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In this paper, we study a system of equations that is known to extend Navier-Stokes
dynamics in a well-posed manner to velocity fields that are not necessarily divergence-
free. Our aim is to contribute to an understanding of the role of divergence and pressure
in developing energy estimates capable of both controlling the nonlinear terms, and
being useful at the time-discrete level. We address questions of global existence and
stability in bounded domains with no-slip boundary conditions. Through use of new
H1 coercivity estimates for the linear equations, we establish a number of global
existence and stability results, including results for small divergence and a time-
discrete scheme. We also prove global existence in 2D for any initial data, provided
sufficient divergence damping is included. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4738637]

Dedicated to Peter Constantin, on the occasion of his 60th birthday.

I. INTRODUCTION

The zero-divergence constraint and the associated pressure field are the source of both difficulties
and benefits in the study of the Navier-Stokes equations for the flow of viscous incompressible fluids.
On one hand, the divergence constraint complicates analysis and approximation in a number of ways.
For example, it produces a well-known inf-sup compatibility condition for mixed approximations
that makes it difficult to achieve high accuracy with simple kinds of discretization. On the other
hand, the incompressibility constraint is responsible for the energy inequality, an estimate which is
fundamental to global existence theory.

In this paper, we study global existence and stability questions for a non-degenerate parabolic
system that is known to extend Navier-Stokes dynamics in a well-posed manner to velocity fields that
are not necessarily divergence-free. This system appeared recently in Ref. 10, and begins to explain
the good performance of certain numerical schemes where the pressure is computed by solving
boundary-value problems.12 The idea to determine pressure by solving boundary-value problems
was also a feature of an earlier analytical study by Grubb and Solonnikov,5, 6 and the system we
consider is equivalent to one of their several “reduced” models.

Explicitly, we study the initial-boundary value problem

∂t u + u · ∇u + ∇ p − �u = 0 in �, (1.1)

∇ p = (I − P)(�u − ∇∇ · u − u · ∇u), (1.2)
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u = 0 on ∂�, (1.3)

u = u0 in �, when t = 0. (1.4)

Here, u = u(x, t) is the velocity field, p = p(x, t) the pressure, and P is the standard Leray projection
of L2(�,Rd ) onto the subspace of divergence-free vector fields which are tangential at the boundary.
For simplicity, we have taken the kinematic viscosity to be unity and omitted body forces.

For the system (1.1)–(1.4), neither the initial data nor the solution are required to be divergence
free. Equation (1.2) defines the pressure gradient, and replaces the incompressibility constraint

∇ · u = 0 in � (1.5)

that appears in the standard incompressible Navier-Stokes system. However, if initially ∇ · u0

= 0, then the incompressibility constraint (1.5) holds for all time. This follows because (1.1)–(1.3)
show that ∇ · u satisfies the heat equation with no-flux boundary conditions⎧⎨

⎩
∂t∇ · u = �∇ · u in �,

∂

∂ν
∇ · u = 0 for x ∈ ∂�, t > 0,

(1.6)

where ∂
∂ν

denotes the derivative with respect to the outward unit normal to ∂�.15 Thus, if ∇ · u0

= 0, then the system (1.1)–(1.4) reduces to the standard incompressible Navier-Stokes equations, and
in this sense we say that the system (1.1)–(1.4) extends the dynamics of the standard incompressible
Navier-Stokes equations.

Of course, the dynamics of the standard incompressible Navier-Stokes equations could alter-
nately be extended by completely omitting the ∇∇ · u term from (1.2). However, the presence of
this term is crucial to the theory for two reasons. First, the diffusion term and Neumann boundary
condition for ∇ · u in (1.6) are a direct result of the ∇∇ · u term in (1.2), providing exponential sta-
bility of the divergence-free subspace. Thus, from a numerical perspective, errors in the divergence
should be exponentially damped.

The second and perhaps deeper reason is the essential role played by ∇∇ · u in the well-posedness
results of Refs. 10, 5, and 6. Define the Stokes pressure gradient, ∇ps(u), by

∇ ps(u) = (I − P)(�u − ∇∇ · u). (1.7)

In context we often use ps to denote ps(u). Given any u ∈ H 2(�,Rd ), the function ps(u) is determined
as the unique mean-zero solution to the boundary-value problem

�ps = 0 in �, ν · ∇ ps = ν · (� − ∇∇·)u on ∂�. (1.8)

Without the ∇∇ · u term, the boundary condition in (1.8) would not make sense for all u ∈ H2(�).
With the ∇∇ · u term, however, �u − ∇∇ · u is L2 and divergence-free; hence a standard trace
theorem [Proposition 1.4 of Ref. 3.] makes sense of the boundary condition in H− 1/2(∂�). The
Grubb-Solonnikov5, 6 approach is based on using the boundary-value problem (1.8) to determine the
contribution of ∇ps(u) to ∇p, and proves well-posedness of (1.1)–(1.4) using a theory of parabolic
pseudo-differential initial-boundary value problems in Lp-based Sobolev spaces.

The convergence arguments of Liu et al.,10 on the other hand, result in a comparatively simple
local well-posedness proof for (1.1)–(1.4) for initial velocity in H 1

0 (�). This proof is based instead
on the expression of the Stokes pressure gradient as a Laplace-Leray commutator

∇ ps = (�P − P�)u. (1.9)

This follows directly from (1.7) using the fact that

∇∇ · u = �(I − P)u. (1.10)

Even in this approach, the “extra” ∇∇ · u term in (1.7) is directly responsible for the commuta-
tor representation (1.9). The key idea used in Ref. 10 is to treat the Stokes pressure gradient as
the Laplace-Leray commutator (1.9), and show (Theorem 3.1, below) that it is dominated by the
Laplacian (cf. (3.1)) to leading order.16
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While the methods of Refs. 5, 6, and 10 effectively address local well-posedness of (1.1)–
(1.4), they do not address global existence or stability. For the standard incompressible Navier-
Stokes equations in three-space dimensions, global existence of strong solutions is a well-known
fundamental open problem.2, 4 However, classical results establish global existence and regularity if
the flow is two-dimensional,9 or the initial data are suitably small.3, 9, 13

In this paper, we establish a few such global existence results for the system (1.1)–(1.4). The
main difficulty in proving a small-data global existence result for (1.1)–(1.4) is not the nonlinearity.
The root of the problem is that the linear terms are not coercive under the standard L2 inner product.
We remedy this difficulty by using the commutator estimate in Ref. 10 to construct an adjusted inner
product under which the linear terms are coercive. This allows us to establish global existence for
small initial data in two or three dimensions, and unconditional global stability of a time discrete
scheme for the linear equations. This leads to an improved understanding of how the divergence and
pressure can be handled to obtain energy estimates capable of controlling the nonlinear terms.

In 2D, we can extend our small-data global existence results to initial data with small di-
vergence. For arbitrary initial data, we can add a sufficiently large divergence damping term to
(1.1)–(1.4) to obtain global existence. However, presently we are not able to prove global existence for
(1.1)–(1.4) for arbitrary initial data. The difficulty is that for the energy balance using the standard
L2 inner-product, the nonlinear term is skew-symmetric, and does not contribute; however, the linear
terms are not coercive. On the other hand, for the energy balance using the adjusted inner products
we consider, the linear terms are coercive; however, nonlinearity is no longer skew symmetric, and
contributes non-trivially.

Coercivity of the linear terms (albeit under a non-standard inner product) allows one to treat
(1.1)–(1.4) as a non-degenerate parabolic system. While this has helped simplify existence theory
and the analysis of certain numerical approximation schemes, some other questions apparently
become more difficult. In particular, while global existence of the standard incompressible Navier-
Stokes equations is well known in 2D, the techniques here do not easily show 2D global existence
for (1.1)–(1.4) for general initial data.

II. MAIN RESULTS

A. Coercivity of the extended Stokes operator

In the study of parabolic problems, an extremely useful (and often crucial) property is coercivity
of the underlying linear operator. For (1.1), the linear operator in question is the extended Stokes
operator, A, defined by

Au
def= −�u + ∇ ps(u) = −P�u − ∇∇ · u. (2.1)

Note that the last equality follows from the identity (1.10). Under periodic boundary conditions, the
extended Stokes operator A is coercive. Indeed, under periodic boundary conditions, P� = �P, and
so

〈u, Au〉 = ‖∇u‖2
L2 , (2.2)

where 〈 · , · 〉 denotes the standard L2 inner product on the torus.
Under no-slip (0-Dirichlet) boundary conditions, the situation is surprisingly more complicated.

The extended Stokes operator fails to be positive, let alone coercive, under the standard L2 inner
product. To briefly explain why, observe that for u ∈ H 2 ∩ H 1

0 (�,Rd ),

〈u, Au〉 =
∫

�

u · Au =
∫

�

|∇u|2 +
∫

�

u · ∇ ps . (2.3)

Now if ∇ · u �= 0, the second term on the right need not vanish. In view of the commutator relation
(1.9), one might expect ‖∇ ps‖L2 to be dominated by ‖∇u‖L2 . This, however, is known to be false,
and control of the Stokes pressure ps requires more than one derivative on u. Consequently, if ∇ · u
�= 0, then the second term on the right of (2.3) can dominate the first, and destroy positivity of A.
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Since our primary interest in the extended Stokes operator is to study (1.1)–(1.4), and the
divergence of solutions to (1.1)–(1.4) is well controlled, one may hope to rectify non-positivity of A
by a coercivity estimate of the form

〈u, Au〉 � ε‖∇u‖2
L2 − C‖∇ · u‖2

L2 . (2.4)

But again, this turns out to be false.

Proposition 2.1 (Failure of Coercivity): Let � ⊂ R2 be a bounded, simply connected C3 domain.
For any ε, C ≥ 0, there exists a function u ∈ C2(�̄) such that

u = 0 on ∂�, and 〈u, Au〉 � ε‖∇u‖2
L2 − C‖∇ · u‖2

L2 . (2.5)

The key idea in the proof is to identify the harmonic conjugate of the Stokes pressure as the
harmonic extension of the vorticity. Since this is independent of our main focus, we present the proof
of Proposition 2.1 in the Appendix, towards the end of this paper. We remark, however, that if u ∈
H2 ∩ H, where

H
def= {v ∈ L2(�)|v = Pv} = {v ∈ L2(�)|∇ · v = 0 in �, and v · ν = 0 on ∂�},

then the second equality in (2.1) shows that the extended Stokes operator A reduces to the standard
Stokes operator − P�. In the space H 2 ∩ H 1

0 ∩ H coercivity of the standard Stokes operator is
well known. Namely, (2.2) holds for all u ∈ H 2 ∩ H 1

0 ∩ H (see for, instance, [Chap. 4 of Ref. 3]).
Unfortunately, when we consider vector fields for which u �∈ H, Proposition 2.1 shows that coercivity
fails for the extended Stokes operator.

The key to global existence results for the nonlinear system (1.1)–(1.4) is to remedy the negative
results in Proposition 2.1 in a manner that interacts well with the nonlinear term. This can be done
by introducing a stabilizing higher order term, and a compensating gradient projection term, as we
now describe.

For any u ∈ H1(�) define Q(u), the primitive of the gradient projection, to be the unique mean
zero H1 function such that

∇Q(u) = (I − P)u.

Given constants ε, C > 0, we define a H1-equivalent inner product 〈〈 · , · 〉〉ε, C by

〈〈u, v〉〉ε,C = 〈u, v〉 + ε〈∇u,∇v〉 + C〈Q(u), Q(v)〉, (2.6)

where 〈 · , · 〉 denotes the standard inner product on L2(�). Our main result shows that for all ε

sufficiently small, we can find C large enough to ensure coercivity of A under the inner product
〈〈 · , · 〉〉ε, C.

Proposition 2.2 (H1-equivalent coercivity). Let � ⊂ Rd be a C3 domain. There exists positive
constants ε0 = ε0(�) and c = c(�) such that for any ε ∈ (0, ε0), there exists a constant Cε = Cε(�)
> 0, such that for the inner product 〈 · , · 〉ε defined by

〈·, ·〉ε def= 〈〈·, ·〉〉ε,Cε
,

we have

〈u, Au〉ε � 1

c

(‖∇u‖2
L2 + ε‖�u‖2

L2 + Cε‖∇q‖2
L2

)
(2.7)

for all u ∈ H 2 ∩ H 1
0 . Consequently, there exists a constant C ′

ε = C ′
ε(ε,�) such that

〈u, Au〉ε � 1

c
〈u, u〉ε, and 〈u, Au〉ε � 1

C ′
ε

〈∇u,∇u〉ε, (2.8)

for all u ∈ H 2 ∩ H 1
0 .

We prove this proposition in Sec. III. The main ingredient in the proof is an estimate for the
Laplace-Leray commutator (1.9) that is proved in Ref. 10 and stated in Theorem 3.1 below. A couple
of further consequences of this Theorem are worth mentioning here. First, A is invertible on L2 with
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compact resolvent (Lemma 3.3). And, due to Theorem 3.1 and the self-adjointness of the Laplacian,
an elementary result about sectorial operators [Theorem 1.3.2 of Ref. 7] directly implies that A is a
sectorial operator on L2 with domain D(A) = D(−�) = H 2 ∩ H 1

0 .
The result of Proposition 2.2 raises the question of whether coercivity of A can be obtained in a

space with less regularity than H1 by using an equivalent inner product. In this regard, we have two
remarks. First, in Proposition 3.5, we will describe an inner product 〈·, ·〉′ε for which A is coercive
that is equivalent to the usual inner product on the space

Hdiv = {
v ∈ L2(�) | ∇ · v ∈ L2(�) and v · ν = 0 on ∂�

}
.

Second, we expect that a bilinear form defined by

〈u, v〉′′ε def= 〈A−1/2u, A−1/2v〉ε (2.9)

determines an L2-equivalent inner product under which A is coercive. Coercivity for u ∈ D(A) would
follow from Proposition 2.2, and L2 continuity by well-known interpolation estimates. However, an
L2-coercivity bound 〈u, u〉′′ε � c‖u‖2

L2 appears not to be easy to prove — it may involve proving
A has bounded imaginary powers (see Ref. 1) in order to establish the expected characterization
D(A1/2) = H 1

0 .
In any case, unfortunately the inner products 〈·, ·〉′ε and 〈·, ·〉′′ε do not seem to interact well

with the nonlinearity in (1.1). Thus, for questions of global existence and stability for the nonlinear
extended Navier-Stokes equations and their discretizations, it is more convenient to use the inner
product in Proposition 2.2. The rest of the paper can be read independently of Proposition 3.5 or its
proof.

B. Energy decay for the extended Stokes equations

A first step to global existence results for (1.1)–(1.4) is the study of long time behaviour for the
underlying linear equations. These are the extended Stokes equations⎧⎪⎨

⎪⎩
∂t u − �u + ∇ ps(u) = 0 in �,

u(x, t) = 0 for x ∈ ∂�, t > 0,

u(x, 0) = u0(x) for x ∈ �.

(2.10)

A direct consequence of Proposition 2.1 is that the energy of solutions to (2.10) can increase, at least
initially.

Corollary 2.3: There exists u0 ∈ C2(�) with u0 = 0 on ∂�, and t0 > 0 such that the solution u
to (2.10) with initial data u0 satisfies

‖u(t0)‖L2 > ‖u0‖L2 .

The proof of Corollary 2.3 can be found at the end of the Appendix, following the proof of
Proposition 2.2.

In contrast to the extended Stokes equations, solutions to the standard Stokes equations (with
initial data in H) always have monotonically decaying L2 norm. This follows because if u(t) ∈ H,
then multiplication by u and integration by parts produces the standard energy inequality

1

2
∂t‖u(t)‖2

L2 + ‖∇u‖2
L2 = 0. (2.11)

The Poincaré inequality now yields strict exponential decay

‖u(t)‖2
L2 � e−ct‖u0‖2

L2 (2.12)

for all solutions to the standard Stokes equations with initial data in H.
Despite the counter-intuitive initial energy increase, the extended Stokes system is a well-posed,

non-degenerate parabolic system. This was proved in Refs. 5 and 10, and is a direct consequence
of Theorem 3.1. Indeed, since A is sectorial it generates an analytic semigroup e− At, showing well-
posedness of the initial boundary-value problem (2.10). Because no eigenvalue of A has non-positive
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real part by Proposition 2.2, one can quickly show that while the L2 energy of solutions to (2.10)
can increase initially, it must eventually decay exponentially. Explicitly, this means that solutions to
(2.10) must satisfy

‖u(t)‖2
L2 � Ce−ct‖u0‖2

L2 (2.13)

for some constants C, c > 0.
To digress briefly, we remark that with a little work, one can explicitly characterize the spectrum

of A. Indeed, if AS denotes the (standard) Stokes operator with no-slip boundary conditions, and �N

denotes the Laplace operator with homogeneous Neumann boundary conditions, then

σ (A) = σ (AS) ∪ σ (−�N ) − {0}.
Seeing σ (A) is contained in the right hand side above is immediate. The reverse inclusion requires
a little work, and was communicated to us by Kelliher.11

Unfortunately, an abstract spectral-theoretic proof of (2.13) is not of direct help for studying the
stability of time-discrete schemes, which was a primary motivation for introducing these equations.
Further, (2.13) does not recover (2.11) for solutions with initial data in H. For this reason, we search
for a direct energy-method proof of (2.13), and for an idea which also allows the study of time
discrete schemes.

Observe first that if we multiply (2.10) by u, integrate, use the commutator estimate (3.1)
and Gronwall’s lemma, we obtain exponential growth, not decay, of ‖u‖2

L2 . If we involve a higher
derivative, coercivity of A in Proposition 2.2 (or Proposition 3.5) and Gronwall’s lemma guarantee
eventual exponential decay of ‖u‖H 1 (or ‖u‖Hdiv ). However, for (2.10), we can obtain a more
satisfactory decay estimate by considering non-quadratic form energies.

Proposition 2.4. Let u be a solution to (2.10) with u0 ∈ H1(�). Then for any ε > 0, there exists
constants c1 = c1(�) and c2 = c2(�, ε), such that c1, c2 > 0 and

∂tEc1,c2 (u) + E ′
ε(u) � 0, (2.14)

where Ec1,c2 and E ′
ε are defined by

Ec1,c2 (u)
def= ‖u‖2

L2 + c1‖∇u‖L2‖∇Q(u)‖L2 + c2‖∇Q(u)‖2
L2 , (2.15)

E ′
ε(u)

def= (2 − ε)‖∇u‖2
L2 + ‖�u‖L2‖∇Q(u)‖L2 + ‖�Q(u)‖2

L2 . (2.16)

The proof of Proposition 2.4 is in Sec. IV. While (2.14) does not imply eventual exponential
decay controlled only by the L2 norm as in (2.13), it does provide an estimate that reduces to the
energy inequality for extended Stokes equations (2.11) when the initial data is in H. To see this,
note that if u0 ∈ H, then (I − P)u(t) = 0 for all t > 0 because ∇ · u satisfies the heat equation (1.6).
Consequently Q(u) ≡ 0, and Eq. (2.14) reduces to

∂t‖u‖2
L2 + (2 − ε)‖∇u‖2

L2 � 0.

Thus, in the limit ε → 0, we naturally recover the energy decay for the Stokes equation (2.11) for
initial data in H.

We also notice that the “energy” Ec1,c2 of solutions must in fact decrease exponentially. This
is because

∫
�

∇u = 0 = ∫
�

Q(u), and so the Poincaré inequality can be applied to both the terms
‖∇u‖L2 and ‖Q(u)‖L2 . Thus, Eq. (2.14) immediately implies

Ec1,c2 (u(t)) � e−ctEc1,c2 (u0),

for some small constant c = c(c1, c2, ε, �). Unfortunately, however, for the extended Navier-Stokes
equations, the “energy” Ec1,c2 does not interact well with the nonlinearity.
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C. Uniform stability for a time-discrete scheme

Before moving on to the non-linear system (1.1)–(1.4), we study stability of a time-discrete
scheme for (2.10), of the type treated in Ref. 10. One main motivation for studying the system
(1.1)–(1.4), or the linear system (2.10), is that this kind of time-discrete scheme is naturally implicit
only in the viscosity term, and explicit in the pressure. We will show that the ideas used in the proof
of Proposition 2.2 give globally uniform stability estimates for such time-discrete schemes.

Given an approximation un to the velocity at time n δt, we determine ∇pn from the weak-form
Poisson equation

〈∇ pn,∇ϕ〉 = 〈�un − ∇∇ · un + f n,∇ϕ〉 ∀ϕ ∈ H 1(�). (2.17)

Now, we determine un + 1 by solving the elliptic boundary value problem⎧⎨
⎩

un+1 − un

δt
− �un+1 + ∇ pn = f n in �,

un+1 = 0 on ∂�,

(2.18)

where f n = 1
δt

∫ (n+1)δt
nδt f (s) ds is a time-discretized forcing term.

Proposition 2.5: Let � be a bounded domain in Rd , d = 2, 3, with C3 boundary. Then there
exist positive constants κ0, ε, Cε, C, C′, depending only on �, such that whenever 0 < δt < κ0, then
for all N > 0 we have

‖uN ‖2
L2 + ε‖∇uN ‖2

L2 + Cε‖∇q N ‖2
L2

+ 1

C

N−1∑
k=0

(‖∇uk‖2
L2 + ε‖�uk‖2

L2 + Cε‖�qk+1‖2
L2

)
δt

� ‖u0‖2
L2 + ε‖∇u0‖2

L2 + Cε‖∇q0‖2
L2

+C δt

(
‖∇u0‖2

L2 + ε‖�u0‖2
L2 +

N−1∑
k=0

‖ f k‖2
L2

)
(2.19)

and

‖uN ‖2
L2 + ε‖∇uN ‖2

L2 + Cε‖∇q N ‖2
L2

� (1 − Cδt)N
(‖u0‖2

L2 + ε‖∇u0‖2
L2 + Cε‖∇q0‖2

L2

)
+C ′

N−1∑
k=0

‖ fk‖2
L2 (1 − Cδt)N−1−kδt. (2.20)

The proof of this proposition is in Sec. V.

D. Global existence results for the extended Navier-Stokes equations

When one seeks an L2 energy estimate for (1.1)–(1.4), multiplying (1.1) by u, the nonlinearity
produces the term ∫

�

u · (u · ∇)u = −1

2

∫
�

(∇ · u)|u|2. (2.21)

In general this is non-zero, but is morally harmless since ∇ · u is a solution of (1.6) and is well
controlled. This is indeed the case in two dimensions, but under periodic boundary conditions
(see Proposition 2.9, and the remark following it). The key ingredient for proving global existence
for periodic boundary conditions is the coercivity (2.2) of the linear terms. Consequently, despite
the extra nonlinear term arising from (2.21), the L2 energy balance closes and the well-known



115605-8 Iyer, Pego, and Zarnescu J. Math. Phys. 53, 115605 (2012)

existence results for the standard incompressible Navier-Stokes equations continue to hold with
minor modifications.

The situation is more complicated under no-slip boundary conditions, however, since now
coercivity (2.2) fails. To get any mileage from the linear terms, we need to use an inner-product
under which the linear terms are coercive. Using the inner product in Proposition 2.2, and a “brutal”
estimate on the nonlinearity, we can obtain a two- or three-dimensional small-data global existence
result.

Theorem 2.6 (Small data global existence): Let d = 2 or 3, � ⊂ Rd be a bounded domain with
C3 boundary. There exists a small constant V0 = V0(�) > 0 such that if u0 ∈ H 1

0 (�) with

‖u0‖H 1 < V0,

then there exists a global strong solution to (1.1)–(1.4) with

u ∈ L2(0, T ; H 2(�) ∩ H 1
0 (�)) ∩ H 1(0, T ; L2(�)), (2.22)

for any T > 0. Consequently, u ∈ C([0,∞); H 1
0 ) and ∇ · u ∈ C∞((0, ∞) × �).

The proof of this theorem is in Sec. VI. Two-dimensional global existence, however, poses a
different problem. A key ingredient in 2D global existence for the standard incompressible Navier-
Stokes equations is the L2 energy balance: the nonlinearity cancels, and does not contribute! Unfortu-
nately, for (1.1)–(1.4), the L2-energy balance does not close because of the higher order contribution
from the Stokes pressure gradient.

In the absence of an L2 energy inequality, we are only able to prove a perturbative result. If
the initial data are divergence free, then (1.1)–(1.4) reduces to the standard incompressible Navier-
Stokes equations, for which 2D global existence is well known. Thus, for initial data with small
divergence, we can prove 2D global existence for (1.1)–(1.4).

Theorem 2.7 (Small divergence global existence in 2D): Let � ⊂ R2 be a bounded C3 domain,
v0 ∈ H 1

0 (�) with ∇ · v0 = 0 be arbitrary. There exists a small constant U0 = U0(�, ‖v0‖H 1
0 (�)) > 0

such that if

u0 ∈ H 1
0 (�), P0u0 = v0 and ‖∇ · u0‖L2(�) < U0, (2.23)

then there exists a global strong solution to (1.1)–(1.4) with initial data u0 such that (2.22) holds for
all T > 0.

The operator P0 above is the H 1
0 -orthogonal projection of H 1

0 (�) onto the subspace of divergence
free vector fields, and is described in Sec. VII along with the proof of Theorem 2.7. One strategy to
avoid the small divergence assumption is to further damp the divergence. Namely, for arbitrary initial
data (in 2D), if we add a strong enough divergence-damping term to (1.1)–(1.2), we can guarantee
global existence.

Corollary 2.8 (Divergence-damped global existence in 2D): Let � ⊂ R2 be a C3, bounded
domain and u0 ∈ H 1

0 (�) be arbitrary. There exists a constant α0 = α0(�, ‖∇ · u0‖L2(�)) > 0 such
that if α ≥ α0, then the system⎧⎪⎨

⎪⎩
∂t u + P((u · ∇)u) + Au + α(I − P)u = 0 in �,

u(x, t) = 0 for x ∈ ∂�, t > 0,

u(x, 0) = u0(x),

(2.24)

has a global strong solution u such that (2.22) holds for all T > 0.

The main idea in proving Corollary 2.8 is to verify that the divergence-damped extended Stokes
operator Bα defined by

Bα
def= A + α(I − P) (2.25)
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is coercive, with coercivity constant independent of α. Consequently, the proofs of Theorems 2.6
and 2.7 work verbatim for the system (2.24), with constants independent of α. Combining these
existence theorems, and using the added divergence damping gives Corollary 2.8, a better existence
result as an easy corollary. We devote Sec. VIII to the coercivity of Bα (Proposition 8.1), and the
proof of Corollary 2.8.

So far, our two-dimensional global existence results under no-slip boundary conditions required
either a small initial divergence assumption, or an additional strong divergence damping term. Such
requirements are not needed under periodic boundary conditions, primarily because of (2.2). We
observe, then, that the identity (2.2) will still hold in domains with boundary, provided we consider
functions u with boundary conditions

Pu · τ = 0 on ∂� and u · ν = 0 on ∂�, (2.26)

where ν and τ are the unit normal and tangential vectors, respectively. These boundary conditions
(2.26) reduce to the usual no-slip conditions in the physically relevant situation where u = Pu.

Armed with (2.2), we obtain a 2D global existence result without a smallness assumption, or
any additional divergence damping.

Proposition 2.9. Let � ⊂ R2 be locally Lipschitz and bounded, and let u0 ∈ H1(�). There exists
a time-global strong solution to (1.1)–(1.2) with initial data u0 and boundary conditions (2.26).

We prove the identity (2.2) and Proposition 2.9 in Sec. IX. The proof of Proposition 2.9 em-
phasizes another (analytical) advantage of the boundary conditions (2.26). Under all the boundary
conditions, we consider (no-slip, periodic, and (2.26)) the evolution equation for the gradient projec-
tion is always linear, self-contained, and decays at an explicitly known rate. The evolution equation
for the Leray projection (Eq. (9.2)), is coupled to the gradient projection; however, the coupling
terms are harmless. What causes trouble under the no-slip boundary conditions is that the evolution
of the Leray projection is also coupled to the gradient projection through boundary conditions!
This proves problematic in the case of 2D global existence. On the other hand, periodic boundary
conditions, or the boundary conditions (2.26) provide an explicit de-coupled boundary condition for
the Leray projection, which simplifies the analysis greatly. Unfortunately, the price paid is that the
boundary conditions (2.26) are much harder to implement numerically.

III. COERCIVITY OF THE EXTENDED STOKES OPERATOR.

As mentioned earlier, the extended Stokes operator is not coercive under the standard L2 inner
product. However, it is coercive under a non-standard, but H1-equivalent, inner product. This is
the main tool we use in studying the extended Navier-Stokes. The aim of this section is to prove
Proposition 2.2 (coercivity under the adjusted H1 inner product). The main ingredient in the proof
is the following estimate on the Laplace-Leray commutator.

Theorem 3.1 (Liu, Liu, and Pego10). Let � be a connected, bounded domain with C3 boundary.
For any δ > 0, there exists Cδ ≥ 0 such that

‖∇ ps(u)‖2
L2 �

(
1

2
+ δ

)
‖�u‖2

L2 + Cδ‖∇u‖2
L2 (3.1)

for all u ∈ H 2 ∩ H 1
0 (�).

We refer the reader to Ref. 10 for the proof of Theorem 3.1.
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A. H1 equivalent coercivity on D(A2)

The idea behind the proof of Proposition 2.2 is to use Theorem 3.1 and prove coercivity assuming
the “extra” boundary condition Au ∈ H 1

0 . We will later use an approximation argument to prove the
proposition for all H 2 ∩ H 1

0 functions.

Lemma 3.2: For any ε > 0 sufficiently small, there exists a constant c = c(�), independent of ε,
and a constant Cε = Cε(�) > 0, depending on ε and �, such that (2.7) holds for all u ∈ H 2 ∩ H 1

0 ,
such that Au ∈ H 1

0 .

Proof. Observe first that there exists a constant C = C(�) such that for all u ∈ H 2 ∩ H 1
0 , we

have

‖∇ ps(u)‖L2 � C‖�u‖L2 . (3.2)

While this immediately follows from Theorem 3.1 and the Poincaré inequality, we can see it directly
from (1.7) because, due to elliptic regularity,

‖∇ ps(u)‖2
L2 � C

(‖�u‖2
L2 + ‖∇∇ · u‖2

L2

)
� C‖�u‖2

L2 . (3.3)

Now let u ∈ H 2 ∩ H 1
0 be such that Au ∈ H 1

0 , and q = Q(u) be the unique mean zero function
such that ∇q = (I − P)u. Then,

〈u, Au〉 = 〈u,−�u〉 + 〈u,∇ ps〉 = ‖∇u‖2
L2 + 〈∇q,∇ ps〉

� ‖∇u‖2
L2 − ‖∇q‖L2‖∇ ps‖L2 � ‖∇u‖2

L2 − C‖∇q‖L2‖�u‖L2

� ‖∇u‖2
L2 − ε

16
‖�u‖2

L2 − Cε‖∇q‖2
L2 , (3.4)

where the second last inequality followed from (3.2), and Cε is some constant depending only on �

and ε.
Since Au = 0 on ∂� by assumption, we can integrate the H1-term by parts. This gives

〈∇u,∇ Au〉 = −〈�u,−�u + ∇ ps〉 � 1

8
‖�u‖2

L2 − C1‖∇u‖2, (3.5)

where C1 is the constant that arises from Theorem 3.1.
Thus, if ε < 1

2C1
, Eqs. (3.4) and (3.5) give

〈u, Au〉 + ε〈∇u,∇ Au〉 � 1

2
‖∇u‖2

L2 + ε

16
‖�u‖2

L2 − Cε‖∇q‖2
L2 . (3.6)

Now let r be the unique mean zero function such that ∇r = (I − P)Au. Observe that

(I − P)Au = (I − P)(−P�u − ∇∇ · u) = −∇∇ · u.

Since
∫
�

∇ · u = 0, we must have r = − ∇ · u = − �q. Thus,

〈q, r〉 = 〈q,−�q〉 = ‖∇q‖2
L2 .

Combining this with (3.6), we get (2.7) as desired. �

B. Properties of the extended Stokes operator

Consider the extended Stokes operator A as an operator from L2(�) into L2(�) with domain
D(A) = H 2 ∩ H 1

0 . In this context, we recall that Proposition 2.2 asserts (2.7) for all u ∈ D(A);
however, Lemma 3.2 only proves (2.7) for all u ∈ D(A2). To address this gap, and finish the proof of
Proposition 2.2, we need a few basic properties of the extended Stokes operator.
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Lemma 3.3 (Regularity and invertibility): The extended Stokes operator A has a compact inverse.
Furthermore, there exists a constant c = c(�) > 0 such that

1

c
‖u‖H 2 � ‖Au‖L2 � c‖u‖H 2 , for all u ∈ H 2 ∩ H 1

0 . (3.7)

Proof. Our first step is to obtain estimates for the operator A + λI with λ large enough. For an
arbitrary u ∈ H 2 ∩ H 1

0 , let f = (A + λI)u. Multiplying by − �u and integrating gives

λ‖∇u‖2
L2 + ‖�u‖2

L2 =
∫

�

∇ ps · �u dx −
∫

�

f �u dx

� 1

2
‖�u‖2

L2 + 1

2
‖∇ ps‖2

L2 + 1

16
‖�u‖2

L2 + 4‖ f ‖2
L2

�
(

1

2
+ 3

8
+ 1

16

)
‖�u‖2

L2 + c‖∇u‖2
L2 + 4‖ f ‖2

L2 ,

where the last inequality followed from Theorem 3.1, and c = c(�) is a constant. This gives

(λ − c)‖∇u‖2
L2 + 1

16
‖�u‖2

L2 � 4‖ f ‖2
L2 .

Thus, when λ > c, we immediately see

‖u‖H 2 � C‖ f ‖L2 = C‖(A + λI ) u‖L2 , when u ∈ H 2 ∩ H 1
0 . (3.8)

One can use the last relation to check that A is closed. We claim further that A + λI is surjective
for some large enough λ. This can be proved by a Neumann-series perturbation argument based on
the identity

A + λI = (I + B)(λI − �), (3.9)

where B = ∇ps ◦ (λI − �)− 1. That is,

Bu = ∇ ps(v), v = (λI − �)−1u.

It suffices to prove that the operator norm of B on L2 is strictly less than one, if λ is positive and
large enough. By easy energy estimates, we have that λ‖v‖L2 ≤ ‖u‖L2 and ‖�v‖L2 ≤ ‖u‖L2 . Then
due to Theorem 3.1 and interpolation, we have

‖Bu‖2
L2 =

∫
�

|∇ ps(v)|2 � β‖�v‖2
L2 + Cβ‖v‖2

L2 ≤ (
β + Cβλ−2

) ‖u‖2
L2 ,

and the coefficient on the right is less than 1 for λ large enough. Thus, I + B is an isomorphism on
L2, hence A + λI is surjective.

Further, the Rellich-Kondrachov compact embedding theorem and the bound (3.8) imply that
A + λI has compact inverse. Since we have shown that the resolvent of A contains at least one
element with a compact inverse, the spectrum of A consists only of (isolated) eigenvalues, of finite
multiplicity (see, for instance, [Theorem III.6.29 of Ref. 8]. Thus, to prove invertibility of A, it
suffices to show that 0 is not an eigenvalue of A.

To see this, suppose u ∈ D(A) is such that Au = 0. Then − P�u = ∇∇ · u ∈ L2(�). Since the
range of the Leray projection (by definition) is orthogonal to gradients, we must have ∇∇ · u = P�u
= 0, and hence ∇ · u must be constant. Since

∫
�

∇ · u = ∫
∂�

u · ν = 0, this forces ∇ · u = 0. Thus,
u = Pu, and is orthogonal to gradients. Since Au = 0, we have

0 =
∫

�

u · Au dx = −
∫

�

u · �u dx +
∫

�

Pu · ∇ ps(u) dx = ‖∇u‖2
L2 + 0,

forcing u = 0. Hence, 0 is not an eigenvalue of A, and we conclude that A is invertible.
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It remains to establish (3.7). The upper bound follows immediately from (2.1) and (3.2). To
prove the lower bound, observe first that boundedness of A− 1 implies

‖A−1u‖L2 � C‖u‖L2 , (3.10)

for some constant C = C(�), which we subsequently allow to change from line to line. Thus, using
the operator identity

A−1 = (A + λI )−1 (
I + λA−1)

and the inequalities (3.8), (3.10), we see

‖A−1u‖H 2 = ‖(A + λI )−1
(
I + λA−1

)
u ‖H 2

� C‖(I + λA−1
)

u‖L2 � C(1 + Cλ)‖u‖L2

proving the lower bound in (3.7). �
Lemma 3.4: For the extended Stokes operator, D(A2) is dense in D(A).

Proof: Let u ∈ D(A), and v = Au. Since v ∈ L2(�), we can find vn ∈ H 2 ∩ H 1
0 such that

(vn) → v in L2. Since D(A) = H 2 ∩ H 1
0 by letting un

def= A−1vn , we have un ∈ D(A2). Finally, by
Lemma 3.3 we see

‖un − u‖H 2 � c‖Aun − Au‖L2 = c‖vn − v‖L2 → 0,

concluding the proof. �
C. H1-equivalent coercivity on D(A)

Lemmas 3.2 and 3.4 quickly imply Proposition 2.2.

Proof of Proposition 2.2: Let u ∈ D(A). By Lemma 3.4, there exists a sequence un ∈ D(A2) such
that (un) → u in H2. By Lemma 3.2, there exist constants c(�), Cε(�) > 0 such that

〈un, Aun〉ε � 1

c

(‖∇un‖2
L2 + ε‖�un‖2

L2 + Cε‖∇qn‖2
L2

)
,

where qn is the unique, mean-zero function such that ∇qn = (I − P)un. Since (un) → u in H2, taking
limits as n → ∞ yields (2.7). Now using the Poincaré inequality, (2.8) follows. �
D. Hdiv equivalent coercivity

We conclude this section by proving coercivity under an Hdiv-equivalent inner product. The rest
of this paper is independent of this result and its proof.

Proposition 3.5 (Hdiv-coercivity): Let � ⊂ R3 be a C3 domain. There exist positive constants
ε0 > 0 and c = c(�) such that for all ε ∈ (0, ε0), there exists a constant Cε = Cε(�) > 0 such that
the following hold.

(1) Let 〈·, ·〉′ε be defined by

〈u, v〉′ε def= 〈u, v〉 + ε〈∇ · u, ∇ · v〉 + Cε〈A−1u, A−1v〉ε −
−〈u,∇ ps(A−1v)〉 − 〈∇ ps(A−1u), v〉, (3.11)

where 〈u, v〉 is the standard inner product on L2(�), and 〈 · , · 〉ε denotes the inner product
from Proposition 2.2. Then

1

c
‖u‖L2 + ε‖∇ · u‖2

L2 � 〈u, u〉′ε � c(1 + Cε)‖u‖2
L2 + ε‖∇ · u‖2

L2 (3.12)

for any u ∈ L2(�) with ∇ · u ∈ L2(�) and u · ν = 0 on ∂�.
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(2) For any u ∈ H 2 ∩ H 1
0 with ∇ · u ∈ H1, we have

〈u, Au〉′ε � ‖∇u‖2
L2 + ε

2
‖∇∇ · u‖2

L2 (3.13)

and 〈u, Au〉′ε � 1

c
〈u, u〉′ε. (3.14)

Proof: We begin by proving (3.12) for all u ∈ D(A). Density of D(A) in L2 and a standard
approximation argument will now establish (3.12) for all u ∈ Hdiv. We will assume Cε and c are
constants that can change from line to line, provided their dependence on parameters is as required
in the proposition. Let u ∈ D(A), and v = A−1u. Then from (3.11) we have

〈u, u〉′ε = 〈Av, Av〉 − 2〈Av,∇ ps(v)〉 + ε‖∇ · u‖2
L2 + Cε〈v, v〉ε

= 〈−�v + ∇ ps(v),−�v − ∇ ps(v)〉 + ε‖∇ · u‖2
L2 + Cε〈v, v〉ε

= ‖�v‖2
L2 − ‖∇ ps(v)‖2

L2 + ε‖∇ · u‖2
L2 + Cε〈v, v〉ε

� 1

4
‖�v‖2

L2 − c‖v‖2
L2 + ε‖∇ · u‖2

L2 + Cε〈v, v〉ε, (3.15)

where the last inequality followed from Theorem 3.1 and interpolation. Now since Av = u, we
immediately see

‖u‖2
L2 = ‖−P�v − ∇∇ · v‖2

L2 � c‖�v‖2
L2 .

Finally, by definition of 〈v, v〉ε, we have 〈v, v〉ε � ‖v‖2
L2 . Thus, if Cε > c, the lower bound in

Eq. (3.12) will hold for all ε > 0.
For the upper bound in (3.12), observe that by definition of ∇ps, and Lemma 3.3 we have

‖∇ ps(A−1u)‖L2 � c‖A−1u‖H 2 � c‖u‖L2 .

Combined with the estimate ‖A−1u‖L2 � c‖u‖L2 , which is also a consequence of Lemma 3.3, we
immediately obtain the upper bound in (3.12).

Finally, it remains to prove the inequality (3.13). We will prove (3.13) for u ∈ D(A2); since
D(A2) is dense in D(A), the same approximation argument from the proof of Proposition 2.2 will
show that (3.13) holds on D(A). In keeping with the above notation, we again set v = A−1u. This
gives

〈u, Au〉′ε = 〈u, Au〉 − 〈u,∇ ps(u)〉 − 〈∇ ps(v), Au〉 + ε〈∇ · u,∇ · Au〉 + Cε〈v, Av〉ε.
We deal with the terms on the right individually. Combining the first two terms, the dangerous term
involving the Stokes pressure cancels. This gives

〈u, Au〉 − 〈u,∇ ps(u)〉 = 〈u,−�u〉 = ‖∇u‖2
L2 .

For the third term,

−〈∇ ps(v), Au〉 = −〈∇ ps(v), (I − P)Au〉 = 〈∇ ps(v),∇∇ · u〉.
For the fourth term, observe that if u ∈ D(A2), then Au = 0 on ∂�. Thus, integrating by parts gives

〈∇ · u,∇ · Au〉 = −〈∇∇ · u, Au〉 = ‖∇∇ · u‖2
L2 .

Combining these identities, we have

〈u, Au〉′ε = ‖∇u‖2
L2 + 〈∇ ps(v),∇∇ · u〉 + ε‖∇∇ · u‖2

L2 + Cε〈v, Av〉ε

� ‖∇u‖2
L2 + ε

2
‖∇∇ · u‖2

L2 − 1

2ε
‖∇ ps(v)‖2

L2 + Cε〈v, Av〉ε

� ‖∇u‖2
L2 + ε

2
‖∇∇ · u‖2

L2 − c

ε
‖�v‖2

L2 + Cε〈v, Av〉ε

� ‖∇u‖2
L2 + ε

2
‖∇∇ · u‖2

L2 +
(

εCε

2c1
− c

ε

)
‖�v‖2

L2 + Cε

2
〈v, Av〉ε,
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where the last inequality followed from Proposition 2.2, and c1 is the constant in (2.7). We note
that Proposition 2.2 guarantees that c1 is independent of ε. Now we choose Cε large enough so that
εCε

2c1
− c

ε
> 1, giving

〈u, Au〉′ε � ‖∇u‖2
L2 + ε

2
‖∇∇ · u‖2

L2 + ‖�v‖2
L2 + Cε

2
〈v, Av〉ε, (3.16)

from which inequality (3.13) follows.
Finally for (3.14), observe that from (3.15) we have

〈u, u〉′ε = ‖�v‖2
L2 − ‖∇ ps(v)‖2

L2 + ε‖∇ · u‖2
L2 + Cε〈v, v〉ε

� c2‖�v‖2
L2 + ε‖∇ · u‖2

L2 + Cε〈v, v〉ε,
for some constant c2 = c2(�). Now using Proposition 2.2 and (3.16), the inequality (3.14)
follows. �
IV. DECAY OF A NON-QUADRATIC FORM ENERGY.

This section comprises the proof of Proposition 2.4, addressing the long time behaviour of
solutions to the extended Stokes equations (2.10). The result and proof are independent of the rest
of this paper.

Proof of Proposition 2.4: In this proof, we use C to denote an intermediate constant that depends
only on � whose value can change from line to line. We use C1, C2, . . . to denote fixed positive
constants that depend only on �, whose values do not change from line to line.

As usual, let q = Q(u) be the unique mean zero function such that ∇q = (I − P)u. We begin
by establishing the energy inequalities

∂t‖u‖2
L2 + 2‖∇u‖2

L2 � C1‖∇q‖L2‖�u‖L2 , (4.1)

∂t‖∇u‖2
L2 + 1

4
‖�u‖2

L2 � C‖∇u‖2
L2 , (4.2)

∂t‖∇q‖2
L2 + 2‖∇ · u‖2

L2 � 0. (4.3)

Before proving the above inequalities, we remark that the L2 balance (4.1) does not close by itself.
On the other hand, the H1 balance (4.2) closes, but does not give decay. A combination of the norms,
however, gives us the desired exponential decay.

For the proof of (4.1), multiply (2.10) by u and integrate over � to obtain

1

2
∂t‖u‖2

L2 + ‖∇u‖2
L2 = −

∫
�

u · ∇ ps = −
∫

�

∇q · ∇ ps � C1‖∇q‖L2‖�u‖L2 ,

where we used (3.3). This establishes (4.1).
Turning to (4.2), we multiply (2.10) by − �u and integrate over � to obtain

1

2
∂t‖∇u‖2

L2 + ‖�u‖2
L2 =

∫
�

∇ ps · �u. (4.4)

Using Theorem 3.1, we know that for any δ > 0 there exists a constant Cδ = Cδ(�) such that

‖∇ ps‖2
L2 �

(
1 + δ

2

)
‖�u‖2

L2 + Cδ‖∇u‖2
L2 .

Hence, ∣∣∣∣
∫

�

∇ ps · �u

∣∣∣∣ � 1

2
‖∇ ps‖2

L2 + 1

2
‖�u‖2

L2 �
(

3 + δ

4

)
‖�u‖2

L2 + 1

2
Cδ‖∇u‖2

L2 . (4.5)

Choosing δ = 1
2 , Eq. (4.4) reduces to (4.2) as desired.
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Finally for (4.3), we apply (I − P) to (2.10) to get

∂t∇q + (I − P)(−�u + ∇ ps(u)) = 0.

Since ∇ · u = �q and

(I − P)(−�u + ∇ ps(u)) = (I − P)(P�u − ∇∇ · u) = ∇∇ · u = ∇�q,

we see

∂t∇q − �∇q = 0,

and hence ∂ tq − �q = C(t), where C is constant in space. Now, since u = 0 on ∂�, we must have
∂q
∂ν

= 0 on ∂�. This means
∫
�

�q = 0; since
∫
�

q = 0 by our choice of q, we must have C(t) = 0.
Thus, we obtain

∂t q − �q = 0 in �, with
∂

∂ν
q = 0 for x ∈ ∂�. (4.6)

Multiplying by − �q and integrating over � gives (4.3) as desired.
Now we combine (4.1)–(4.3) to obtain the desired exponential decay. First from (4.2), (4.3) and

the Poincaré inequality, we have

∂t‖∇q‖L2 + 1

C2
‖∇q‖L2 � 0,

∂t‖∇u‖L2 + 1

C2
‖�u‖L2 � C3‖∇u‖L2 .

Thus,

∂t (‖∇u‖L2‖∇q‖L2 ) + 1

C2
‖�u‖L2‖∇q‖L2 � C4‖∇u‖L2‖∇q‖L2 ,

where C4 = C3 − 1
C2

. Using this in (4.1), we see

∂t
(‖u‖2

L2 + C2(C1 + 1)‖∇u‖L2‖∇q‖L2

)
+2‖∇u‖2

L2 + ‖�u‖L2‖∇q‖L2 � C5‖∇u‖L2‖∇q‖L2 ,

where C5 = C2(C1 + 1)C4. Now letting c1 = C2(C1 + 1), and c2 = c2(�, ε) to be chosen later, we
see that

∂t
(‖u‖2

L2 + c1‖∇u‖L2‖∇q‖L2 + c2‖∇q‖2
L2

)
+2‖∇u‖2

L2 + ‖�u‖L2‖∇q‖L2 + 2c2‖∇ · u‖2
L2 � ε‖∇u‖2

L2 + C2
5

2λ1ε
‖∇ · u‖2

L2 ,

where λ1 is the best constant in the Poincaré inequality

λ1‖∇q‖2
L2 � ‖�q‖2

L2 = ‖∇ · u‖2
L2 .

Thus, choosing c2 = C2
5

4λ1ε
+ 1

2 , we obtain (2.14). �
V. GLOBAL STABILITY OF TIME DISCRETIZATION FOR THE EXTENDED
STOKES EQUATIONS

We devote this section to proving Proposition 2.5. The main idea again is similar: to introduce
a stabilizing, high order term in the definition of the energies.

Proof of Proposition 2.5. In the following, we use C1, C2, . . . to denote fixed positive constants
that depend only on �, whose values do not change from line to line and a generic constant C whose
value might change from one line to the next, depending only on �.
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Let pn
s be the Stokes pressure for un hence ∇ pn

s = (�P − P�)un and thus∫
�

∇ pn
s · ∇ϕ =

∫
�

(�un − ∇∇ · un) · ∇ϕ, ∀ϕ ∈ H 1(�).

Using (2.17) with ϕ = pn and combining it with the last relation, we obtain

‖∇ pn‖L2 � ‖∇ pn
s ‖L2 + ‖ f n‖L2 . (5.1)

We derive first the discrete H1 estimate just as in Ref. 10. Taking the L2 inner product of (2.18)
with − �un + 1 gives

1
2δt

(‖∇un+1‖2
L2 − ‖∇un‖2

L2 + ‖∇un+1 − ∇un‖2
L2

) + ‖�un+1‖2
L2

� ‖�un+1‖L2

(
2‖ f n‖L2 + ‖∇ pn

s ‖L2

)
� ε1

2
‖�un+1‖2

L2 + 2

ε1
‖ f n‖2

L2 + 1

2
(‖�un+1‖2

L2 + ‖∇ pn
s ‖2

L2 )

for all ε1 > 0. This implies

1

δt

(‖∇un+1‖2
L2 − ‖∇un‖2

L2

) + 1

δt
‖∇un+1 − ∇un‖2

L2

+(1 − ε1)‖�un+1‖2
L2 � 4

ε1
‖ f n‖2

L2 + ‖∇ pn
s ‖2

L2 . (5.2)

Fix any β ∈ ( 1
2 , 2

3 ). By Theorem 3.1, we have

‖∇ pn
s ‖2

L2 � 3

2
β‖�un‖2

L2 + 2Cβ

3
‖∇un‖2

L2 .

Using this in (5.2) and dividing by 2Cβ , we get

1

2Cβδt

(‖∇un+1‖2
L2 − ‖∇un‖2

L2 + ‖∇un+1 − ∇un‖2
L2

)
+ (1 − ε1)

2Cβ

(‖�un+1‖2
L2 − ‖�un‖2

L2

) + (2 − 2ε1 − 3β)

4Cβ

‖�un‖2
L2

� 2

ε1Cβ

‖ f n‖2
L2 + 1

3
‖∇un‖2

L2 , (5.3)

and we may assume that ε1 > 0 is small enough so that 1 − ε1 − 3
2β > 0.

We continue by obtaining the discrete L2 estimate. We dot Eq. (2.18) by un + 1 in L2 and obtain

1

2δt

(‖un+1‖2
L2 − ‖un‖2

L2 + ‖un+1 − un‖2
L2

)
+1

3
‖∇un+1‖2

L2 + 2

3

(‖∇un+1‖2
L2 − ‖∇un‖2

L2

) + 2

3
‖∇un‖2

L2

=
∫

�

( f n − ∇ pn) · un+1 =
∫

�

(P f n) · un+1 −
∫

�

∇ ps(un) · ∇qn+1

� ‖ f n‖L2‖un+1‖L2 + ‖∇ ps(un)‖L2‖∇qn+1‖L2

� λ0

3
‖un+1‖2

L2 + 2 − 2ε1 − 3β

8Cβ

‖�un‖2
L2 + C1(‖ f n‖2

L2 + ‖∇qn+1‖2
L2 ), (5.4)

where qn + 1 = Q(un + 1), and λ0 is the principal eigenvalue of the Laplacian on � with zero Dirichlet
boundary conditions.
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Since pn = pn
s + Q( f n), by applying I − P to (2.18) we find that qn satisfies the time-discrete

inhomogeneous heat equation

1

δt

(
qn+1 − qn

) − �qn+1 = pn+1
s − pn

s . (5.5)

Then we find after testing with − �qn + 1 that, as above (and as in p. 1477 of Ref. 10),

1

δt

(‖∇qn+1‖2
L2 − ‖∇qn‖2

L2

) + ‖�qn+1‖2
L2 � ‖pn+1

s − pn
s ‖2

L2 . (5.6)

Also, since pn satisfies a Neumann boundary value problem, we have the estimate

‖pn+1
s − pn

s ‖2
L2 � C‖un+1 − un‖

1
2

L2‖un+1 − un‖
3
2

H 2 . (5.7)

Now choose C2 large enough to ensure

C1‖∇qn+1‖2
L2 � C2

2
‖�qn+1‖2

L2 ,

and ε2 small enough so that 4ε2 < 1 − ε1 − β. Combining (5.6) and (5.7), we obtain

1

δt

(‖∇qn+1‖2
L2 − ‖∇qn‖2

L2

) + ‖�qn+1‖2
L2

� ε2

4CβC2
‖�un+1 − �un‖2

L2 + C3‖un+1 − un‖2
L2

� ε2

4CβC2
‖�un+1 − �un‖2

L2 + C4‖∇un+1 − ∇un‖2
L2 (5.8)

for large enough constants C3 and C4.
Assume that δt is small enough so that (2CβC2C4)δt < 1. Multiplying (5.8) by C2, and adding

it to (5.3) and (5.4) then gives

C2

δt

(‖∇qn+1‖2
L2 − ‖∇qn‖2

L2

) + C2

2
‖�qn+1‖2

L2 + 1

2δt

(‖un+1‖2
L2 − ‖un‖2

L2

)
+

(
1

2Cβδt
+ 2

3

) (‖∇un+1‖2
L2 − ‖∇un‖2

L2

) + 1

3
‖∇un‖2

L2

+1 − ε1

2Cβ

(‖�un+1‖2
L2 − ‖�un‖2

L2

) + 2 − 2ε1 − 3β

8Cβ

‖�un‖2
L2

� ε2

2Cβ

(‖�un+1‖2
L2 + ‖�un‖2

L2

) +
(

2

ε1Cβ

+ C1

)
‖ f n‖2

L2 . (5.9)

Now summing from n = 0 to N − 1 the last inequality gives (for small enough δt, and for a suitable
constant C > 0) the claimed inequality (2.19).

We rearrange (5.9) and obtain

1

δt

(‖∇qn+1‖2
L2 − (1 − Ĉδt)‖∇qn‖2

L2

)
+ 1

δt

(‖un+1‖2
L2 − (1 − Ĉδt)‖un‖2

L2

) + 1

δt

(‖∇un+1‖2
L2 − (1 − Ĉδt)‖∇un‖2

L2

)
+ (‖∇un+1‖2

L2 − (1 − Ĉδt)‖∇un‖2
L2

)
+(1 + δt)

(‖�un+1‖2
L2 − (1 − Ĉδt)‖�un‖2

L2

)
+ (‖�qn+1‖2

L2 − (1 − Ĉδt)‖�qn‖2
L2

) + (1 − Ĉδt)‖�qn‖2
L2 � C‖ f n‖2

L2 (5.10)

provided that δt is small enough, for suitable constants C and Ĉ . Defining
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an
def= 1

δt
‖∇qn‖2

L2 + 1

δt
‖un‖2

L2 + 1

δt
‖∇un‖2

L2

+‖∇un‖2
L2 + (1 + δt)‖�un‖2

L2 + ‖�qn‖2
L2 ,

(5.10) becomes

an+1 − (1 − Ĉδt)an � C‖ fn‖2
L2 . (5.11)

Solving this recurrence relation yields (2.20). �
VI. SMALL DATA GLOBAL EXISTENCE FOR THE EXTENDED
NAVIER-STOKES EQUATIONS

This section is devoted to the proof of a long time, small data existence result
(Theorem 2.6) for the system (1.1)–(1.4). As bounds for the linear terms have already been established
(Proposition 2.2), we begin with a bound on the nonlinear term. When obtaining energy estimates for
solutions to (1.1), the explicit, exponential decay of ∇ · u allows sharper estimates for many terms.
However, in order to exploit coercivity of the linear terms, we are forced to use a H1-equivalent
inner product. In this case, the “worst” term that arises from the nonlinearity is not aided by decay of
∇ · u, and must be estimated brutally. Consequently, estimating the remaining terms similarly does
not weaken the final result. Thus, we begin with a lemma that provides a “brutal” estimate on the
nonlinearity.

Lemma 6.1: Let f, g, h ∈ H 2 ∩ H 1
0 (�) with � ⊂ Rd , d = 2, 3 a bounded domain with C3

boundary. Then there exists a constant C = C(�) > 0 such that17

|〈P(( f · ∇)g), h〉ε| = C‖ f ‖H 1‖∇g‖
H

1
2
‖�h‖L2 .

Proof: Observe first that

〈P(( f · ∇)g), h〉ε = 〈P(( f · ∇)g), h〉 + ε〈∇ P(( f · ∇)g),∇h〉,
since (I − P)P((f · ∇)g) = 0. Thus, to prove the lemma, it suffices to show the estimates

|〈P(( f · ∇)g), h〉| � C‖ f ‖H 1‖∇g‖
H

1
2
‖h‖L2 , (6.1)

and

|〈∇ P(( f · ∇)g),∇h〉| � C‖ f ‖H 1‖∇g‖
H

1
2
‖�h‖L2 , (6.2)

for some constant C = C(�).
The inequality (6.1) follows directly from the Sobolev embedding theorem. Indeed, for any

three functions f1, f2, f3, we know18∣∣∣∣
∫

�

f1 f2 f3

∣∣∣∣ � C‖ f1‖H s1 ‖ f2‖H s2 ‖ f3‖H s3 , (6.3)

provided 0 ≤ si ≤ 3, s1 + s2 + s3 � d
2 and at least two of s1, . . . , s3 are non-zero (see, for instance,

the proof of Proposition 6.1 in Ref. 3). Choosing s1 = 1, s2 = 1/2, and s3 = 0, we have

|〈P(( f · ∇)g), h〉| = |〈( f · ∇)g, Ph〉| � C‖ f ‖H 1‖∇g‖
H

1
2
‖h‖L2 ,

proving (6.1).
For (6.2), we first integrate by parts and observe �P is a regular differential operator (identity

(1.10)). Now we can integrate by parts again to obtain the desired estimate. Explicitly,

〈∇ P(( f · ∇)g),∇h〉 = −〈�P(( f · ∇)g), h〉
= −〈(� − ∇∇·) (( f · ∇)g), h〉 = −〈( f · ∇)g, (� − ∇∇·) h〉,
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where all boundary integrals vanish because f, g, h ∈ H 1
0 . Now using (6.3) with s1 = 1, s2 = 1/2,

s3 = 0, and elliptic regularity we have

|〈∇ P(( f · ∇)g),∇h〉| = |〈( f · ∇)g, (� − ∇∇·) h〉| � C‖ f ‖H 1‖∇g‖
H

1
2
‖�h‖L2 .

This concludes the proof. �
We now return to the proof of Theorem 2.6.

Proof: We assume there exists a smooth solution u of (1.1)–(1.4) on the time interval [0, T] for
some T > 0. We will find appropriate a priori estimates for the norm of u (see relation (2.22), below)
in terms of the initial data and T. Now a standard approximating scheme (e.g., the one constructed
in Ref. 10) will prove global existence of solutions.

Fix ε > 0 to be small enough so that Proposition 2.2 holds, and 〈 · , · 〉ε denote the H1 equivalent
inner product from Proposition 2.2. Then

1

2
∂t‖u‖2

H 1
ε
+ 〈P((u · ∇)u), u〉ε + 〈u, Au〉ε = 0. (6.4)

where

‖v‖H 1
ε

def=
√

〈v, v〉ε.
By Lemma 6.1, for any c0 > 0, we can find a constant C = C(ε, c0, �) > 0 such that

|〈P((u · ∇)u), u〉ε| � ‖u‖H 1‖∇u‖H 1/2‖�u‖L2

� C‖∇u‖3/2
L2 ‖�u‖3/2

L2 � C‖∇u‖6
L2 + ε

8c0
‖�u‖2

L2 . (6.5)

We will subsequently fix c0 to be the constant c that appears on the right of (2.7).
Using Proposition 2.2 and Eqs. (6.4) and (6.5), we obtain

∂t‖u‖2
H 1

ε
+ 2

c0

(
‖∇u‖2

L2 + ε

2
‖�u‖2

L2 + Cε‖∇q(u)‖2
L2

)
� C‖∇u‖6

L2 ,

where Cε is the constant in (2.7). Allowing the constant C = C(ε, c0, �) to change from line to line,
and using the Poincaré inequality, we obtain

∂t‖u‖2
H 1

ε
+ 1

c0

(
‖∇u‖2

L2 + ε

2
‖�u‖2

L2 + Cε‖∇q(u)‖2
L2

)
� C‖u‖6

H 1
ε
− 1

c1
‖u‖2

H 1
ε
,

for some constant c1 = c1(ε, �). Thus, if at time t = 0 we have

‖u0‖H 1
ε

� 1

(Cc1)1/4
,

then for all t > 0,

‖u(t)‖2
H 1

ε
+ 1

c0

∫ t

0

(
‖∇u‖2

L2 + ε

2
‖�u‖2

L2 + Cε‖∇q(u)‖2
L2

)
ds � ‖u0‖2

H 1
ε
.

Now using the local existence result in Ref. 10, and the fact that ‖·‖H 1
ε

is equivalent to the usual H1

norm, we conclude the proof of Theorem 2.6. �
VII. TWO-DIMENSIONAL SMALL DIVERGENCE GLOBAL EXISTENCE FOR THE
EXTENDED NAVIER-STOKES EQUATIONS

The aim of this section is to prove Theorem 2.7. We recall first the H 1
0 -orthogonal projection

onto divergence free vector fields. For u0 ∈ H 1
0 (�), we define v0, w0 ∈ H 1

0 (�) to be solutions of the
PDEs ⎧⎨

⎩
−�v0 + ∇φ = −�u0 in �,

∇ · v0 = 0 in �,

v = 0 on ∂�,

and

⎧⎨
⎩

−�w0 + ∇ψ = 0 in �,

∇ · w0 = ∇ · u0 in �,

w0 = 0 on ∂�,

(7.1)
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respectively. Note that u0 ∈ H 1
0 (�) guarantees the required compatibility condition

∫
�

∇ · u0 = 0,
and so the existence of v0, w0 satisfying (7.1) is well known (see, for instance, [Sec. 2 of Ref. 14].
Clearly, u0 = v0 + w0, and orthogonality of v0 and w0 in H 1

0 follows from the identity:

〈v0, w0〉H 1
0 (�)

def= 〈∇v0,∇w0〉 = 〈v0,−�w0〉 = 〈v0,−∇ψ〉 = 0.

Let v be the solution to Eqs. (1.1)–(1.4) with initial data v0. As shown earlier, ∇ · v0 = 0 implies
that ∇ · v = 0 for all time, and consequently v is a solution of the 2D Navier-Stokes with initial data
v0. Let w = u − v, and observe⎧⎨

⎩
∂tw + P((w · ∇)w)

+P((v · ∇)w) + P((w · ∇)v) = �w − ∇ ps(w) in �,

w = 0 on ∂�.

(7.2)

The strategy to prove Theorem 2.7 is as follows. First, standard existence theory for the 2D
Navier-Stokes equations implies that for any initial data v0 ∈ H 1

0 , with ∇ · v0 = 0, we have global
existence of a strong solution v. Further, after a long time T0, the solution v becomes small. Now
making u0 − v0 is sufficiently small, we can guarantee that w, a solution to (7.2) with initial data
u0 − v0, both exists on the time interval [0, T0], and is small at time T0. Thus, u = v + w is a
solution to (1.1)–(1.4) defined, which is small at time T0. Now a small data global existence result
(Theorem 2.6) will allow us to continue this solution for all time.

We begin with a Lemma concerning the existence and smallness of solutions to (7.2).

Lemma 7.1: Let � ⊂ R2 be a bounded C3 domain, and v0 ∈ H 1
0 (�) with ∇ · v0 = 0. Let

u0 ∈ H 1
0 (�) be such that P0u0 = v0. Then, for any T0, δ0 > 0 there exists a (small) constant

W0 = W0(�, ‖v0‖H 1 , T0, δ0) such that if

‖w0‖H 1
ε

� W0,

then there exists a solution of (7.2) on the interval [0, T0] and

‖w(T0)‖H 1 � δ0.

Momentarily postponing the proof of the lemma, we prove Theorem 2.7.

Proof of Theorem 2.7: We let V0 be as in Theorem 2.6, and let v be the solution to the
2D Navier-Stokes equations with initial data v0 = P0u0 ∈ H 1

0 . It is well known (see, for instance,
Refs. 3 and 14) that there exists T0 large enough, so that ‖v(T0)‖H 1

0
� 1

2 V0. Indeed, from the standard

L2 energy identity we can choose T0 to satisfy T0( 1
2 V0)2 ≤ ‖v0‖2

L2 .
By Lemma 7.1, there exists W0 > 0 small enough so that if initially

‖w0‖H 1
ε

� W0, (7.3)

then the solution w to (7.2) exists up to time T0, and further ‖w(T0)‖H 1 � 1
2 V0. From (7.1), we know

‖w0‖H 1 � c‖∇ · u0‖L2 (see [Sec. 2 of Ref. 14]). Since the norms ‖·‖H 1
ε

and ‖·‖H 1 are equivalent,
making U0 small enough will guarantee (7.3), thus allowing to apply Lemma 7.1 and obtain the
existence of w on the interval [0, T0]. Then we obtain that (1.1)–(1.4) has a solution u = w + v on
[0, T0] and moreover ‖u(T0)‖H 1 � ‖w(T0)‖H 1 + ‖v(T0)‖H 1 � V0. Applying Theorem 2.6, we can
continue the solution u on the interval [T0, ∞).

It remains to prove the lemma.

Proof of Lemma 7.1. As with the proof of Theorem 2.6, it suffices to obtain an a priori estimate
for ‖w‖H 1 . Fix ε > 0 to be small enough so that Proposition 2.2 holds. Then

1

2
∂t‖w‖2

H 1
ε
+

J1︷ ︸︸ ︷
〈P((w · ∇)w), w〉ε + 〈w, Aw〉ε

= −〈P((v · ∇)w), w〉ε︸ ︷︷ ︸
J2

−〈P((w · ∇)v), w〉ε︸ ︷︷ ︸
J3

, (7.4)
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where 〈 · , · 〉ε denotes the inner product defined in Proposition 2.2, and ‖·‖H 1
ε

the induced norm.
We estimate each term individually. The term J1 is identical to the term that appears in the

proof of Theorem 2.6, and thus

J1 � 1

c0

(
‖∇w‖2

L2 + ε

2
‖�w‖2

L2 + Cε‖∇q‖2
L2

)
−

(
c2‖w‖6

H 1
ε
− 1

c1
‖w‖2

H 1
ε

)
,

where q is the unique, mean-zero function such that ∇q = (I − P)w. As before, c0 is the constant
that appears in (2.7), and c1 = c1(ε, �), c2 = c2(ε, �) are positive constants.

Using C = C(ε, �) > 0 to denote an intermediate constant that can change from line to line,
Lemma 6.1 bounds J2 and J3 by

|J2| + |J3| � C (‖v‖H 1‖∇w‖H 1/2‖�w‖L2 + ‖w‖H 1‖∇v‖H 1/2‖�w‖L2 )

� ε

4c0
‖�w‖2

L2 + c3
(‖v‖4

H 1 + ‖∇v‖2
H 1/2

) ‖w‖2
H 1

ε

for some constant c3 = c3(ε, �).
Combining our estimates,

1

2
∂t‖w‖2

H 1
ε
+ 1

c0

(
‖∇w‖2

L2 + ε

4
‖�w‖2

L2 + Cε‖∇q‖2
L2

)

� c2‖w‖6
H 1

ε
−

(
1

c1
− c3

(‖v‖4
H 1 + ‖∇v‖2

H 1/2

)) ‖w‖2
H 1

ε
. (7.5)

Since v is a strong solution to the 2D incompressible Navier-Stokes equations with initial data
v0 ∈ H 1

0 , we have (see, for instance, [p. 78 of Ref. 3]) that

sup
t�0

‖v(t)‖2
H 1 +

∫ ∞

0
‖v(s)‖2

H 1 ds < C

for some constant C depending only on � and ‖v0‖H 1 . Using this in (7.5) will prove local well-
posedness of (7.2). Further, for any T0, δ0 > 0, Eq. (7.5) will also show that the solution to (7.2)
exists up to time T0, and ‖w(T0)‖H 1 < δ0, provided ‖w0‖H 1 is small enough.

VIII. DIVERGENCE-DAMPED EQUATIONS

The aim of this section is to prove coercivity of Bα (defined in (2.25)), with constants independent
of α, and 2D global existence with strong enough divergence damping (Corollary 2.8).

Proposition 8.1. For any α ≥ 0 and u ∈ D(Bα), we have

〈u, Bαu〉ε = 〈u, Au〉ε + α
(‖∇Q(u)‖2

L2 + Cε‖Q(u)‖2
L2 + ε‖�Q(u)‖2

L2

)
. (8.1)

Proof: By linearity,

〈u, Bαu〉ε = 〈u, Au〉ε + α〈u, (I − P)u〉ε. (8.2)

For the second term on the right,

〈u, (I − P)u〉ε = 〈u, (I − P)u〉 + Cε〈Q(u), Q((I − P)u)〉 + ε〈∇u,∇(I − P)u〉.
The first two terms on the right are equal to ‖(I − P)u‖2

L2 and Cε‖Q(u)‖2
L2 , respectively. For the

last term,

〈∇u,∇(I − P)u〉 = −〈u,�(I − P)u〉 +
∫

∂�

ui
∂

∂ν
((I − P)u)i

= −〈u,∇∇ · u〉 + 0

= ‖∇ · u‖2
L2 −

∫
∂�

(∇ · u)u · ν = ‖∇ · u‖2
L2 .
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Consequently,

〈u, (I − P)u〉ε = ‖(I − P)u‖2
L2 + Cε‖Q(u)‖2

L2 + ε‖∇ · u‖2
L2 , (8.3)

and using (8.2), we obtain (8.1). �
Before moving to the proof of Corollary 2.8, we digress briefly to remark that we can also

consider higher order divergence damped operators of the form

B ′
α

def= A − α∇∇·
The results we obtain for (1.1)–(1.2) with a zeroth order damping term will also apply when we add
the second order damping term above. However, while the operator B ′

α has a stronger (second order)
damping term, it is not as easy to deal with numerically. The zeroth order damping terms in Bα , on
the other hand, can easily be implemented numerically, and has a strong enough damping effect to
give a better existence result (Corollary 2.8). We now return to prove Corollary 2.8.

Proof of Corollary 2.8: Since Theorems 2.6 and 2.7 work verbatim for (2.24), there exists a time
T0 = T0(‖u0‖H 1 ,�), independent of α, such that there exists a solution u of (2.24) on the interval [0,
T0], with ‖u(T0)‖H 1 bounded, independent of α. Let U0 be the constant from Theorem 2.7. Observe
that (2.24) implies that ∇ · u satisfies⎧⎨

⎩
∂t∇ · u + α∇ · u = �∇ · u in �,

∂

∂ν
∇ · u = 0 for x ∈ ∂�, t > 0.

Consequently,

‖∇ · u(t)‖2
L2 � e−(λ1+α)t‖∇ · u0‖2

L2 ,

where λ1 > 0 is the smallest non-zero eigenvalue of the Laplacian with Neumann boundary condi-
tions. Thus, there exists α0 > 0, such that

‖∇ · u(T0)‖L2 < U0,

for all α > α0. Now, by Theorem 2.7 the solution to (2.24) also exists and is regular on the time
interval [T0, ∞). �
IX. EXISTENCE RESULTS UNDER COERCIVE BOUNDARY CONDITIONS.

The aim of this section is to show that the extended Stokes operator is coercive under the
boundary conditions (2.26), and prove Proposition 2.9. We begin with coercivity.

Proposition 9.1: If either u and v are in H 1(T d ) and periodic, or if u and v are in H2(�) and
satisfy the boundary conditions (2.26), then

〈Au, v〉 = 〈u, Av〉 and 〈u, Au〉 =
∫

�

|∇u|2. (9.1)

Proof: In the periodic case, P� = �P. Thus, ∇ps = 0, A = − �, and both equalities in (9.1)
follow easily.

Suppose now u, v satisfy (2.26). In view of (2.1), we have

〈Au, v〉 = −〈P�u, v〉 − 〈∇∇ · u, v〉 = −〈P�Pu, v〉 − 〈∇∇ · u, v〉

= 〈∇ Pu,∇ Pv〉 + 〈∇ · u,∇ · v〉 −
∫

∂�

[
(Pv)i

∂(Pu)i

∂ν
− (∇ · u)v · ν

]
.

Observe that Pv = 0 on ∂�, because Pv · ν = 0 by definition of P, and Pv · τ = 0 by (2.26). Thus,
both the above boundary integrals vanish, giving

〈Au, v〉 = 〈∇ Pu,∇ Pv〉 + 〈∇ · u,∇ · v〉.
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A similar calculation shows

〈Av, u〉 = 〈∇ Pu,∇ Pv〉 + 〈∇ · u,∇ · v〉
proving that A is self-adjoint.

Now because Pu = Pv = 0 on ∂�, a direct calculation shows that

〈∇ Pu,∇ Pv〉 = 〈∇ × Pu,∇ × Pv〉 = 〈∇ × u,∇ × v〉.
Consequently, we see

〈Au, v〉 = 〈∇ × u,∇ × v〉 + 〈∇ · u,∇ · v〉 = 〈∇u,∇v〉.
Setting u = v, the second assertion in (9.1) follows. �

Finally, we turn to Proposition 2.9. Before presenting the proof, we remark that if we instead
impose periodic boundary conditions, Proposition 2.9 and its proof (below) go through almost
unchanged. The only modification required is the justification of the Poincaré inequality that will
be (implicitly) used in many estimates. For this justification, observe that with periodic boundary
conditions, the mean of solutions to (1.1)–(1.2) is conserved. Thus, by switching to a moving frame,
we can assume that the initial data, and hence the solution for all time, are mean zero. This will
justify the use of the Poincaré inequality in the proof. With this, we prove Proposition 2.9.

Proof of Proposition 2.9: Let v = Pu, and q = Q(u). Since

P((∇q · ∇)∇q) = P(∇|∇q|2/2) = 0,

applying P to (1.1) gives{
∂tv − P�v + P((v · ∇)(v + ∇q) + (∇q · ∇)v) = 0 in �,

v = 0 on ∂�,
(9.2)

where the boundary condition on v comes from (2.26). The point is that energy estimates can be
used directly to estimate v, since it satisfies explicit boundary conditions.

Since Pv = v, multiplying (9.2) by v and integrating yields,

1

2
∂t‖v‖2

L2 + ‖∇v‖2
L2 = 1

2

∫
�

|v|2�q −
∫

�

v · ((v · ∇)∇q)

� C‖v‖2
L4‖∇2q‖L2 � C‖v‖L2‖∇v‖L2‖�q‖L2

� 1

2
‖∇v‖2

L2 + C‖v‖2
L2‖∇ · u‖2

L2 . (9.3)

Here, we used elliptic regularity to control ‖∇2q‖L2 by ‖�q‖L2 , which is valid since ∂q
∂ν

= 0 on
∂�. We also used the (2D) Ladyzhenskaya inequality ‖v‖2

L4 � C‖v‖L2‖∇v‖L2 , which is valid since
v = 0 on ∂�.

Since ∇ · u is a mean-zero solution of (1.6), we know that∫ ∞

0
‖∇ · u(t)‖2

L2 dt � 1

2λ1
‖∇ · u0‖2

L2 ,

where λ1 is the smallest non-zero eigenvalue of the Laplacian with Neumann boundary conditions.
Thus, Gronwall’s lemma and (9.3) give the closed estimate

‖v(t)‖2
L2 +

∫ t

0
‖∇v(s)‖2

L2 ds � exp
(
C‖∇ · u0‖2

L2

) ‖v0‖2
L2 . (9.4)

Since Pv = v, regularity of the (standard) Stokes operator tells us that the norms ‖−P�v‖L2

and ‖v‖H 2 are equivalent (see, for instance, [Chap. 4 of Ref. 3]). Multiplying (9.2) by −P�v,
integrating by parts, and using (6.3) to bound the nonlinear term in the usual way gives

∂t‖∇v‖2
L2 + 1

c
‖�v‖2

L2 � C
(‖v‖2

L2‖∇v‖2
L2 + ‖∇∇ · u‖2

L2 + ‖∇ · u‖4
L2

) ‖∇v‖2
L2 .
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Using Gronwall’s lemma, Eqs. (9.4) and (1.6), we obtain

‖∇v(t)‖2
L2 + 1

c

∫ t

0
‖�v(s)‖2

L2 ds � K‖∇v0‖2
L2 , (9.5)

for some constant K = K (�, ‖∇ · u0‖L2 , ‖v0‖L2 ). In fact, one can bound K above by

K � C exp
(
C

(
exp

(
C‖∇ · u0‖2

L2

) ‖v0‖4
L2 + ‖∇ · u0‖2

L2 + ‖∇ · u0‖4
L2

))
for some constant C = C(�).

Finally, we consider a Galerkian scheme for (1.1)–(1.2) using eigenfunctions of the Stokes
operator (with no-slip boundary conditions), and gradients of eigenfunctions of the Laplacian (with
no-flux boundary conditions). It is easy to check that these Galerkian approximations satisfy the
same energy estimates (9.4) and (9.5). A bound for ∂ tu will then follow from (1.1), and standard
techniques will prove global existence. �
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APPENDIX: FAILURE OF COERCIVITY UNDER THE STANDARD INNER PRODUCT

Most of this section is devoted to the proof that Stokes operator is not positive under the standard
L2 inner product (Proposition 2.1).

Proof of Proposition 2.1: As mentioned earlier, the key idea in the proof is to identify the
harmonic conjugate of the Stokes pressure as the harmonic extension of the vorticity. We begin by
working up to this. Since

�ps = ∇ · ∇ ps = ∇ · (�P − P�) u = 0,

the Poincaré lemma guarantees the existence of qs such that

∇ ps = ∇⊥qs
def=

(−∂2qs

∂1qs

)
. (A1)

Observe that both ps and qs are harmonic. Indeed,

�qs = ∇ × ∇⊥qs = ∇ × ∇ ps = 0. (A2)

We remark that Eqs. (A1) and (A2) above show that − qs is the harmonic conjugate of ps.
To obtain boundary conditions for qs, let τ = − ν⊥ be the unit tangent vector on ∂�. To clarify

our sign convention, if ν = ( ν1
ν2

), then τ
def= ( ν2−ν1

). Now observe

∂qs

∂τ
= ∇qs · τ = ∇⊥qs · ν = ∂ps

∂ν
= ν · (�P − P�) u

= ν · (�u − ∇∇ · u) = ν · ∇⊥∇ × u = τ · ∇ω = ∂ω

∂τ
,
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where, as before, ∇ × u = ∂1u2 − ∂2u1 is the two-dimensional curl, and ω = ∇ × u. Thus, adding
a constant to qs, we may, without loss of generality assume

qs = ω on ∂�. (A3)

A direct calculation shows∫
�

u · Au =
∫

�

|∇u|2 +
∫

�

∇ ps · u =
∫

�

(
ω2 + |∇ · u|2) −

∫
�

qs · ω,

where we used the boundary condition u = 0 on ∂� to integrate by parts. Thus, to prove
Proposition 2.1, it is enough to produce a function u, satisfying the required boundary conditions,
such that ∫

�

qsω � ‖ω‖2
L2 + (C + 1)‖∇ · u‖2

L2 . (A4)

We prove the existence of such functions separately.

Lemma A.1: For any C > 0, there exists u ∈ H 1
0 (�) such that (A4) holds. As usual, ω

= ∇ × u, and qs is the solution of the Dirichlet problem{
�qs = 0 in �,

qs = ω on ∂�.
(A5)

The lemma immediately finishes the proof of Proposition 2.1. �
Proof of Lemma A.1: We look for u of the form u = v + ∇ p with ∇ · v = 0 in � and v · ν = 0

on ∂�, where ν denotes the outward pointing normal vector on the boundary. Then there exists ψ

on � so that v = ∇⊥ψ . The boundary condition v · ν = 0 becomes ∂ψ

∂τ
= 0 where τ denotes the

tangential direction on ∂�.
We note that u = 0 and v · ν = 0 on ∂� imply

∂p

∂τ
= −v · τ = −∂ψ

∂ν
,

∂p

∂ν
= 0, v · ν = ∂ψ

∂τ
= 0.

As ∂ψ

∂τ
= 0 and ψ is determined up to a constant we can assume without loss of generality that

ψ = 0 on ∂� and then for a given u the stream function ψ is uniquely determined as the solution of
the Dirichlet problem

�ψ = ω in �,

ψ = 0 on ∂�.

Then, we have∫
�

qsω dx =
∫

�

qs�ψ dx =
∫

�

�qsψ dx +
∫

∂�

∂ψ

∂ν
qs dσ −

∫
∂�

∂qs

∂ν
ψ dσ

=
∫

∂�

∂ψ

∂ν
qs dσ =

∫
∂�

∂ψ

∂ν
�ψ dσ,

and (A4) becomes ∫
∂�

∂ψ

∂ν
�ψ dσ � ‖�ψ‖2

L2 + (C + 1)‖�p‖2
L2 . (A6)

Summarizing it suffices to find ψ , p such that (A6) holds together with the boundary conditions

ψ = 0,
∂p

∂ν
= 0, and

∂p

∂τ
= −∂ψ

∂ν
on ∂�. (A7)

Fix some point x0 ∈ ∂� and let s �→ x̂(s) be an arclength parametrization of the (C3) boundary ∂�,
such that x0 = x̂(0) and oriented so that the outward unit normal ν̂(s) at x̂(s) satisfies ν̂(s)⊥ = x̂ ′(s).
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Then the map (s, r ) �→ x = x̂(s) − r ν̂(s) is C2 and is locally invertible near x0, providing orthogonal
coordinates x �→ (s, r) ∈ ( − ε, ε) × (0, ε) in some neighborhood of x0 in �.

We fix p to be of the form p(x) = α(s)β(r) where α and β are in C∞
c ((−ε, ε)) and β(0) = 1,

β ′(0) = 0. We will then choose ψ of the form ψ(x) = α′(s)γ (r) where γ ∈ C∞
c ((−ε, ε)) with γ (0)

= 0 and γ ′(0) = 1. Then (A7) will hold, and direct calculation shows∫
∂�

∂ψ

∂ν
�ψ dσ =

∫ ε

−ε

α′(s)2(γ ′′(0) + κ(s)) ds,

where κ(s) = �r (x̂(s)) is the curvature of the boundary. The right-hand side of (A6) on the other
hand, is easily computed to be bounded by C + C‖γ ‖2

H 2 , with a constant C independent of the
choice of γ . It is clear that γ can be chosen to make γ ′′(0) arbitrarily large while ‖γ ‖2

H 2 remains
bounded. Thus, (A6) holds for some ψ and p. �

Finally, to conclude this section we turn to the proof of Corollary 2.3. Of course the proof is
immediate from Proposition 2.1, and we only present it here for completeness.

Proof of Corollary 2.3: Choose u0 ∈ C2(�̄) to be such that (2.5) holds, and let u be the solution
to (2.10) with initial data u0. By continuity in time, we must have∫

�

u(t) · Au(t) < 0

for all t in some small interval [0, t0]. Thus, ∂t‖u‖2
L2 = − ∫

�
u · Au > 0 on the interval (0, t0] which

immediately completes the proof. �
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