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Abstract. In many situations, the combined effect of advection and diffusion
greatly increases the rate of convergence to equilibrium – a phenomenon known
as enhanced dissipation. Here we study the situation where the advecting
velocity field generates a random dynamical system satisfying certain Harris
conditions. If κ denotes the strength of the diffusion, then we show that with
probability at least 1 − o(κN ) enhanced dissipation occurs on time scales of
order |ln κ|, a bound which is known to be optimal. Moreover, on long time
scales, we show that the rate of convergence to equilibrium is almost surely in-
dependent of diffusivity. As a consequence we obtain enhanced dissipation for
the randomly shifted alternating shears introduced by Pierrehumbert ’94.

1. Introduction
1.1. Main Results. We begin by stating our results. Following this, we will survey
the literature and place our work in the context of existing results. Let u be a
(possibly time dependent) divergence free vector on the torus, κ > 0, and ρ solve
the advection diffusion equation
(1.1) ∂tρ+ u · ∇ρ− κ∆ρ = 0 ,
on the d-dimensional torus Td. Multiplying (1.1) by ρ, using the fact that ∇ · u = 0,
integrating and using the Poincaré inequality implies
(1.2) ∥ρ(·, t) − ρ̄∥L2 ⩽ e−λ1κt∥ρ0 − ρ̄∥L2 ,

where

ρ̄ =
∫
Td

ρ0(x) dx ,

is the (constant) equilibrium solution to (1.1) and λ1 > 0 is the smallest non-zero
eigenvalue of the negative Laplacian. Enhanced dissipation is the phenomenon where
solutions to (1.1) converge to equilibrium faster than the upper bound (1.2). Our
main result shows that if the flow of u generates a random dynamical system (RDS)
that satisfies the Harris conditions (stated below), then enhanced dissipation occurs.
The enhanced dissipation rate is optimal at short times with large probability, and
is almost surely independent of the diffusivity for long times.
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Theorem 1.1. Suppose the flow of u generates a random dynamical system that
satisfies the Harris conditions stated in Assumptions 2.1–2.4, below. For any α > 0,
q < ∞ there exists γ > 0 and a κ-dependent random variable Dκ such that for every
initial data ρ0 ∈ L1(Td), the solution to (1.1) satisfies

(1.3) ∥ρ(·, t) − ρ̄∥L∞ ⩽
Dκ

κ
d
2 +α

e−γt∥ρ0 − ρ̄∥L1 .

Moreover, there exist a κ-independent, deterministic, constant D̄q such that
(1.4) EDq

κ ⩽ D̄q .

Remark 1.2. The bound (1.4) implies that for any β > 0, P (Dκ ⩾ κ−β) ⩽ κβqD̄q.
Using this in (1.3) will show that with probability at least 1 − D̄qκ

βq, we have

(1.5) ∥ρ(·, t) − ρ̄∥L∞ ⩽
1

κ
d
2 +α+β

e−γt∥ρ0 − ρ̄∥L1 ,

for all t ⩾ 0, and all ρ0 ∈ L1.
An equivalent probabilistic formulation of this result is as follows. Consider the

Markov process defined by the SDE
(1.6) dXκ

t (x) = −u(Xκ
t (x), t) dt+

√
2κ dWt , Xκ

0 (x) = x ,

on the torus Td. Since ∇ · u = 0, the (unique) stationary distribution of Xκ is
the Lebesgue measure. Let pκt (x, y) denote the transition density of Xκ

t , and recall
the uniform mixing time [LP17,MT06] is defined by

t∞mix(Xκ, ε) = inf
{
t ⩾ 0

∣∣∣ sup
x∈Td

∥pκt (x, ·) − 1∥L∞ < ε
}
.

It is easy to see that the uniform mixing time of Xκ satisfies

t∞mix(Xκ, ε) ⩽ C|ln ε|
κ

,

for some constant C > 0. Theorem 1.1 is equivalent to the following uniform mixing
time estimate.
Theorem 1.3. Suppose the flow of u generates a random dynamical system satisfying
the Harris conditions (Assumptions 2.1–2.4, below). For any α > 0, q < ∞ there
exists γ > 0 and a κ-dependent random variable Dκ such that

(1.7) t∞mix(Xκ, ε) ⩽ 1
γ

ln
( Dκ

εκ
d
2 +α

)
almost surely. Moreover, there exists a κ-independent (deterministic) constant D̄q

such that (1.4) holds.
Remark 1.4. We clarify that t∞mix(Xκ, ε) is random as it depends on u (it is, of
course, independent of W ). For any fixed ε > 0 (independent of κ), Chebychev’s
inequality (1.4) and (1.7) show that for any β > 0 we have

P
(
t∞mix(Xκ, ε) ⩽ 1

γ
ln

( 1
εκ

d
2 +α+β

))
⩾ 1 − D̄qκ

βq .
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Moreover, as ε → 0, we obtain the κ-independent uniform mixing time bound

lim
ε→0

tmix(Xκ, ε)
|ln ε| ⩽

1
γ
, almost surely .

Remark 1.5. While Assumptions 2.1–2.4 are easy to state (see Section 2.3, below),
they aren’t easy to verify in practice. Recent papers [BBPS22,BCZG22] instead
assume certain conditions which are stronger than Harris conditions, but are easier
to verify. For convenience of the reader, we state these conditions in Section 2.4,
below.

Remark 1.6 (Pulsed diffusions). We can also obtain similar results for pulsed
diffusions. Namely, define the Markov process Y κ by

Y κn+1 = φn+1(Y κn ) + ζκn+1 ,

where ζκn are i.i.d. periodized Gaussians with variance κ, and φn is a RDS on Td,
independent of ζκ. If the RDS φn satisfies the Harris conditions (Assumption 2.1–
2.3), then we obtain the same mixing time bound (1.7) for the process Y κ. The
proof is similar to the proof of Theorem 1.3, and in this setting several technical
steps become much simpler.

As an immediate consequence, we can show enhanced dissipation if u is obtained
by randomly shifting and alternating sinusoidal shears.

Corollary 1.7. Let A > 0, d = 2 and ζn a sequence of i.i.d. random variables that
are uniformly distributed on [0, 1]. For n ∈ N and t ∈ [2n, 2n+ 2) define

(1.8) u(x, t) =
{
A sin(2π(x2 − ζ2n)) e1 t ∈ [2n, 2n+ 1) ,
A sin(2π(x1 − ζ2n+1)) e2 t ∈ [2n+ 1, 2n+ 2) ,

where x = (x1, x2) ∈ T2, and ei is the i-th standard basis vector. Then, almost
surely, we have the enhanced dissipation bound (1.3) for a random variable Dκ that
satisfies the κ-independent bounds (1.4). Consequently, with probability at least
1 − D̄qκ

βq, the enhanced dissipation bound (1.5) holds.

This example was introduced by Pierrehumbert [Pie94] and [BCZG22] recently
verified that it satisfies conditions that are stronger than our Harris assumptions.
As a result the Corollary 1.7 follows immediately from Theorem 1.1 and [BCZG22]
(see Proposition 2.9, below). We mention, however, that even though [BCZG22]
abstractly check Assumption 2.2 (the existence of a Lyapunov function) for (1.8),
the system is simple enough that a Lyapunov function can be constructed explicitly.
We do this in Proposition 9.1 in Section 9, below.

Remark 1.8. Instead of using a sine shear profile in (1.8), we can use shears with
a piecewise linear profile. In this case the results in [CFIN23] will show that
Assumption 2.1–2.4 are satisfied, and so Theorems 1.1, 1.3 apply and will give
the enhanced dissipation bound (1.3), and the equivalent uniform mixing time
bound (1.7).

1.2. Motivation and Literature Review. We now survey the literature and place
our results in the context of existing results. Enhanced dissipation is a phenomenon
that can be observed in every day life: Pour some cream in your coffee. If left
alone, it will take hours to mix. Stir it a little and it mixes right away. This effect
arises due to the interaction between the advection (stirring) and diffusion, and
plays an important role in many applications concerning hydrodynamic stability
and turbulence and occurs on scales ranging from micro fluids to meteorological /
cosmological [LTD11,Thi12,Are84,SSA04].

To describe this mathematically, let u be the velocity field of the ambient in-
compressible fluid, and ρ denote the concentration of a passively advected solute
with molecular diffusivity κ > 0. The evolution of ρ is governed by the advection
diffusion equation (1.1). For simplicity, in this paper we only consider (1.1) with
periodic boundary conditions on the d-dimensional torus Td.

If the ambient fluid is incompressible, the velocity field u satisfies divergence free
condition

∇ · u = 0 .
In this case, an elementary energy estimate shows (1.2) and hence the L2 distance of
the concentration from the equilibrium distribution decreases at most exponentially
with a rate proportional to κ.

Of course, (1.2) is only a crude upper bound. In many practical situations one
expects the convergence to happen much faster than (1.2). Indeed, the advection
term u · ∇ρ typically causes filamentation and moves energy towards small scales.
The diffusion term κ∆ρ damps small scales faster, and the combination of these two
effects leads to enhanced dissipation – faster convergence of ρ(·, t) to ρ̄.

Several authors have proved enhanced dissipation by showing all solutions to (1.1)
satisfy the decay estimate

(1.9a) ∥ρ(·, t) − ρ̄∥L2 ⩽ exp
(

−
( t

T (κ) − 1
)+)

∥ρ0 − ρ̄∥L2 ,

for every t ⩾ 0, and some time scale T (κ) for which
(1.9b) lim

κ→0
κT (κ) = 0 .

Seminal work of Constantin et al. [CKRZ08] (see also [Zla10,KSZ08]) shows that if u
is time independent, then such a T (κ) exists if and only if u ·∇ has no eigenfunctions
in H1. For shear flows classical work of Kelvin [Kel87] shows one can choose
T (κ) = κ−α for some α < 1. There are now several results studying enhanced
dissipation in more generality and for nonlinear equations (see [FNW04, Wei19,
BCZ17,CZD21,FMN23,CZG23,ABN22,CH23,Sei23]).

The purpose of this paper is to further investigate the link between enhanced
dissipation and mixing properties of u. Recall, a velocity field u is said to be
exponentially mixing if, in the absence of diffusion, a dye that is initially localized
to ball of size ε will get spread throughout the torus in time O(|ln ε|) (see for
instance [SOW06]). In the presence of diffusion, a dye localized to a point gets
spread to a ball of size O(

√
κ) in time O(1). If u is exponentially mixing, then this

dye is spread throughout the torus by the flow in time O(|ln κ|). As a result, in this
case we expect (1.9a) should hold with T (κ) = O(|ln κ|).



A HARRIS THEOREM FOR ENHANCED DISSIPATION 3

Surprisingly, this is not easy to prove, and is an open question in this generality.
Currently available results [FI19,Fen19,CZDE20] show that if u is exponentially
mixing, then one can choose T (κ) = O(|ln κ|2) in (1.9a). For a few specific ex-
ponentially mixing systems, available results [BBPS21,ELM23, ILN23] show that
one can choose T (κ) = O(|ln κ|) in (1.9a). However, to the best of our knowledge,
there is no general theorem (in discrete or continuous time) that shows that for any
exponentially mixing flow one can choose T (κ) = O(|ln κ|) in (1.9a).

One elementary observation is that if almost every realization of the stochastic
flows Xκ is exponentially mixing, then one has enhanced dissipation as in (1.9a)
with T (κ) = C|ln κ| for some C that can be explicitly computed in terms of the
mixing rate. Thus, a natural question to ask is is whether or not the notion of
exponentially mixing is stable with respect to κ.

Question 1.9. If u is exponentially mixing, then for sufficiently small κ > 0 must
almost every realization of Xκ be exponentially mixing (with a controlled rate)?

Since the notion of exponentially mixing involves the long time behavior, it is
not easy to determine the answer to Question 1.9. We instead look for stronger
conditions on u which will will guarantee that for all sufficiently small κ > 0, almost
every realization Xκ is exponentially mixing (with a controlled rate).

A general principle that is well known to the Sinai school is that for random
dynamical systems (RDS), geometric ergodicity of the two point process implies
almost sure exponential mixing (see [DKK04,BBPS22], or the proof of Lemma 3.3,
below). One could then ask whether or not this property is stable in κ.

Question 1.10. If the two point process associated to the flow of a random dynamical
system u is geometrically ergodic, then is the two point processes associated to the
SDE (1.6) also geometrically ergodic for all small κ > 0?

If Question 1.10 is answered affermatively, then for all sufficiently small κ > 0,
must almost every realization Xκ be exponentially mixing. Not surprisingly, this
question is also hard to answer. Geometric ergodicity involves questions about long
time limits which are not stable as κ varies. There is, however, a classical result of
Harris [Har55,MT09] that proves geometric ergodicity of a Markov process provided
there is a Lyapunov function, and a small set. A version of this condition turns
out to be stable in κ (see Lemma 3.1, below) which in turn leads to almost sure
exponential mixing of the flows Xκ (see Lemma 3.3, below), which in turn yields
Theorem 1.1.

Finally, we mention that if u is regular, and uniformly bounded in time, then
we must have T (κ) ⩾ O(κ) in (1.9a) (see for instance [MD18, Poo96, BBPS21,
Sei22]). When u is irregular, one can even choose T (κ) = O(1). This is known
as anomalous dissipation, and examples of this were recently proved in [DEIJ22,
CCS22,AV23]. In this paper we only consider regular velocity fields, and so are in a
situation where anomalous dissipation can not ocur.

Plan of this paper. In Section 2.3 we define our notation and state Assump-
tion 2.1–2.4 used in Theorems 1.1 and 1.3. In Section 3 we state the three lemmas
(Lemmas 3.1–3.3) that will quickly yield Theorems 1.1 and 1.3, and use these lemmas
to prove Theorems 1.1 and 1.3. The first of these lemmas (Lemma 3.1) is the main

new contribution of this paper and which guarantees that our assumptions imply
the Harris conditions hold for all sufficiently small κ > 0. The proof of Lemma 3.1
is split up into two steps – the existence of a Lyapunov function in Section 4, and
the existence of a κ-independent small set in Section 5. Following this, we prove
Lemma 3.1 in Section 6. The proof of Lemma 3.2 uses a quantitative version of
Harris’s theorem [HM11] and is presented in Section 7. The proof of Lemma 3.3 is
based on the idea in [DKK04] and is presented in Section 8. Finally, we conclude this
paper by explicitly finding a Lyapunov function for the randomly shifted alternating
shear example in 1.7.

2. Notation and Preliminaries.
In this section we set up our notational convention and state the assumptions

required for Theorem 1.1 and 1.3.

2.1. Notation and setup. We will now define a setup that chooses the velocity
field u randomly from a finite dimensional family of C2, incompressible vector fields,
and repeats this choice on after time intervals of length 1. Let M be a complete
smooth Riemannian manifold, and U : M ×Td × [0, 1] → Rd be a C2-function such
that

∇x · U (ξ, x, t) = 0 .

Now let (Ω0,F0,P0) be a probability space and let ω = (ω1, ω2, . . . ) be a sequence
of M -valued random variables whose distribution is absolutely continuous with
respect to the volume measure on M . Define the (random) velocity field u by

u(x, t) def= U (ωn, x, t− n) when t ∈ [n, n+ 1) ,

where, following standard convention, we suppress the dependence of u on ω. The
flow of u is defined by the ODE

∂tX
0
t = u(X0

t , t) , X0
0 = Id .

Restricting X0 to integer times gives a Markov process, which we refer to as the
RDS generated by u.

To define the processes Xκ, let (ΩW ,FW ,PW ) be a probability space, and W
be a Td-valued Brownian motion on this space. We will now consider the product
space Ω = ΩW × Ω0 with the product σ-algebra F = FW ⊗ F0 and product measure
P

def= PW ⊗ P0. By a slight abuse of notation, we will sometimes treat random
variables on each of the coordinate spaces Ω0, ΩW as random variables on the
product space Ω by composing with the corresponding coordinate projection. In
this sense, we may treat u,W as independent processes on Ω, and let Xκ

t be the
solution of (1.6) on Td.

2.2. Two point and projective chains. In order to state the Harris conditions, we
need to define the two point and projective chains, and formalize the dependence on
the noise history. Given ξ = (ξ1, . . . , ξn) ∈ M n, define Un : M n × Td × [0, n) → Rd
by

Un(ξ, x, t) = U (ξm, x, t−m) if t ∈ [m,m+ 1) .
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Now define Xn : M n × Td → Td to be the flow of Un after time n. That is, define
Xn(ξ, x) = Φn(x) ,

where Φ is defined by
∂tΦt = Un(ξ, Φt, t) , Φ0 = Id .

Given ξ ∈ M n, (x, v) ∈ TTd (the tangent bundle of the torus), and y ∈ Td with
∥v∥ = 1, y ̸= x, we define the derivative, projective and two point maps by

An(ξ, x) def= DxXn(ξ, x) , X̂n(ξ, x, v) =
(
Xn(ξ, x), An(ξ, x)v

∥An(ξ, x)v∥

)
and

X (2)
n (ξ, x, y) = (Xn(ξ, x),Xn(ξ, y)) ,

respectively. Note that X̂n takes values on M n ×STd where STd is the unit sphere
bundle (see for instance [dC92]) defined by

STd def= {(x, v) ∈ TTd | ∥v∥ = 1} ,

The map X
(2)
n takes values on M n × Td,(2) where

Td,(2) def= Td × Td − ∆ ,

and ∆ def= {(x, y) ∈ Td × Td | x = y}.
Notice that the RDS generated by u is precisely the Markov process

X0
n(x) = Xn(ωn, x) , where ωn

def= (ω1, . . . , ωn) .
We also define the derivative, projective and two point processes by

A0
n(x) = An(ωn, x) , X̂n(x, v) = X̂n(ωn, x, v) , X0,(2)

n (x, y) = X (2)
n (ωn, x, y) ,

where as before (x, v) ∈ STd and (x, y) ∈ Td,(2). We denote the n-step transition
kernel of these processes by

Pn0 (x,A) = P0[X0
n(x) ∈ A] ,

P̂n0 ((x, v), A) def= P0

[
X̂0
n(x, v) ∈ A

]
,

P
(2),n
0 ((x, y), A) def= P0

[
X0,(2)
n ∈ A

]
.(2.1)

For brevity, when n = 1 we will drop the superscript.
For κ > 0, we define the Markov process Xκ obtained by restricting the solution

to (1.6) to integer times. Given n ∈ N, let Pnκ (x, ·) denote the transition probability
of Xκ

n . That is, for n ∈ N we define

Pnκ (x,A) def= P (Xκ
n(x) ∈ A) .

As before, when n = 1, we drop the superscript and simply write Pκ for P 1
κ . The

two point process Xκ,(2) is defined analogously by
Xκ,(2)
n (x, y) = (Xκ

n(x), Xκ
n(y)) ,

and its n-step transition kernel will be denoted by P (2),n
κ .

2.3. Harris Conditions. Harris theorems typically assume the existence of a
Lyapunov function and a small set, and show that the associated system is uniformly
geometrically ergodic [MT09,Har55,HM11]. We will now state these conditions for
the two point chain P

(2)
0 defined in (2.1). We reiterate that our assumptions only

concern the RDS generated by the flow of u with κ = 0.

Assumption 2.1. The two point chain with kernel P (2)
0 is Feller, topologically

irreducible, strongly aperiodic.

Our next assumption concerns the existence of a Lyapunov function for the two
point chain near a small neighborhood of the diagonal. To state this, let s > 0 and
define a punctured neighborhood of the diagonal ∆(s) by

∆(s) def= {(x, y) ∈ Td × Td | 0 < d(x, y) < s} ,
where d(x, y) is the torus distance between x and y. On the flat torus it is easy to
see that for x, y ∈ ∆(1/2), we can find a unique v ∈ TxTd such that expx(v) = y,
where expx denotes the exponential map (see for instance [dC92]).

Assumption 2.2. There exists a Lyapunov function V : Td,(2) → [1,∞) and con-
stants γ̃ ∈ (0, 1), s∗ ∈ (0, 1/2) such that

(2.2) P
(2)
0 V < γ̃V on ∆(s∗) .

Moreover, there exists p ∈ (0, 1) such that the function V is of the form

(2.3) V (x, y) = d(x, y)−pψ
(
x,

exp−1
x (y)

d(x, y)

)
on ∆(s∗) .

where ψ : STd → R+ is a continuous, strictly positive function.

The standard Harris Theorem [MT09] requires the assumptions 2.1, 2.2, and the
existence of a small set for P (2)

0 , and shows ergodicity of the chain. However, for
Lemma 3.3, we will need to show that for sufficiently small κ > 0 there exists a small
set with κ-independent bound on the minorizing measure. We are presently unable
to do this assuming only the existence of a small set for P (2)

0 . We can, however,
prove this under a slightly stronger condition which is not hard to verify in practice.

Assumption 2.3. There exist n ⩾ 1 and (ξ∗, x∗) ∈ M n × Td,(2) such that the
following hold.

(1) There exists c, ε > 0 such that for every ξ ∈ M n with |ξ − ξ∗| < ε, we have
ρn(ξ) ⩾ c > 0. Here ρn is the density of ωn on M n.

(2) The map X
(2)
n (·, x∗) : M n → Td,(2) is a submersion at ξ = ξ∗ .

Finally, we need a uniform bound on the velocity field so that the gradients of
the diffeomorphisms Xn are controlled uniformly in the noise.

Assumption 2.4. The function U : M × Td × [0, 1] → Rd is such that

sup
(ξ,t)∈M×[0,1]

∥U (ξ, ·, t)∥C2(Td) < ∞

and sup
(x,t)∈Td×[0,1]

∥∇ξU (·, x, t)∥L∞(M ) < ∞ .
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We will prove (Section 4, below) that Assumptions 2.2 and 2.4 imply that V is
a Lyapunov function for P (2)

κ , and satisfies the drift condition (2.2) with slightly
larger constants. Following this, we will show (Lemma 3.1, below) that these
assumptions will also ensure P (2)

κ satisfies the assumptions of the Harris theorem
with κ-independent constants. As a result, a quantitative Harris theorem [HM11]
will show that P (2)

κ is uniformly geometrically ergodic with a κ-independent rate
(Lemma 3.2 in Section 7, below). Once this has been established, an argument
of [DKK04] will imply Xκ is exponentially mixing, and prove Lemma 3.3 (Section 8).

2.4. Checkable Conditions that Guarantee the Harris Conditions. In prac-
tice it is not easy to find a Lyapunov function (Assumption 2.2). As mentioned in
Remark 1.5, recent papers [BBPS22,BCZG22] instead assume certain conditions
which are stronger than Harris conditions, but are easier to verify. For convenience
of the reader, we state these conditions here.

Assumption 2.5. The transition kernels P0, P̂0 and P
(2)
0 are all Feller, and

topologically irreducible.

Assumption 2.6. Let N be one of the spaces Td, STd, and Td,(2) and Yk be one
of the corresponding maps Xk, X̂k, or X

(2)
k . For each choice of N and Y , there

exist n ⩾ 1 and (ξ∗, x∗) ∈ M n × N such that the following hold.
(1) There exists c, ε > 0 such that for every ξ ∈ M n with |ξ − ξ∗| < ε, we have

ρn(ξ) ⩾ c > 0. Here ρn is the density of ωn on M n.
(2) The map Yn(·, x∗) : M n → N is a submersion at ξ = ξ∗ .

Assumption 2.7. For each choice of N and Y as in Assumption 2.6, there exist
ξ∗∗ ∈ supp(dist(ζ1)) and y∗ ∈ N such that Y1(ξ∗∗, y∗) = y∗.

Assumption 2.8. Let N = Td,Y = X , and let n, (ξ∗, x∗) be as in Assumption 2.6.
Define a C1-mapping g : M n → SLd(R) by

g(ξ) = 1
|det An(ξ, x∗)| 1

d

An(ξ, x∗) .

Then, the restriction of the derivative Dξ∗g to kerDξXn(·, x∗) ⊂ TξM n is surjective
onto Tg(ξ∗)SLd(R).

These conditions are stronger than the Harris conditions in the following sense.

Proposition 2.9. If Assumption 2.4 and 2.5–2.8 hold, then the Assumptions 2.1–
2.3 also hold. Hence, in this case, the enhanced dissipation estimate (1.3) also
holds for some random variable Dκ (depending on u and κ, but independent of W )
satisfying (1.4).

Proof of Proposition 2.9. The proof of Proposition 2.9 follows immediately from the
results in [BCZG22]. Assumption 2.5 along with continuity of U (Assumption 2.4)
and Assumption 2.7 implies the conditions in Assumption 2.1. Assumption 2.3
follows immediately from Assumption 2.6. To obtain the Lyapunov function (As-
sumption 2.2) we will apply Proposition 3.3 in [BCZG22]. In order to do this we
note that a standard Gronwall argument (see for instance Lemma 4.2, below) and

compactness imply that there exists a constant C ′
0 such that for all ξ ∈ M , x, y ∈ Td,

we have
1
C ′

0
d(x, y) ⩽ d(X1(ξ, x),X1(ξ, y)) ⩽ C ′

0d(x, y) .

Along with Assumption 2.8, this allows us to apply Proposition 3.3 in [BCZG22], and
gives positivity of the top Lyapunov exponent. Now Proposition 4.5 in [BCZG22]
(and Assumptions 2.4–2.8) will imply the existence of a Lyapunov function as stated
in Assumption 2.2. □

3. Proof of Theorem 1.1
As mentioned earlier, the main idea behind the proof of Theorems 1.1, 1.3 is

to show that Assumption 2.1–2.4 imply that the Harris conditions hold for all
sufficiently small κ > 0.

Lemma 3.1. Suppose Assumptions 2.1–2.4 hold. Then there exist l ∈ N, γ3 ∈ (0, 1),
K > 0, R > 2K

1−γ3
, α ∈ (0, 1), and a probability measure ν, such that for all

sufficiently small κ > 0 we have

P (2),l
κ V ⩽ γ3V +K ,(3.1)

inf
x∈{V⩽R}

P (2),l
κ (x, ·) ⩾ αν(·) .(3.2)

Once Lemma 3.1 is proved, the remainder of the proof can be obtained using
established methods (see for instance [BCZG22,BBPS21,DKK04]). First, a quanti-
tative version of the Harris theorem [HM11,MT09] combined with Lemma 3.1 will
show that the two point process Xκ,(2) is V -geometrically ergodic.

Lemma 3.2 (V-geometric ergodicity). Suppose that (3.1) and (3.2) hold. There
exist constants C > 0 and β > 0 such that for all sufficiently small κ ⩾ 0, all
measurable φ : Td,(2) → R such that ∥φ∥V < ∞, and any n ∈ N, we have

(3.3)
∥∥∥P (2),n

κ φ−
∫
φdπ(2)

∥∥∥
V
⩽ Ce−βn

∥∥∥φ−
∫
φdπ(2)

∥∥∥
V
.

Combining this with Borel-Cantelli argument in [KDK05] (see also [BBPS21,
BCZG22]) will show almost sure exponential mixing of Xκ.

Lemma 3.3. Suppose that (3.3) holds. Then, for every α > 0 and 0 < q < ∞,
there exists a random Dκ ⩾ 1 (which depends on u but is independent of W ), and
deterministic γ > 0 (independent of κ) such that for all sufficiently small κ ⩾ 0,
every pair of mean-zero test functions f, g ∈ Ḣα, and every n ∈ N we have

(3.4) ⟨f, g ◦Xκ
n⟩ ⩽ Dκe

−γn∥f∥Hα∥g∥Hα , almost surely .

Moreover, there exists a finite constant D̄q (independent of κ) such that

EDq
κ ⩽ D̄q ,

for all sufficiently small κ ⩾ 0.
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Remark 3.4. By duality, (3.4) is equivalent to

(3.4′) ∥g ◦Xκ
n∥H−α ⩽ Dκe

−γt∥g∥Hα ,

for every mean-zero test function g ∈ H−α.

Momentarily postponing the proof of Lemma 3.3, we prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1. For notational convenience, we will use ρt to denote ρ(·, t),
the slice of ρ at time t. Fix α > 0, and let n ∈ N be a large time. Assumption 2.4
and parabolic regularity implies

∥ρn − ρ̄∥L∞ ⩽
C

κ
2α+d

4
∥ρn−1 − ρ̄∥H−α .

To bound the right hand side, we note that the Kolmogorov backward equation
implies that for any t ⩾ 1 we have

ρt+1(x) = EW ρ1 ◦Xκ
1,1+t(x) .

Here EW denotes the expectation with respect to the PW marginal of the product
measure P = PW ⊗ P0, and Xκ

1,· is the solution of the SDE

dXκ
1,t(x) = −u(Xκ

1,t(x), t) dt+
√

2κ dWt , Xκ
1,1(x) = x .

Since the distribution of u is time homogeneous, we may apply Lemma 3.3 to Xκ
1,·.

Thus, using (3.4′) yields

∥ρn−1 − ρ̄∥H−α = ∥EW ρ1 ◦Xκ
1,n−1 − ρ̄∥H−α ⩽ EW ∥ρ1 ◦Xκ

1,n−1 − ρ̄∥H−α

⩽ Dκe
−γ(n−1)∥ρ1 − ρ̄∥Hα .

Here we used the fact that since Dκ is independent of W which implies Dκ = EWDκ.
Finally, we note that parabolic regularity implies

∥ρ1 − ρ̄∥Hα ⩽
C

κ
2α+d

4
∥ρ0 − ρ̄∥L1 .

Combining the above, we note

(3.5) ∥ρn − ρ̄∥L∞ ⩽
Ce−γ(n−1)Dκ

κα+d/2 ∥ρ0 − ρ̄∥L∞ ,

for all integer times n. Since the L∞ norm is non-increasing, we can increase C by
a factor of eγ and ensure (3.5) holds for all t ⩾ 0, concluding the proof. □

Theorem 1.3 is equivalent to Theorem 1.1 by a standard duality argument.

Proof of Theorem 1.3. Let ρ be a solution to (1.1) with initial data ρ0. By the
Kolmogorov backward equation

ρt(x) = EW ρ0 ◦Xκ
t (x) =

∫
Td

pκt (x, y)ρ0(y) dy .

Thus

sup
x∈Td

∫
Td

(pκt (x, y) − 1)ρ0(y) dy dx ⩽ ∥ρt − ρ̄∥L∞ ⩽
Dκ

κ
d
2 +α

e−γt∥ρ0 − ρ̄∥L1

Since ρ0 ∈ L1 is arbitrary, this implies

sup
x∈Td

∥pκt (x, ·) − 1∥L∞ ⩽
Dκ

κ
d
2 +α

e−γt ,

which immediately yields (1.7) as desired. □

The proofs of Lemmas 3.2 and 3.3 follow quickly from existing results, and the
bulk of the remainder of the paper is devoted to proving Lemma 3.1. The proof can
naturally be split into two parts – showing V is a Lyapunov function, and producing
a κ-independent small set. We do each of these parts in Section 4 and 5 respectively,
and then prove Lemma 3.1 in Section 6.

4. The existence of a κ-independent Lyapunov function.
The goal of this section is to produce the Lyapunov function V used in Lemma 3.1

in Section 6. For this we use the function V in Assumptions 2.2 and the fact
that u ∈ C2 (Assumption 2.4) to show that for sufficiently small κ, the function V

is still a Lyapunov function for P (2)
κ .

Lemma 4.1 (Existence of a κ-independent Lyapunov function). Suppose Assump-
tions 2.2 and 2.4 hold. Then there exists γ1 ∈ (0, 1), b > 0 and V : Td,(2) → [1,∞),
all independent of κ, such that

(4.1) P (2)
κ V ⩽ γ1V + b

holds for all sufficiently small κ ⩾ 0.

The main idea behind the proof of Lemma 4.1 is that the difference of four terms
Xκ

1 (x), Xκ
1 (y), X0

1 (x), X0
1 (y) can be estimated small when κ is close to 0 and x and

y are close. To carry out the details, we need to first lift all the processes to Rd.
We identify the torus Td with the set of equivalence classes {[x̌] | x̌ ∈ Rd}, where [x̌]
denotes the equivalence class of x̌ modulo Zd. Notice that for any x̌, y̌ ∈ Rd such
that |x̌− y̌| < 1/2, we have

d(x, y) = |x̌− y̌| and exp−1
x y = y̌ − x̌ , where x = [x̌], y = [y̌] .

We will implicitly identify periodic functions on Rd with functions on the torus.
We also define the Brownian motion W on Td by choosing a standard Brownian

motion W̌ on Rd, and setting

Wt = W̌t (mod Zd) .

Now, let X̌ be the solution to (1.6) on Rd with the Brownian motion W̌ , and
notice Xt = [X̌t]. To prove Lemma 4.1 we need two elementary estimates on the
flows X̌κ, which we state below.

Lemma 4.2. There exists a constant C0 = C0(supξ,t∥U ∥C1) ⩾ 1 such that for
every κ ⩾ 0 and x̌, y̌ ∈ Rd, we have

(4.2) |x̌− y̌|
C0

⩽ |X̌κ
1 (x̌) − X̌κ

1 (y̌)| ⩽ C0|x̌− y̌| , almost surely .
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Lemma 4.3. For each x̌, y̌ ∈ Rd and t ∈ [0, 1], define ϱκt (x̌, y̌) by

ϱκt (x̌, y̌) def=
∣∣X̌κ

t (x̌) − X̌κ
t (y̌) − (X̌0

t (x̌) − X̌0
t (y̌))

∣∣ .
There exists a constant C1 = C1(supξ,t∥U ∥C2) such that for any α > 0 and κ > 0,
we have

1{W̌∗
1 ⩽α}ϱ

κ
1 (x̌, y̌) ⩽ C1(α

√
κ+ |x̌− y̌|)

∣∣X̌0
1 (x̌) − X̌0

1 (y̌)
∣∣ .

Here W̌ ∗ is the running maximum of |W̌ |, defined by

W̌ ∗
t = max

s⩽t
|W̌s| .

Momentarily postponing the proofs of Lemmas 4.2 and 4.3, we now prove
Lemma 4.1.

Proof of Lemma 4.1. We prove this proposition in two following steps. First, we
show that for any c > 0, there exists a constant ε < s∗ such that

(4.3) lim sup
κ→0+

sup
(x,y)∈∆(ε)

|P (2)
κ V − P

(2)
0 V |

V
< c .

Then, using (2.2) and choosing c < 1−γ̃ imply that for some ε > 0 and all sufficiently
small κ ⩾ 0,
(4.4) P (2)

κ V < (γ̃ + c)V on ∆(ε) .
Outside ∆(ε), we will show that there exists a constant b > 0 such that
(4.5) P (2)

κ V ⩽ b on ∆(ε)c ,
for all sufficiently small κ ⩾ 0. Using (4.4) and (4.5) immediately implies (4.1) as
desired.

In order to finish the proof we need to prove (4.3) and (4.5). To prove (4.3), let
ε be a small κ-independent constant that will be chosen later. We let x, y ∈ ∆(ε)
and note

P (2)
κ V (x, y) − P

(2)
0 V (x, y) = E[V (Xκ

1 (x), Xκ
1 (y)) − V (X0

1 (x), X0
1 (y))] .

Choose ε > 0 such that for the constant C0 in (4.2) and s∗ from Assumption 2.2,
we have C0ε < s∗. Let x̌, y̌ ∈ Rd such that [x̌] = x, [y̌] = y, and d(x, y) = |x̌ − y̌|.
Then by Lemma 4.2, we have

|X̌κ
1 (x̌) − X̌κ

1 (y̌)| < C0ε < s∗ <
1
2 ,

for all κ ⩾ 0, and hence

(4.6) 1
C0
d(x, y) ⩽ d(Xκ

1 (x), Xκ
1 (y)) = |X̌κ

1 (x̌) − X̌κ
1 (y̌)| ⩽ C0d(x, y) ⩽ s∗ .

Then using (2.3), we get

P (2)
κ V (x, y) − P

(2)
0 V (x, y) = E

[
ψκ

|Ž1 + Z̃κ1 |p
− ψ0

|Ž1|p

]
,

where
ψκ

def= ψ(Xκ
1 (x), ω̂(Xκ

1 (x), Xκ
1 (y))) ,

ψ0 def= ψ(X0
1 (x), ω̂(X0

1 (x), X0
1 (y))) ,

Z1
def= X̌0

1 (x̌) − X̌0
1 (y̌) ,

Z̃κ1
def= X̌κ

1 (x̌) − X̌κ
1 (y̌) − (X̌0

1 (x̌) − X̌0
1 (y̌)) ,

ω̂(x′, y′) = exp−1
x′ (y′)

d(x′, y′) .

In particular, we can rewrite the terms into
ψκ

|Ž1 + Z̃κ1 |p
− ψ0

|Ž1|p
= ψκ

( 1
|Ž1 + Z̃κ1 |p

− 1
|Ž1|p

)
+ 1

|Ž1|p
(ψκ − ψ0) .

and deduce

|P (2)
κ V − P

(2)
0 V |

V
⩽

d(x, y)p

infSM ψp

(
E

[
ψκ

∣∣∣ 1
|Ž1 + Z̃κ1 |p

− 1
|Ž1|p

∣∣∣ + 1
|Ž1|p

|ψκ − ψ0|
])

⩽
d(x, y)p

infSM ψ

(
E1{W̌∗

1 ⩽α}(F1 + F2) + P (W̌ ∗
1 ⩾ α) sup

Ω
(F1 + F2)

)
,(4.7)

where

F1
def= ψκ

∣∣∣ 1
|Ž1 + Z̃κ1 |p

− 1
|Ž1|p

∣∣∣ , and F2
def= 1

|Ž1|p
|ψκ − ψ0| ,

and α > 0 is a small κ-independent constant that will be chosen shortly.
We will now bound each term on the right of (4.7). On the event {W̌ ∗

1 ⩽ α}, we
note that Lemma 4.3 implies

(4.8) |Z̃κ1 | ⩽ C1(α
√
κ+ ε)|Ž1| ,

so

(4.9) |Ž1 + Z̃κ1 | ⩾ |Ž1| − |Z̃κ1 | ⩾ |Ž1|(1 − C1(α
√
κ+ ε)) > 0 ,

for sufficiently small κ, ε > 0. Moreover,

|Ž1 + Z̃κ1 | ⩽ |Ž1| + |Z̃κ1 | ⩽ |Ž1|(1 + C1(α
√
κ+ ε)) .

These two inequalities imply that
1

|Ž1|p
− 1

|Ž1 + Z̃κ1 |p
⩽

1
|Ž1|p

(
1 − 1

(1 + C1(α
√
κ+ ε))p

)
,(4.10)

1
|Ž1 + Z̃κ1 |p

− 1
|Ž1|p

⩽
1

|Ž1|p
( 1

(1 − C1(α
√
κ+ ε))p

− 1
)
.(4.11)

By convexity of the function ξ 7→ ξ−p, we have

1 − 1
(1 + C1(α

√
κ+ ε))p

⩽
1

(1 − C1(α
√
κ+ ε))p

− 1 .

Combined with (4.10) and (4.11) this implies

(4.12)
∣∣∣ 1
|Ž1 + Z̃κ1 |p

− 1
|Ž1|p

∣∣∣ ⩽ 1
|Ž1|p

( 1
(1 − C1(α

√
κ+ ε))p

− 1
)
.
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Multiplying (4.12) by d(x,y)p

infSM ψψ
κ and using (4.6) gives

(4.13) d(x, y)p

infSM ψ
E1{W̌∗

1 ⩽α}F1 ⩽ Cp0
∥ψ∥∞

infSM ψ

( 1
(1 − C1(α

√
κ+ ε))p

− 1
)
.

Next, we bound E1{W̌∗
1 ⩽α}F2. We note that by (4.25), (4.26), and (4.6), we can

choose sufficiently small κ, α, ε to ensure

diam{X̌κ
1 (x̌), X̌0

1 (x̌), X̌κ
1 (y̌), X̌0

1 (y̌)} < 1
2 .

In this case we have
d((Xκ

1 (x),ω̂(Xκ
1 (x), Xκ

1 (y))), (X0
1 (x), ω̂(X0

1 (x), X0
1 (y))))

= |X̌κ
1 (x̌) − X̌0

1 (x̌)| +

∣∣∣∣∣ X̌κ
1 (y̌) − X̌κ

1 (x̌)
|X̌κ

1 (y̌) − X̌κ
1 (x̌)|

− X̌0
1 (y̌) − X̌0

1 (x̌)
|X̌0

1 (y̌) − X̌0
1 (x̌)|

∣∣∣∣∣
= |X̌κ

1 (x̌) − X̌0
1 (x̌)| +

∣∣∣∣∣ Ž1 + Z̃κ1

|Ž1 + Z̃κ1 |
− Ž1

|Ž1|

∣∣∣∣∣ .
The inequalities (4.25) and the general bound∣∣∣ v|v|

− v′

|v′|

∣∣∣ ⩽ 2|v − v′|
min{|v|, |v′|}

,

immediately imply

|X̌κ
1 (x̌) − X̌0

1 (x̌)| +

∣∣∣∣∣ Ž1 + Z̃κ1

|Ž1 + Z̃κ1 |
− Ž1

|Ž1|

∣∣∣∣∣(4.14)

⩽ C0α
√
κ+ 2|Z̃κ1 |

min{|Ž1 + Z̃κ1 |, |Ž1|}
.

Using (4.8) and (4.9) we see

(4.15) C0α
√
κ+ 2 |Z̃κ1 |

min{|Ž1 + Z̃κ1 |, |Ž1|}
⩽ C0α

√
κ+ 2C1(α

√
κ+ ε)

1 − C1(α
√
κ+ ε)

.

Now fix η > 0 to be a κ-independent constant that will be chosen later. Using
uniform continuity of ψ find δ > 0 such that
(4.16) ∀z, z′ ∈ SM, d(z, z′) < δ =⇒ |ψ(z) − ψ(z′)| < η .

If κ, ε are sufficiently small, the right hand side of (4.15) can be made smaller than δ.
Using (4.14) implies

d((Xκ
1 (x), ω̂(Xκ

1 (x), Xκ
1 (y))), (X0

1 (x), ω̂(X0
1 (x), X0

1 (y)))) < δ ,

and using (4.16) implies
|ψκ − ψ0| < η .

Thus by (4.6), we see

(4.17) d(x, y)p

infSM ψ
E1{W̌∗

1 ⩽α}F2 ⩽
Cp0

infSM ψ
η .

Finally, for the last term on the right of (4.7), we note

ψκ
∣∣∣ 1
|Ž1 + Z̃κ1 |p

− 1
|Ž1|p

∣∣∣ + 1
|Ž1|p

|ψκ − ψ0|

⩽ ∥ψ∥∞

( 1
|Ž1 + Z̃κ1 |p

+ 1
|Ž1|p

)
+ 2

|Ž1|p
∥ψ∥∞ ,

so using (4.6) shows

(4.18) d(x, y)p

infSM ψ
P (W̌ ∗

1 ⩾ α) sup
Ω

(F1 + F2) ⩽ 4Cp0 ∥ψ∥∞

infSM ψ
P [W̌ ∗

1 > α] .

Using (4.13), (4.17) and (4.18) in (4.7) we obtain

sup
(x,y)∈∆(ε)

|P (2)
κ V − P

(2)
0 V |

V
⩽ Cp0

∥ψ∥∞

infSM ψ

( 1
(1 − C1(α

√
κ+ ε))p

− 1
)

+ Cp0
infSM ψ

η + 4Cp0 ∥ψ∥∞

infSM ψ
P [W ∗

1 > α] .

Thus,

(4.19) lim sup
κ→0+

sup
(x,y)∈∆(ε)

|P (2)
κ V − P

(2)
0 V |

V
⩽ Cp0

∥ψ∥∞

infSM ψ

( 1
(1 − C1ε)p

− 1
)

+ Cp0
infSM ψ

η + 4Cp0 ∥ψ∥∞

infSM ψ
P [W ∗

1 > α] .

Now, we choose α, η, and ε such that
4Cp0 ∥ψ∥∞

infSM ψ
P [W ∗

1 > α] < 1
3c ,

Cp0
infSM ψ

η <
1
3c ,

Cp0
∥ψ∥∞

infSM ψ
( 1
(1 − C1ε)p

− 1) < 1
3c ,

then using (4.19) will imply (4.3) as desired.
Finally, in order to prove (4.5), we see from the Assumption 2.2 that V is

continuous on the compact set K def= ∆(s∗) − ∆( s∗
2 ) so it can be continuously

extended to the compact set K ′ def= Td,(2) − ∆( s∗
2 ) such that

1 ⩽ inf
K
V = inf

K′
V ⩽ sup

K′
V = sup

K
V .

Now, let (x, y) ∈ ∆(ε)c. On the event E1
def= {(Xκ

1 (x), Xκ
1 (y)) ∈ ∆(s∗)}, there

exist x̌, y̌ ∈ Rd such that [x̌] = x, [y̌] = y, and

d(Xκ
1 (x), Xκ

1 (y)) = |X̌κ
1 (x̌) − X̌κ

1 (y̌)| < s∗ .

By (4.2), |x̌− y̌| < s∗
C0

< 1
2 so |x̌− y̌| = d(x, y) and

d(Xκ
1 (x), Xκ

1 (y)) ⩾ C0d(x, y) ⩾ C0ε ,
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which implies

(4.20) E[V (Xκ
1 (x), Xκ

1 (y))1E1 ] ⩽ C−p
0 ε−p∥ψ∥∞ .

On the event Ec1, we have
(4.21) E[V (Xκ

1 (x), Xκ
1 (y))1Ec

1
] ⩽ sup

K′
V .

Bounds (4.20) and (4.21) yield (4.5) with

b
def= C−p

0 ε−p∥ψ∥∞ + sup
K′

V .

This completes the proof. □

Gradient estimates on the stochastic flows. It remains to prove Lemmas 4.2
and 4.3. Lemma 4.2 is a direct result of applying Grönwall’s inequality twice to the
difference |Xκ

t (x̌) −Xκ
t (y̌)| near t = 0 and t = 1.

Proof of Lemma 4.2. For the upper bound, we see that for any κ ⩾ 0 and 0 ⩽ t ⩽ 1,

X̌κ
t (x̌) − X̌κ

t (y̌) = x̌− y̌ +
∫ t

0
u(Xκ

s (x̌), s) − u(X̌κ
s (y̌), s)ds ,

so

|X̌κ
t (x̌) − X̌κ

t (y̌)| ⩽ |x̌− y̌| +A1

∫ t

0
|X̌κ

s (x̌) − X̌κ
s (y̌)|ds .

By Grönwall’s inequality, we have

|X̌κ
1 (x) − X̌κ

1 (y)| ⩽ eA1 |x̌− y̌| ,

where
(4.22) A1

def= ∥∇xU ∥L∞(M×Td×[0,1])

Similarly, for the lower bound, we see that for any κ ⩾ 0 and 0 ⩽ t ⩽ 1,

X̌κ
1−t(x̌) − X̌κ

1−t(y̌) = X̌κ
1 (x̌) − X̌κ

1 (y̌) −
∫ 1

1−t

(
u(X̌κ

s (x̌), s) − u(X̌κ
s (y̌), s)

)
ds

= X̌κ
1 (x̌) − X̌κ

1 (y̌) −
∫ t

0

(
u(X̌κ

1−s(x̌), s) − u(X̌κ
1−s(y̌), s)

)
ds

so

|X̌κ
1−t(x̌) − X̌κ

1−t(y̌)| ⩽ |X̌κ
1 (x̌) − X̌κ

1 (y̌)| +A1

∫ t

0
|X̌κ

1−s(x̌) − X̌κ
1−s(y̌)|ds .

By Grönwall’s inequality, we have

|x̌− y̌| ⩽ eA1 |X̌κ
1 (x̌) − X̌κ

1 (y̌)| .

Thus, setting C0
def= eA1 concludes the proof. □

To prove Lemma 4.3, we first explicitly write down the differences X̌κ
t (x̌) − X̌κ

t (y̌)
and X̌0

t (x̌) − X̌0
t (y̌) by using the differential equations they satisfy. Then, we use

mean value theorem and Grönwall’s inequality multiple times to estimate their
difference.

Proof of Lemma 4.3. For 0 ⩽ t ⩽ 1, we have

X̌κ
t (x̌) − X̌κ

t (y̌) = x̌− y̌ +
∫ t

0
(u(X̌κ

s (x̌), s) − u(X̌κ
s (y̌)), s) ds(4.23)

= x̌− y̌ +
∫ t

0
∇xu(β1(s), s) · (X̌κ

s (x̌) − X̌κ
s (y̌)) ds

for some β1(s) and similarly

(4.24) X̌0
t (x̌) − X̌0

t (y̌) = x̌− y̌ +
∫ t

0
∇xu(β2(s), s) · (X̌0

s (x̌) − X̌0
s (y̌)) ds

for some β2(s). We define

S(t) def= X̌κ
t (x̌) − X̌κ

t (y̌) − (X̌0
t (x̌) − X̌0

t (y̌)) .

Then, by taking the difference between (4.23) and (4.24), we get

S(t) =
∫ t

0
∇xu(β1(s), s) · S(s)

+ (∇xu(β1(s), s) − ∇xu(β2(s), s)) · (X̌0
s (x̌) − X̌0

s (y̌)) ds ,

which implies

ϱκt (x̌, y̌) ⩽ A1

∫ t

0
ϱκs (x̌, y̌)ds+A2

∫ t

0
|β1(s) − β2(s)|

∣∣∣X̌0
s (x̌) − X̌0

s (y̌)
∣∣∣ ds ,

where

A2
def= ∥∇2

xU ∥L∞(M×Td×[0,1]) .

We see that

|β1(s) − β2(s)| ⩽ max{|X̌κ
s (y̌) − X̌0

s (y̌)|, |X̌κ
s (x̌) − X̌0

s (x̌)|,

|X̌κ
s (y̌) − X̌0

s (x̌)|, |X̌κ
s (x̌) − X̌0

s (y̌)|}

and in particular,

1{W̌∗
1 ⩽α}|X̌κ

s (x̌) − X̌0
s (x̌)| ⩽ α

√
κeA1s(4.25)

|X̌0
s (x̌) − X̌0

s (y̌)| ⩽ |x̌− y̌|eA1s(4.26)

by Grönwall’s inequality.
As a result, we obtain

1{W̌∗
1 ⩽α}ϱ

κ
t (x̌, y̌) ⩽ A1

∫ t

0
1{W̌∗

1 ⩽α}ϱ
κ
s (x̌, y̌)ds

+A2(α
√
κ+ |x̌− y̌|)eA1t

∫ t

0

∣∣∣X̌0
s (x̌) − X̌0

s (y̌)
∣∣∣ds .

Using Grönwall’s inequality and Lemma 4.2 this gives

1{W̌∗
1 ⩽α}ϱ

κ
1 (x̌, y̌) ⩽ C1(α

√
κ+ |x̌− y̌|)

∣∣∣X̌0
1 (x̌) − X̌0

1 (y̌)
∣∣∣ ,

for some constant C1 = C1(A1, A2). □
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5. A stable small set.
Next, in order to obtain the minorizing condition (3.2) stated in Lemma 3.1, we

will show that Assumptions 2.3 and 2.4 imply the existence of a κ-independent small
set.

Lemma 5.1. Suppose Assumptions 2.3 and 2.4 hold. Then there exist nonempty
open sets A,B ⊆ Td,(2) and a constant β > 0 such that

(5.1) inf
x∈A

P (2),n
κ (x, ·) ⩾ β Leb |B(·) .

for all sufficiently small κ ⩾ 0. Here Leb |B denotes the restriction of the Lebesgue
measure to B.

To prove Lemma 5.1, we need the following two lemmas.

Lemma 5.2. Let f : Br ⊆ RN → Rd be a C1 function such that f(0) = 0 and
rank(Df(0)) = d. Then there exist δ, s > 0 such that, for any g : RN → Rd Lipschitz
with ∥f − g∥L∞(Br) ⩽ δ, we have

g(Br) ⊇ Bs

Here Br denotes the open ball centered at 0.

Proof. By the constant rank theorem, there are diffeomorphisms α and β which
fix the origin such that (α ◦ f ◦ β)(x1, . . . , xN ) = (x1, . . . , xd). Choose δ > 0 so
that ∥(α ◦ f ◦ β) − (α ◦ g ◦ β)∥L∞(B1) ⩽ 1

4 . Let xd+1, . . . , xN be arbitrary with
x2
d+1 + · · ·+x2

N ⩽ 1
4 and define h(x1, . . . , xd) := (α◦g ◦β)(x1, . . . , xd, xd+1, . . . , xN ).

Then h : B3/4 ⊆ Rd → Rd satisfies |h(x) − x| ⩽ 1
4 at every point.

We claim that h(B3/4) ⊇ B1/2. Indeed, compute the degree deg(h,B3/4, x) = 1
for each x ∈ B1/2 (the degree is a homotopy invariant, and h is homotopic to the
identity).

Then (α ◦ g ◦β)(B1) ⊇ B1/2, and therefore g(Br) ⊇ Bs for some s > 0 depending
only on α and β. □

Lemma 5.3. For any n ∈ N, κ ⩾ 0, x ∈ Td,(2), ξ, ξ′ ∈ M n, and almost any
realization of the noise W , we have

d(Xκ,(2)
n (ξ, x), Xκ,(2)

n (ξ′, x)) ⩽ A3 exp(n(1 +A1))d∞(ξ, ξ′) ,

where A1 is defined as in (4.22), and

A3
def= ∥∇ξU ∥L∞(M×Td×[0,1]) ,

d∞(ξ, ξ′) def= sup
k⩽n

dM (ξk, ξ′
k) .

Proof. The proof follows immediately from Grönwall’s inequality and is very similar
to the proof of Lemma 4.2. □

With these lemmas, we can prove the existence of a κ-independent small set.

Proof of Lemma 5.1. Let n, x∗, ξ∗, ε, c, ρn be defined as in Assumption 2.3. Then,
we see that X

(2)
n (·, x∗) satisfies the assumption in Lemma 5.2 with r = ε. Let δ, s

be the constants given in Lemma 5.2 for the map X
(2)
n (·, x∗). Now, choose α > 0

such that P [W̌ ∗
n ⩽ α] ⩾ 1

2 and let η, κ be small enough so that

(η + n
√
κα)enA1 <

1√
2
δ .

Then for each choice of x ∈ Bη(x∗) and a realization of Brownian path such that
{W̌ ∗

n ⩽ α}, we have

d(Xκ,(2)
n (ξ, x), X0,(2)

n (ξ, x∗)) < δ ,

for any ξ ∈ M n. Thus, we can apply Lemma 5.2 to the map g : ξ 7→ X
κ,(2)
n (ξ, x)

and see that

P (2),n
κ (x,A) ⩾ EW

[(∫
g−1(A)∩Bε(ξ∗)

ρn(ξ)dξ
)

1{W∗
n⩽α}

]
⩾ cEW

[
|g−1(A) ∩Bε(ξ∗)|1{W∗

n⩽α}

]
⩾
c

2 |A ∩Bs(X (ξ∗, x∗))|EW Lip(g)− dim M .(5.2)

Using Lemma 5.3 we see

(5.3) EW Lip(g)− dim M ⩾ (A3 exp(n(1 +A1)))− dim M .

Using (5.3) in (5.2) yields (5.1) as desired. □

6. Verification of the Harris Assumptions (Lemma 3.1).
Given the Lyapunov function V from Lemma 4.1 and the small set from Lemma 5.1,

we will now prove Lemma 3.1 verifying Harris conditions for the two point chains,
for all sufficiently small κ ⩾ 0.

Proof of Lemma 3.1. We first note that Lemma 4.1 and induction immediately
imply that for every l ∈ N,

P (2),l
κ V ⩽ γl1V + bl ,

where

bl
def= b

l−1∑
i=0

γi1 = b
1 − γl1
1 − γ1

.(6.1)

We will now show that R and l can be chosen so that (3.2) is also satisfied.
We will first show that any compact set A ⊂ Td,(2) is a small set, uniformly in κ.

More precisely, we will prove that for any compact set A ⊂ Td,(2), there exist m ∈ N,
β ∈ (0, 1), and a probability measure µ, all independent of κ, such that

(6.2) inf
x∈A

P (2),m
κ (x, ·) ⩾ βµ(·) ,

for all sufficiently small κ ⩾ 0. Next, we will show that for any R > 2b
1−γ1

, there
exists a compact set S such that

(6.3) {V ⩽ R} ⊂ S .
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To see why the above implies (3.2), we first fix any R > 2b
1−γ1

and then find
a compact set S such that (6.3) holds. From (6.2), we can find κ-independent
constants l, α and a probability measure ν such that for all sufficiently small κ ⩾ 0,
we have

inf
x∈S

P (2),l
κ (x, ·) ⩾ αν(·) .

For this particular l ∈ N, we define

γ3
def= γl1, and K

def= bl .

Using (6.1) we observe

R >
2b

1 − γ1
= 2b

1 − γl1

1 − γl1
1 − γ1

= 2K
1 − γ3

,

which implies (3.2) as claimed.
It remains to prove (6.2) and (6.3). To prove (6.2), we first note that Assump-

tions 2.1 and 2.3 imply P
(2)
0 is an ψ(2)-irreducible, aperiodic T -chain with the

property that

ψ(2)(V) > 0, for all V ⊂ Td,(2) open .

Assumption 2.3 and Lemma 5.1 imply that there exist open balls Br, Bs ⊂ Td,(2)

and n ∈ N such that for all sufficiently small κ ⩾ 0,

(6.4) inf
x∈Br

P (2),n
κ (x, ·) ⩾ µ̃(·) ,

where Br and Bs are open balls with radius r, s > 0, respectively, and

µ̃(·) def= Leb(· ∩Bs) .

B 1
2 r

is small for the chain P
(2)
0 and ψ(2)(B 1

2 r
) > 0 so by Theorem 6.2.5 (ii) and

Theorem 5.5.7 in [MT09], we see that there exist some q ∈ N and c > 0 such that

(6.5) inf
x∈A

P
(2),q
0 (x,B 1

2 r
) ⩾ c > 0 .

Then, for each x ∈ A, the measure P (2),q
κ (x, ·) converges weak-* to the measure

P
(2),q
0 (x, ·) as κ → 0 so there exists κ0(x) > 0 such that

(6.6) inf
κ<κ0(x)

P (2),q
κ (x,B 1

2 r
) ⩾ 1

2P
(2),q
0 (x,B 1

2 r
) .

Also, if we assume r < 1 without loss of generality and define A1 as in (4.22), then
for any x ∈ Td and y ∈ B(x, 1

2 exp(−A1q)r), we can find x̌, y̌ ∈ Rd such that [x̌] = x,
[y̌] = y, and d(x, y) = |x̌− y̌|, and use simple Gröwnwall bound to notice that

d(Xκ
q (x), Xκ

q (y)) = |X̌κ
q (x̌) − X̌κ

q (y̌)| ⩽ exp(A1q)|x̌− y̌| ⩽ 1
2r .

This immediately leads to the inequality

(6.7) P (2),q
κ (y,Br) ⩾ P (2),q

κ (x,B 1
2 r

) .

Now, we cover the compact set A with open balls ∪x∈AB(x, 1
2 exp(−A1q)r) and

find a finite cover
⋃N
i=1 B(xi, 1

2 exp(−A1q)r). If we let κ < κ0
def= minNi=1 κ0(xi) and

y ∈ A, then by (6.7), (6.6), and (6.5), we see that

P (2),q
κ (y,Br) ⩾

1
2c .

This implies for any 0 ⩽ κ < κ0,

(6.8) inf
x∈A

P (2),q
κ (x,Br) ⩾

1
2c .

Defining m def= n+ q and using (6.4) with (6.8) yields

inf
x∈A

P (2),m
κ (x, ·) ⩾ 1

2cµ̃(·)

for all sufficiently small κ ⩾ 0. Then, normalizing 1
2cµ̃(·) immediately implies (6.2),

as desired.
Finally, to prove (6.3), we notice that if s′′ < s∗ and (x, x′) ∈ ∆(s′′), we have

V (x, x′) = d(x, x′)−pψp(x, ŵ(x, x′)) ⩾ (s′′)−p
(

inf
SM

ψp

)
> 0 .

Thus making s′′ > 0 sufficiently small will ensure
∆(s′′) ⊂ {V > R} ,

which implies
{V ⩽ R} ⊂ ∆(s′′)c .

Thus S def= ∆(s′′)c is the desired compact set, proving (6.3). This concludes the
proof. □

7. V-geometric ergodicity (Lemma 3.2).

Given Lemma 3.1, V -geometric ergodicity of the two point chains P (2)
κ follows

directly from a theorem of Harris [Har55,MT09]. The usual Harris theorem, however,
isn’t quantitative enough to yield (3.3) with κ-independent constants C, β. We will
instead use the version in [HM11] which is quantitative and can be used to prove
Lemma 3.2.

For the proof, we define the metric ρβ by

(7.1) ρβ(µ1, µ2) def=
∫
Td,(2)

(1 + βV ) d|µ1 − µ2| ,

where β ⩾ 0, µ1, µ2 are probability measures, and |µ1 − µ2| denotes the variation of
the signed measure µ1 − µ2. The quantitative Harris theorem from [HM11] shows
that P (2),l

κ is a contraction under ρβ , and for readers convenience we now restate
this result in our context.

Theorem 7.1 (Theorem 1.3 in [HM11]). Make the same assumptions as in Le-
mma 3.1. For any α0 ∈ (0, α), and any γ0 ∈ (γ3 + 2K

R , 1), define

β
def= α0

K
, ᾱ

def= max
{

1 − (α− α0), 2 +Rβγ0

2 +Rβ

}
.
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Then, for any two probability measures µ1, µ2 we have
(7.2) ρβ(µ1P

(2),l
κ , µ2P

(2),l
κ ) ⩽ ᾱρβ(µ1, µ2) .

Referring to [HM11] for the proof of Theorem 7.1, we will now prove Lemma 3.2.

Proof of Lemma 3.2. We will first show there exist constants C > 0, γ2 ∈ (0, 1),
and l ∈ N such that for all sufficiently small κ ⩾ 0, any φ : Td,(2) → R such that
∥φ∥V < ∞, and any m ∈ N, we have

(7.3)
∥∥∥P (2),lm

κ φ−
∫
φdπ(2)

∥∥∥
V
⩽ Cγm2

∥∥∥φ−
∫
φdπ(2)

∥∥∥
V
.

For this, we first define a weighted norm

∥φ∥β
def= sup

x

|φ(x)|
1 + βV (x) .

Then, since V ⩾ 1 on Td,(2), we see that the norms ∥ · ∥V and ∥ · ∥β are equivalent
for any β > 0 with

(7.4) 1
1 + β

∥φ∥V ⩽ ∥φ∥β ⩽
1
β

∥φ∥V .

We also note that given any two probability measures µ1 and µ2 on Td,(2),
ρβ(µ1, µ2) = sup

∥φ∥β⩽1
⟨µ1 − µ2, φ⟩(7.5)

always holds, where ⟨µ, φ⟩ denotes the dual pairing

⟨µ, φ⟩ def=
∫
Td,(2)

φdµ .

Now, we’re ready to prove (7.3). From here on, we set P = P
(2),l
κ for notational

simplicity. By Lemma 3.1 and Theorem 7.1 we obtain the contraction estimate (7.2).
In particular, for any x ∈ Td,(2) and µ1

def= δx, µ2
def= π(2), we have

ρβ(δxPn, π(2)) ⩽ ᾱnρβ(δx, π(2)) .
By using (7.5) and then (7.1), we notice

|⟨δxPn − π(2), φ− ⟨π(2), φ⟩⟩|
∥φ− ⟨π(2), φ⟩∥β

⩽ ᾱnρβ(δx, π(2)) ⩽ ᾱn(1 + βV (x) + ⟨π(2), 1 + βV ⟩) ,

and hence∣∣∣(Pnφ)(x) − ⟨π(2), φ⟩
∣∣∣

1 + βV (x) ⩽ ᾱn(1 + ⟨π(2), 1 + βV ⟩)∥φ− ⟨π(2), φ⟩∥β .

This holds for any x ∈ Td,(2) so∥∥∥Pnφ− ⟨π(2), φ⟩
∥∥∥
β
⩽ Cβᾱ

n∥φ− ⟨π(2), φ⟩∥β .

Finally, using (7.4) yields (7.3) where C and γ2 depend on α, γ3,K,R but not on κ.
This completes the proof for (7.3).

The proof that (7.3) implies (3.3) is a standard argument. For any x ∈ Td,(2)

and any mean 0 function g we note∣∣∣ (P (2)
κ g)(x)
V (x)

∣∣∣ =
∣∣∣∫

Td,(2)

g(y)
V (y)

V (y)
V (x)P

(2)
κ (x, dy)

∣∣∣ ⩽ ∥g∥V
(P (2)
κ V )(x)
V (x) ⩽ (γ1 + b)∥g∥V ,

where γ1 and b are the constants defined in (4.1). Thus,∥∥P (2)
κ g

∥∥
V
⩽ (γ1 + b)∥g∥V .

This and (7.3) imply that for any m ∈ N, 0 ⩽ r < l,∥∥∥P (2),lm+r
κ g

∥∥∥
V
⩽ C max(γ1 + b, 1)rγm2 ∥g∥V ⩽ Cγm2 ∥g∥V ,

which proves ∥∥∥P (2),n
κ g

∥∥∥
V
⩽ C(γ

1
l

2 )n∥g∥V

for general n ∈ N with possibly different constants C in each line. This completes
the proof of Lemma 3.2. □

8. Exponential Mixing of the Stochastic Flows (Lemma 3.3).
In general, the geometric ergodicity of the two-point chain implies almost sure

exponential mixing of the random dynamical system. To the best of our knowledge
this principle was introduced in [DKK04] and was also used in [BBPS22,BCZG22].
We reproduce it here keeping track of the constants introduced in the proof and
their dependence on κ in order to prove that γ in (3.4) is κ-independent.

Proof of Lemma 3.3. Let Zd0
def= Zd − {0} and denote {em : m ∈ Zd} as the orthogo-

nal basis em(x) = eim·x for L2(Td) and denote

f =
∑
m∈Zd

0

f̂mem , g =
∑
m∈Zd

0

ĝmem ,

as the fourier expansions of f and g. We note that and f̂0 = ĝ0 = 0 as f and g are
mean-zero.

Now, fix ζ > 0 and for m,m′ ∈ Zd0 and κ > 0, define random variables

Nκ
m,m′

def= max
{
n ∈ N,

∣∣∣∫ em(x)em′ ◦Xκ
n(x)π(dx)

∣∣∣ > e−ζn
}
,

Kκ
def= max

{
|m| ∨ |m′| : eζN

κ
m,m′ > |m||m′|

}
,

D̂κ
def= max

|m|,|m′|⩽Kκ

eζN
κ
m,m′ .

Then by the definition of Nκ
m,m′ and Chebyshev, we get

P [Nκ
m,m′ > l] ⩽

∑
n>l

P

[ ∣∣∣∫ em(x)em′ ◦Xκ
n(x)π(dx)

∣∣∣ > e−ζn
]

⩽
∑
n>l

e2ζnE
∣∣∣∫ em(x)em′ ◦Xκ

n(x)π(dx)
∣∣∣2
.
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Observe

E
∣∣∣∫ em(x)em′ ◦Xκ

n(x)π(dx)
∣∣∣2

=
∫
e

(2)
m′P

(2),n
κ e(2)

m ,

where
e(2)
m (x, y) def= em(x)em(y) ,

π(2)(dx, dy) def= π(dx)π(dy) .
From (3.3), we see∣∣∣∫ e

(2)
m′P

(2),n
κ e(2)

m dπ(2)
∣∣∣ =

∣∣∣∫ (
e

(2)
m′P

(2),n
κ −

(∫
e

(2)
m′dπ

(2)
))
e(2)
m dπ(2)

∣∣∣
⩽

∫ ∣∣∣e(2)
m′P

(2),n
κ −

∫
e

(2)
m′dπ

(2)
∣∣∣ dπ(2)

⩽ Ce−βn∥e(2)
m′ ∥V

∫
V dπ(2) = CV e

−βn .

This implies
P [Nκ

m,m′ > l] ⩽ CV e
(2ζ−β)l ,(8.1)

provided
(8.2) 2ζ − β < 0 .
From now on, we make additional assumptions that ζ is small enough to satisfy

d+ 2ζ − β

ζ
< 0 ,(8.3)

1
ζq

(2ζ − β) + 1 < −1 ,(8.4)

5d
2 + 2ζ − β

ζ
< −1 .(8.5)

Equations (8.1) and (8.2) imply that P (Nκ
m,m′ < ∞) = 1 and we have the estimate∣∣∣∫ em(x)em′ ◦Xκ

n(x)π(dx)
∣∣∣ ⩽ eζN

κ
m,m′ −ζn ,

hence
∣∣∣∫ f(x)g ◦Xκ

n(x)π(dx)
∣∣∣ ⩽ e−ζn

∑
m,m′

|f̂m||ĝm′ |eζN
κ
m,m′ .(8.6)

Moreover, using (8.1) and (8.3), we observe that

P [Kκ > l
]
⩽ 2

∑
m,m′∈Zd

0 ,|m|>l

P

[
eζN

κ
m,m′ > |m||m′|

]
⩽ 2

∑
m′∈Z2

0

|m′|
2ζ−β

ζ

∑
m∈Z2

0,|m|>l

|m|
2ζ−β

ζ

≲
∞∑
n=1

n
2ζ−β

ζ +d−1
∞∑
n>l

n
2ζ−β

ζ +d−1 ≲ ld+ 2ζ−β
ζ ,(8.7)

where the constants in the inequalities are independent of κ. Hence P (Kκ < ∞) = 1.

Noting that
eζN

κ
m,m′ ⩽ D̂κ|m||m′|

always holds, we conclude from (8.6) that∣∣∣∫ f(x)g ◦Xκ
n(x)π(dx)

∣∣∣ ⩽ D̂κ(ω)e−ζn∥f∥
H

d
2 +2∥g∥

H
d
2 +2 .

Finally, the same arguments in Lemma 7.1 and Section 7.3 of [BBPS22] show that
for any s, q > 0,∣∣∣∫ f(x)g ◦Xκ

n(x)π(dx)
∣∣∣ ⩽ D̂κ(ω)e−( 2sζ

d+4 )n∥f∥Hs∥g∥Hs .

Moreover, using (8.1) and (8.7), they show that

E[D̂q
κ] =

∞∑
l=1

E
[
1{Kκ=l} max

|m|,|m′|⩽l
eζqN

κ
m,m′

]
⩽

∞∑
l=1

P [Kκ = l] 1
2

∥∥∥ max
|m|,|m′|⩽l

eζqN
κ
m,m′

∥∥∥
L2

≲
∞∑
l=1

ld+ 2ζ−β
ζ

( ∑
|m|,|m′|⩽l

∥eζqN
κ
m,m′ ∥L2

)

⩽
(

1 + ζq

β − 2ζ(1 + q)

) 1
2

∞∑
l=1

l
5d
2 + 2ζ−β

ζ < ∞ ,

provided (8.4) and (8.5). This completes the proof of the theorem with the choice of
γ

def= 2sζ
d+4 which can be made independent of κ since the conditions for ζ, (8.2)–(8.5),

are independent of κ. □

9. An explicit Lyapunov function for Pierrehumbert flows.
It was proved in Section 5 of [BCZG22] that the Pierrehumbert flows defined in

Corollary 1.7 satisfy the assumptions 2.5–2.8. Then by Proposition 2.9, we see that
Assumption 2.1–2.3 (and hence Corollary 1.7) must hold. However, in the case of
Pierrehumbert flows, we can explicitly construct a simple Lyapunov function and
verify Assumption 2.2 directly.

Proposition 9.1. Consider the RDS of alternating shears defined in Corollary 1.7.
If the flow amplitude A (in (1.8)) is sufficiently large, then there exists s∗, p > 0
such that the function V defined by

V (x, y) def= |x− y|−p∞ on ∆(s∗) ,

and extended continuously to Td,(2) is a Lyapunov function that satisfies Assump-
tion 2.2. (Here |z|∞ = maxi|zi|.)

Proof. In this proof, we use C as a generic constant that doesn’t depend on A or
κ. For a given x ∈ T2, we write x1, x2 as the first and second coordinates of x,
respectively. Let u(x, t) be defined as in Corollary 1.7.
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First, we note that for some small s∗ ∈ (0, 1
2 ) and any x, y ∈ ∆(s∗), we can find

x̌, y̌ ∈ R2 such that [x̌] = x, [y̌] = y, and

d(X0
2 (x), X0

2 (y)) = |X̌0
2 (x̌) − X̌0

2 (y̌)| ⩽ CA2|x̌− y̌| = CA2d(x, y) < 1
2 ,

so with slight abuse of notation, we still write x, y,X0
2 (x), and X0

2 (y) for x̌, y̌, X̌0
2 (x̌),

and X̌0
2 (y̌), respectively.

We aim to show that there is a constant 0 < β < 1 such that, for any (x, y) ∈
∆(s∗), we have

E[V (Φ2(x),Φ2(y))] ⩽ βV (x, y),

where Φt denotes the flow map induced by u at time t.
Fix (x, y) ∈ ∆(s∗). First, note that we have |x − y|∞ ⩽ CA2|Φ2(x) − Φ2(y)|∞

for some large A and therefore V (Φ2(x),Φ2(y)) ⩽ (CA2)pV (x, y) almost surely. We
break into two cases.
Case I: |x2 − y2| ⩾ |x1 − y1|. Let E0 be the event

E0 = {|Φ1(x)1 − Φ1(y)1| < 2|x2 − y2|} .

Since |Φ2(x) − Φ2(y)|∞ ⩾ |Φ1(x)1 − Φ1(y)1|∞, we have

E[V (Φ2(x),Φ2(y))] ⩽ E[|Φ1(x)1 − Φ1(y)1|−p]
⩽ E[|Φ1(x)1 − Φ1(y)1|−p1E0 ] + E[|Φ1(x)1 − Φ1(y)1|−p1Ec

0
]

⩽ (CA2)pV (x, y)P (E0) + 2−pV (x, y) .(9.1)

We will now estimate P (E0). For this, we use the explicit form of the vector field
u to write

Φ1(x)1 − Φ1(y)1 = x1 − y1 +A sin(2π(x2 − ζ0)) −A sin(2π(y2 − ζ0)).

Thus E0 is contained in the event that

|x1 − y1| + |A sin(2π(x2 − ζ0)) −A sin(2π(y2 − ζ0))| < 2|x2 − y2|.

In view of the assumption |x2 − y2| ⩾ |x1 − y1|, the above inequality is implied by

(9.2) |A sin(2π(x2 − ζ0)) −A sin(2π(y2 − ζ0))| < |x2 − y2|.

Using the fundamental theorem of calculus, the left-hand side above can be written
as the convolution |

(
2πA cos(2π·) ∗ 1[x2,y2]

)
(ζ0)|. Here [x2, y2] denotes the smallest

interval (mod Z) with x2 and y2 as endpoints. Since the derivative of cos(2π·)
is bounded away from zero near the zeros of cos(2π·), the same is true for the
convolution (rescaling by |x2 −y2|). This implies that the set of ζ0 which satisfy (9.2)
has measure at most CA−1. This in turn implies P (E0 ⩽ C/A).

Using this in (9.1) implies

E[V (Φ2(x),Φ2(y))] ⩽ CA2p−1V (x, y) + 2−pV (x, y) .

Choosing p ∈ (0, 1
2 ) and A > 0 sufficiently large, we can ensure

E[V (Φ2(x),Φ2(y))] ⩽ 2−p/2V (x, y) ,

as desired.

Case II: |x2 − y2| < |x1 − y1|. Let E1 be the event that |Φ1(x)1 − Φ1(y)1| ⩽
A−1/2|x1 −y1|. Then P [E1] ⩽ CA−1/2 by the same argument as in the previous case.
On the other hand, if E2 is the event that |Φ2(x)2−Φ2(y)2| ⩽ 2A1/2|Φ1(x)1−Φ1(y)1|,
then we similarly have P [E2] ⩽ CA−1/2. Putting these together, we conclude

E[V (Φ2(x),Φ2(y))] = E[V (Φ2(x),Φ2(y))1E1∪E2 ] + E[V (Φ2(x),Φ2(y))1(E1∪E2)c ]

⩽ (CA2)pV (x, y)(CA−1/2) + 2−pV (x, y),

so for p ∈ (0, 1
4 ) we can choose A > 0 large enough to conclude as in the previous

case. □
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