order to do this we would need to verify
the compatibility condition ∫

U
v(z) · ∇xϕ0 dz = 0.

Indeed, let U be any connected component of the support of ϕ0. Then, for fixed x
and t, equation (B.2) implies that for all z ∈ U , we have∇xϕ0(x, z, t) = F ◦H(z)
for some function F . Consequently,∫

U
v(z) · ∇xϕ0 dz =

∫
U
v(z) · F (H(z)) dz =

∫
U
∇z × (F ◦H) dz

=

∫
∂U
F ◦H · dl = 0 ,(B.4)

7Here, analogous to (3.2), Γε(z) = (i, (δ/ε)1/2|H(z)|) ∈ G when z ∈ Ui.

since F (H) is constant on ∂U . This ensures that the compatibility condition
for (B.3) is satisfied.

In order to express ϕ1 more conveniently, define the corrector χ = (χ1, χ2) to
be the solution of the normalised cell problem

(B.5)
ε

2
∆zχi + v(z) · ∇zχi = −vi(z)

( ∂xiϕ0

〈∂xiϕ0〉

)
,

with periodic in z boundary conditions. Here 〈f〉 denotes the average of f with
respect to the fast variable z. We remark that the “standard corrector”, denoted by
χ̄ = (χ̄1, χ̄2), is usually chosen to be the solution of the cell problem

(B.6)
ε

2
∆zχ̄i + v(z) · ∇zχ̄i = −vi(z),

Our corrector χ has an extra term depending on the fast variable, however this
dependence is only through the projection onto the Reeb graph.

With this notation, observe

(B.7) ϕ1 = χ · ∇x〈ϕ0〉.

Balancing terms in ϕ yields

1

log(δ/ε)
∂tϕ0 =

ε

2δ
∆ϕ0 +

γ2

δ
v(z) · ∇xϕ1 + o(1)

=
ε

2δ
∆ϕ0 +

γ2

δ
v(z) · ∇x

(
χ · ∇x〈ϕ0〉

)
+ o(1).(B.8)

We will deduce (4.2a) and (4.2b) from this by multiplying by an appropriate test
function and integrating.

To obtain (4.2a), let φ = φ(z) be a test function that is compactly supported in
R2 − L, and only depends on z through the projection Γε(z) (i.e., v(z) · ∇zφ = 0).
Multiplying (B.8) by φ and integrating gives
(B.9)∫
z∈T

( ∂tϕ0

log(δ/ε)
− ε

2δ
∆ϕ0

)
φdz =

γ2

δ

∫
z∈T

v(z) · ∇x
(
χ · ∇x〈ϕ0〉

)
φ(x, z) dz.

Note that away from the separatrix the corrector χ has oscillations of order ε on
connected components of level sets of H (see for instance [8, 32]). Hence

v(z) · ∇zχ = O(ε), and v(z) · ∇zφ = 0.

Consequently (following (B.4)) the integral on the right of (B.9) vanishes as ε→ 0.
Restricting our attention to Ui, writing (B.9) in terms of y and using the co-area
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formula gives

0 =

∫
Ui

( ∂tϕ0

log(δ/ε)
− ε

2δ
∆ϕ0

)
φdz + o(1)

=

∫
Ui

( ∂tϕ0

log(δ/ε)
− ε

2δ
∆zϕ0

)
φdz + o(1)

=

∫ ( δ
ε

)1/2 max
Ui
|H|

yi=0

∫
Ui∩{|H|=( ε

δ
)1/2yi}

( ∂tϕ0

log(δ/ε)|∇H|
− |∇H|

2
∂2
yiϕ0

−
(ε
δ

)1/2 ∆H

2|∇H|
∂yiϕ0

)
φdl dyi + o(1)

ε→0−−−→
∫
y∈Ii

( qi
ai
∂tθ −

qi
2
D2
i θ
)
φ(y) dy.

This is exactly the weak form of (4.2a).
For the gluing condition (4.2b) define the boundary layer Vε to be a small neigh-

bourhood of L where the effects of the diffusion and convection balance. Explicitly,
set

Vε
def
=
{
z ∈ T : |H(z)| <

√
Nε,

}
,

where N = N(ε) → ∞ arbitrarily slowly as ε → 0. Note that the volume of
the boundary layer satisfies |Vε| = O((Nε)1/2|log ε|) asymptotically as ε → 0.
Multiplying (B.8) by (δ/Nε)1/2 and integrating over Vε gives

o(1) =
( δ

Nε

)1/2
∫
Vε

( ∂tϕ0

log(δ/ε)
− ε

2δ
∆ϕ0 −

γ2

δ
v(z) · ∇x

(
χ · ∇x〈ϕ0〉

))
dz

= −1

2

( ε

Nδ

)1/2
∫
∂Vε
∇zϕ0 · n̂ dl

− γ2

√
Nεδ

2∑
i,j=1

(∫
Vε
viχj dz

)
∂xi∂xj 〈ϕ0〉+ o(1) .

This forces
(B.10)(ε

δ

)1/2
∫
∂Vε
∇zϕ0 · n̂ dl +

γ2

√
δ

2∑
i,j=1

(
2√
ε

∫
Vε
viχj dz

)
∂xi∂xj 〈ϕ0〉 = o(1).

Clearly

(ε
δ

)1/2
∫
∂Vε
∇zϕ0 · n̂ dl =

(ε
δ

)1/2
M∑
i=1

∫
∂Vε∩Ui

∇zϕ0 · n̂ dl
ε→0−−−→

M∑
i=1

qiDiθ.

For the second term in (B.10) define the 2× 2 matrix Q by

(B.11) Qi,j =
( M∑
k=1

qk

)−1
lim
ε→0

1√
ε

∫
Vε

(
viχj + vjχi

)
dz.

If we replace χ with χ̄, then the limit on the right is well studied. Indeed, using (B.6)
we see

1√
ε

∫
Vε

(
viχ̄j + vjχ̄i

)
dz

=
√
ε

∫
Vε
∇χ̄i · ∇χ̄j dz −

√
ε

2

∫
∂Vε

(
χ̄i∇χ̄j + χ̄j∇χ̄i

)
· n̂ dl.

It is well known that ∇χ̄ is O(ε−1/2) in an
√
ε neighbourhood of the boundary,

and O(1) elsewhere. Consequently, we expect the right hand side of the above to
converge as ε→ 0 (see for instance [15]).

In our situation, the extra term ∂xiϕ0/〈∂xiϕ0〉 only depends on the fast variable
z through its projection Γε(z). Hence the asymptotic behaviour of χ is similar to
that of χ̄, and consequently the limit in (B.11) should exists. Thus, equation (B.10)
yields

M∑
k=1

qkD
y
kθ +

( M∑
k=1

qk

)
[Q : ∇2

x]ϕ0 = 0,

since γ2 = δ. This is exactly (4.2b), as desired.

REMARK B.1. Choosing δ = 2ε, the above method also provides an effective
equation for θ̃ on time scales of order 1/ε, as considered in [20]. In this regime
the analogue of equation (4.2a) is now on a finite graph (the unscaled Reeb graph
of H), and the generator A has non-constant (singular) coefficients.

REMARK B.2. The two main technical difficulties in turning this formal asymp-
totic expansion into a rigorous proof are as follows. First, one will have to precisely
understand the asymptotic behaviour of the corrector χ as ε → 0. In particular,
one needs to prove that the limit in (B.11) exists, and develop gradient estimates
in a small neighbourhood of the boundary. The standard results (and techniques)
used to obtain these estimates (e.g. [15]) break down in this situation because the
corrector also depends on the slow variable. This is the first technical obstruction
to making this formal asymptotic expansion rigorous.

The second obstruction is that the error estimates are now surprisingly non-linear.
This is unexpected, since (1.3) is clearly linear. However, one can immediately see
from (B.5) and (B.7) that ϕ1 depends nonlinearly on ϕ0. This also propagates into
the higher order terms in the asymptotic expansion, and as a result, the PDE error
estimates will now be harder to prove rigorously.
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