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We consider a four-elastic-constant Landau-de Gennes energy characterizing nematic
liquid crystal configurations described using the Q-tensor formalism. The energy contains
a cubic term and is unbounded from below. We study dynamical effects produced by the
presence of this cubic term by considering an L2 gradient flow generated by this energy.
We work in two dimensions and concentrate on understanding the relations between the
physicality of the initial data and the global well-posedness of the system.
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1. Introduction

This paper studies the dynamics of an important instability phenomenon that arises
in the Landau-de Gennes theory of nematic liquid crystals.?> 4 Mathematically our
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results address global well-posedness of the L? gradient flow generated by an energy

functional that is unbounded from below in its natural energy space. This turns out

to be related to quantifying how the flow affects the convex hull of the initial data.
We consider a Landau—de Gennes energy functional

£lQ] = /Q FQ))dr,

where Q C R? with d = 2,3 and @ is a matrix-valued function defined on €
that takes values into the space of Q-tensors, namely S(4) Lof {M € R4 M =
M7 tr(M) = 0}. The matrix Q(z) is a measure of the local preferred orientation
of the nematic molecules at the point = € €, see for instance Refs. 4 and 17.

The energy density F(Q) can be decomposed as:

F(Q) = Feai + Fouk,

where Fg is the “elastic part” which depends on gradients of @, and Fpyik is the
“bulk part” that contains no gradients.

Invariances under physical symmetries impose certain restrictions on the form
of the elastic and bulk parts. The simplest and most common form that is invariant
under physical symmetries and still captures the essential features®!7 assumes that

.7:81 and fbulk are given by:

def
Fa(Q) = L1|VQ|* + L20;Qir0kQij + L30;QijOkQir + LaQui0xQi;01Qiz, (1.1
def @ b ¢
Fou(Q) = 3 tr(Q?) — 3 tr(Q°) + 1 tr?(Q%). (1.2)
Here and in the following we assume the Einstein summation convention by which
repeated indices 7,7,k = 1,...,d are implicitly summed.

The coeflicients a,b,c and Li, k= 1,2,3,4, are assumed to be non-dimensional
(see Ref. 16). For spatially homogeneous systems the term Fix is bounded from
below only if ¢ > 0 (see Ref. 18). Physical considerations impose that b > 0 (see
Ref. 14) and a is a temperature-dependent parameter that can be taken to be
either positive or negative. The most physically relevant case is when a is small.
This corresponds to a temperature near the supercooling point, below which the
isotropic phase becomes unstable. Thus we make the assumptions

b>0 and ¢>0. (1.3)

In two dimensions observe that Q € S implies tr(Q?) = 0. Hence we may, without
loss of generality, assume b = 0.

For the elastic part we note that the first three terms are quadratic, while the
fourth one (with coefficient L4) is cubic. The presence of a cubic term is rather
unusual in most physical systems. The retention of this term in our situation is
motivated by the fact that it allows reduction of the elastic energy F[Q] to the
classical Oseen—Frank energy of liquid crystals (with four elastic terms). This is
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done by formally taking
1
Qx) = st (n(x) x n(x) — EH) where s, >0, n:Q— S

and substituting it in the definition of £[Q] (see Appendix B or Ref. 4). Here I
denotes the identity matrix.

The cubic term, however, also comes with a price: the energy £[Q] now has
the “unpleasant” feature of being unbounded from below.?3 On the other hand, if
L4 = 0 the elastic part of £]Q)],

def
el / -7:e1

is bounded from below (and coercive) if and only if L1, Ly and L3 satisfy certain
conditions. For Q € S and three-dimensional domains these conditions are devel-
oped in Ref. 13 (see also Ref. 8). For Q € S® and two-dimensional domains the
conditions

Li+Ls>0 and L+ L3>0 (1.4)

are equivalent to coercivity. (We prove this in Lemma C.1 in Appendix C.)

One way to deal with the unboundedness and lack of coercivity caused by the
(necessary) presence of Ly is to replace the bulk potential defined in (1.2) with a
potential ¥(Q), which is finite if and only if @Q is physical® (see for instance Ref. 3 for
d = 3). In this paper we aim to directly study the physical relevance of the energy
£[Q] keeping the more common potential (1.2), instead of the singular potential
as in Ref. 3 (see Refs. 10 and 22 for works in the dynamical context). Of course
the static theory will not provide anything meaningful when the energy £[Q)] is
unbounded. Consequently, we focus our attention on the dynamical aspect.

We study a gradient flow in the “simplest setting”: namely an L? gradient flow
in R? corresponding to the energy functional £[Q] where @ takes values in S®,
Explicitly, this is

0Qij o0&

atl.] — (@) —+ /\51] —+ ,ulj ,ujla (15)
where )\ is a Lagrange multiplier corresponding to the constraint tr(Q) = 0 and for
i,j € {1,2} the p;;’s are the Lagrange multipliers corresponding to the constraints
Qij = Qji. Here % denotes the variational derivative of £ with respect to @,

defined by

5 d

—(p)= =€ t

55() = HEQ+ 1)
for ¢ € C°(Q, M¥>4(R)). Integrating by parts as necessary we can identify the
linear operator % with a matrix-valued function.

)

t=0

aWe recall®14 that Q is physical if Q € S and after suitable non-dimensionalizations its eigen-

values are between —é and 1 — é.
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After some lengthy but straightforward calculations (which we carry out in
Appendix A) Eq. (1.5) reduces to

9Qi;
ot

=201AQi; — aQij — ¢ tr(Q*)Qij + (Lo + L3)(9;0kQix + 0:0kQjr.)
— (L2 + L3)010kQuxdij + 2L40,Q 0k Qui. + 2L40101 Q4 Qui
L
— L40;Qri0;Qn + 74|VQ|251'J'- (1.6)

We study this system of equations on a bounded domain  C R? with initial data
and boundary conditions given by

Q(,0) = Qo(x), and Q(z,t)lon = Qz), Qolao = Q. (1.7)
The main results in this paper are to show:

(1) Global existence of weak solutions to (1.6) and (1.7) in two dimensions, for
H'N L initial data that is small in L> (Theorem 2.1, below).

(2) Finite time blow-up (in L?) of solutions to (1.6) and (1.7) in two dimensions,
for specially constructed (large) initial data (Theorem 2.2, below).

(3) The “preservation of physicality” of the initial data in two or three dimensions
and a simple version of the flow (Proposition 2.2, below).

We defer the precise statements (and proofs) of these results to subsequent sections,
and momentarily pause to briefly outline the ideas involved in the proofs and the
problems encountered.

The main difficulty in proving global existence stems from the fact that the
energy is a priori unbounded from below. However, from Eq. (1.6) we see that if
|Q]| L~ is small enough, then the cubic term can be absorbed into the other terms,
which are positive definite under the assumption (1.4). Here:

1@l = sup Q(x)],  where |Q(2)]* = tr(Q(2)Q(x)") = tr(Q*(x)).

Thus the usual H'-level information provided by the energy in such gradient flows
can be effectively utilized, provided we a priori guarantee a smallness condition on
the L*-norm. Our main tool (Proposition 2.1) does precisely this: namely, Propo-
sition 2.1 shows smallness of ||@|| L globally in time, provided it is small enough
initially. We use this to prove global existence of weak solutions in Theorem 2.1.
Global existence of strong solutions should now follow using relative standard meth-
ods, provided the initial data is regular, small and is compatible with the boundary
conditions (see for instance Ref. 9).

We complement Theorem 2.1 with Theorem 2.2 which shows the existence of
a finite time blow-up using large, specially constructed initial data. The proof
amounts to finding a nonlinear differential inequality for a quantity that blows
up in finite time. The main difficulty in this context is again the high-order nonlin-
earity. We use the energy inequality for control of this, even though the sign of the
energy is not a priori controlled.
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Theorems 2.1 and 2.2 give a dichotomy common to many nonlinear PDE’s: long
time existence if the initial data is small enough, and examples of finite time blow-
up for large data. This leads to an interesting question about the maximal size of
initial data for which solutions exist globally in time. This is a very subtle one and
we only provide a modest contribution in this direction. We think that an important
factor affecting global existence is the physicality of the initial data — namely the
requirement that after a particular normalization the eigenvalues of the initial data
are within the interval (—3,1— 1) (see more about physicality in Refs. 2 and 3).

There exists a direct and delicate relation between the smallness of ||Q|| L~
and the aforementioned notion of “physicality”. Specifically, the physicality of a
Q-tensor imposes an upper bound on the size of ||Q|| L~ but in general the contrary
is false. Namely having an upper bound for ||Q||= implies physicality in 2D, but
not necessarily in higher dimensions.

More precisely, if Q@ € 8@ is physical, i.e. its eigenvalues \;,i = 1,...,d are
in the interval (—%,1 — 1), hence tr(Q?(z)) = Z?Zl A? < d(1— %)% On the other
hand, the condition tr(Q?(z)) = 30, A? < d(1— 1)? for Q € S implies that the
eigenvalues of ) are between (—%, 1- %) only for d = 2, but not for d = 3! For
d = 3, the notion of physicality is related to @ belonging to a convex set (not just
a ball as for d = 2). Proposition 2.2 explores how the gradient flow preserves the
convex hull of the initial data in a simple setting, for both d = 2 and d = 3.

Plan of this paper. This paper is organized as follows. In Sec. 2 we precisely state
the main results of this paper and state our notational conventions. In Sec. 3 we
prove the small data global existence result (Theorem 2.1). In Sec. 4 we exhibit
an example of a finite time blow-up with large initial data. In Sec. 5 we prove the
preservation of physicality (Proposition 2.2).

There are numerous technical calculations involved in this paper, which for clar-
ity of presentation have been relegated to Appendices. Appendix A shows that the
gradient flow defined by (1.5) satisfies (1.6). Appendix B shows how the Landau—
de Gennes energy functional can be reduced to the Oseen—Frank energy functional
in two dimensions, and the necessity of the cubic term for this purpose. Appendix C
shows that the coercivity assumption (1.4) is equivalent to coercivity in two dimen-
sions. Finally Appendix D reduces the evolution for @) into a one-dimensional prob-
lem when the initial data is of the type used to prove the blow-up in Theorem 2.2.

2. Main Results and Notational Conventions

Our first main result in this paper is global well-posedness of (1.6) for small initial
data. The crucial step in the proof is the preservation of L°°-smallness, and we
begin by stating this.

Proposition 2.1. Consider the 2D evolution problem (1.6) and (1.7) on a bounded
smooth domain 2 C R2. Suppose the coercivity condition (1.4) holds together with
the structural assumptions (1.3). For smooth solutions @ there exists an explicitly
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computable constant n1 (depending on L;,i =1,...,4) so that if
1@l (o) < 1QollL=() < v/2m (2.1)
and
la| < 2em, (2.2)
then for any T > 0, we have
QLo 0,1y 0) < \/ﬂ (2.3)

Remark 2.1. As mentioned earlier, the physically relevant regime is when the
parameter a has small magnitude. This is consistent with the assumption (2.2).

Furthermore a careful check of the proof of Proposition 2.1 shows that (2.3) still
holds for weak solutions that satisfy (2.1) and (2.2).

Theorem 2.1. Suppose the coefficients a,b,c and Ly, ..., Ly satisfy the coercivity
condition (1.4) together with the structural assumptions (1.3), and let Q C R?
be a smooth, bounded domain. There exists an explicitly computable constant n
(depending on Ly, i =1,...,4 and Q) so that if Qo € H*(Q)NL>(Q), Q € H2(8Q),
and the smallness conditions (2.1) and (2.2) hold with n1 replaced by n2, then
the system (1.6) and (1.7) has a unique global weak solution.® Further the initial
smallness (2.1) is preserved for all time.

We prove Proposition 2.1 and Theorem 2.1 in Sec. 3. The smallness assumption
on the initial data is essential; we complement Theorem 2.1 with a result showing
that certain solutions exhibit a finite time blow-up.

Theorem 2.2. Suppose the coefficients a,b,c and Ly, ..., Ly satisfy the coercivity
condition (1.4) together with the structural assumptions (1.3). There exists a smooth
domain Q, smooth initial data Qo, and a smooth (time-independent) function Q-
00 — R such that the system (1.6) with Dirichlet boundary conditions Q does not
admit a global smooth solution.

Remark 2.2. Our proof (Sec. 4) chooses © to be the annulus Bg, (0)\Bg, (0) C R?
where 0 < Ry < R;p, and “hedgehog” type initial data. Namely, we choose Qg of
the form

Q) =tulle) (0 5~ o).

where 6y : [Ro, R1] — R is smooth. If 6 is large enough, and Ry, R; are such that

2,2
Roiﬂ- > 1’
9(Ry1 — Ro)?

we show [|Q(t)||z2(q) — oo in finite time, for any smooth solution.

bSee Definition 3.1 for the precise definition of a weak solution.
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Finally in Sec. 5 we study how the flow distorts the convex hull of eigenvalues,
in an attempt to understand what is the maximal size of initial data that would
give global well-posedness. The situation is more interesting in 3D than in 2D as
in 3D the convex set of physical @Q-tensors cannot be described just in terms of
the Frébenius norm of the matrix. We restrict ourselves to a simple setting (with
specific assumptions on the elastic constants L;’s, i = 1,2,3,4 and work in the
whole space). Our main result in this section is the following.

Proposition 2.2. Let Q(t,z) € C([0,T]; H*(R?)) with k > £, d = 2,3 and arbi-
trary T >0 be a solution of the system (1.6) and (1.7), under assumptions (1.3).
Assume further:

o L1 #0, Ly =0 and (1.4) holds if d = 2,
e or iy #0 and Lo+ L3 =L, =0 if d = 3.

Suppose the initial data Qo € H*(R?) is such that for any x € R?, the eigenvalues
of Qo(x) are in the interval:

[la|  [lal _
l e\ 20 when d =2, or

b+ Vb2 —24ac b+ Vb? — 24ac
— , when d = 3.
12¢ 6c
If d = 3, we further assume
b2
—. 2.4
ol < 5 (24)

Then, for any t € [0,T] and x € R?, the eigenvalues of Q(t,x) stay in the same
interval.

The “usual” energy methods do not seem to yield Proposition 2.2 in dimension
d = 3. Instead we use a Trotter product formula and provide a somewhat atypical
proof in Sec. 5.

Notational convention. We define A : B tr(A!B) when A, B are dx d matrices,

and let |@Q] denote the Frobenius norm of the matrix @ (i.e. |Q)| et tr(QtQ) =

tr(Q2)). We denote the space of Q-tensors by S(@, where
SN e R M = MY tr(M) = 0},
and define the matrix-valued LP space by

LP(9,8@) &

={Q:0— 89 |Q| € LP(2R)}, when 1< p < oc.

For the sake of simplicity, we let || - || (with no subscripts) to denote || - ||z2(q)-
We denote the partial derivative with respect to xj of the ¢j component of @, by
either Q1 or 0;Q;j. Throughout the paper, we assume the Einstein summation
convention over the repeated indices.
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3. Global Well-Posedness for Small Initial Data

Using standard techniques the gradient flow structure of the equation should pro-
vide a priori estimates for (1.5) for smooth enough solutions. Taking the (matrix)
inner product of Eq. (1.5) with c% — M + p— pT and integrating yields

2

d o0&
_— = I .
prd(®] .50 — M+ p—p"| dx
This gives the energy equality
2
~ M +p—p"| drds = E[Q(0)], Vit >0. (3.1)

The main defect of the energy £]Q)] is that it is unbounded from below as L4 # 0.
Thus, unlike in the usual contexts, it does not provide a priori control over the H -
norm of Q. On the other hand, if ||@]| L~ is small enough, then we can absorb the
cubic term into the three quadratic terms and force the elastic part of the energy
to be positive. The idea behind our proof is to first prove preservation of smallness:
namely, if [|Q]| L~ is small enough initially, then it does not increase with time. Now
coercivity of the quadratic terms, and smallness of the cubic term force the energy
€]Q] to stay positive, from which (3.1) will provide an a priori H* bound for Q.
This will be enough to prove well-posedness of (1.5) (or equivalently Eq. (1.6)).

3.1. Preservation of smallness in L™

The goal of this section is to prove Proposition 2.1 showing that L°° smallness of
the initial data is preserved in time. This in turn implies that the energy is positive
definite and will allow us to obtain a priori estimates on higher norms.

We begin by recalling a few well-known results that come directly from Gagli-
ardo—Nirenberg inequalities and elliptic PDE theory.

Lemma 3.1. Suppose € is a smooth, bounded domain in R?. There exists a positive
constant Cy = C1 (), such that for any f € H*(Q) and g € H2(0Q), with f|sq = g,
we have:

Il=ce < ColIE (A1 + 151 + ol ). (32
2
1D? £ < CLUAFI+ 171+ gl 13 ) (3.3)
Moreover, for any f € H?(Q), we have the interpolation estimate
1961 < Call s (185122 + 171+ Dol by ) (34)

Finally, for f € H}(Q), we have the Ladyzhenskaya inequality'?
1170y < CIVENII- (3.5)
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Remark 3.1. Further, for f € H2(Q) N H(Q) the terms || f|| and ||gHH%(8Q) are

not required in (3.2), (3.3) and (3.4). This follows from elliptic regularity (see for
instance Ref. 9 (Sec. 6.3.2, Theorem 4 and remark (i) afterwards)).

The proofs of (3.2) and (3.3) follow from interpolation inequalities (see for
instance Theorems 5.2 and 5.8 in Ref. 1) combined with the elliptic regularity
(see Theorem 6.3.2.4 in Ref. 9). The estimate (3.4) is a consequence of Gagliardo—
Nirenberg inequality (see for instance p. 313 in Ref. 6) combined with the elliptic
regularity result previously mentioned.

We can now provide the proof of Proposition 2.1.

Proof of Proposition 2.1. Due to the special structure of ) in 2D, we expand

Q as

_(p(x1,22,t)  q(x1,72,1)
Q(x’t)_<q(x17x27t) _p(xlvx%t)), (3'6)

where p, ¢ are two scalar functions. Inserting (3.6) into (1.6), we obtain the following
evolution equations for p and ¢:

0

a—f = (Ap + La[(01p)* — (01q)* — (D2p)* + (92q)* + 201pDaq + 202p01 4]
+2L4(p0101p + 2q0102p — pdaop) — ap — 2¢(p” + ¢*)p, (3.7)

0

8_3 = (Aq + 2L4[01G02q — O1pDa2p + O1p01q — Dapdaq]

+2L4(pd101q + 2q0102q — pdadaq) — aq — 2¢(p* + ¢*)q, (3.8)
p(x,0) =po(x), q(x)=qo(x), plx,t)oo=p), q(z t)|oa=qx). (3.9)

Here, p and § are the corresponding components associated to Q and

def

¢ =2L1+La+ L3 >0. (3.10)
Note that positivity of ¢ is a consequence of assumption (1.4).
Define
2
m < ¢ (3.11)

G+ avaps
Multiplying (3.7) with p, (3.8) with ¢, and adding gives:
1on® _ ¢
2 Ot 2
— Ly(p0a0sh? — pd101h* — 2¢D102h%)
+ Lap[(02p)?® — (81p)* — 3(01q)* + 3(029)* + 201pdaq + 202pdh ]
+ 2L4q[01p01q — 301pO2p — O2pDaq — D1q024], (3.12)

AR? —((|Vp]* + |Vq[?) — ah? — 2ch?
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where

Wz, 22,8) & /P2 + . (3.13)

Multiplying (3.12) by (h? —n;)* and integrating gives:
4dtj/| ) Pde
- /Wv m)* Pz = ¢ [ (2 = m)* (VP + V4o

+L4/Qp|82(h2 )Rz

+ Ly /Q DopOa(h* — 1) T (R* — 1) Tdz

— L4/Qp|81(h2 — )" 2de

— L [ 00y =) (02 =)o

— 2L4/Qq82(h2 — 771)+81(h2 —m)tdx

- 2L4/981q82(h2 ) (R =)t da
—Amﬁ(%+wﬁw—mﬁm

+L5/mef—wmf—3me+a@m2

Q

+201pdaq + 202p01q)(h? — m1) Tda

+ 2L4/ q[01p01q — 301p0ap — opdagq — 0102q)(h* —m)tdx
/Wv um—c/ 2 ) (Yl + [VaP)da

+ 1+ + Iy (3.14)

Above we used (3.9), (2.1) and integration by parts.
We estimate the terms I; through I individually. Using the Schwarz inequality

and the fact |p| + |q] < v/2p? 4+ 2¢?, we obtain:

h+h+kgw¢/wummwm—mﬁmx
Q

< \/§|L4|/ BV (h2 — ny)* [2da.
Q
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Also,

L+ 1 < |Li| / Vpl[V (R — )| (R — ) de

L
< Ll 4'/| m*EVpPds + T [ 02 <)t v - P
L
<! 4'/ ) |Vpl? 245 + L4l 4|/h|v m)*|2dz. (3.15)
Similarly,

I < \L4|/ h(h2—771)+|Vq|2dx+|L4|/h|V(h2—n1)+|2dx. (3.16)
Q Q

Furthermore, assumption (2.2) implies

I; < / 2ch? ('2‘" h2> (h* —m)Tdx < 0. (3.17)
Q

c

Finally, using the Cauchy—Schwarz inequality and |p| + |q| < 1/2p? + 2¢> again,
we get

I+ Iy < 4\/§|L4|/ h(VPI? + [Vql2) (h2 — ) da. (3.18)
Q

Combining the above we get:

4dt/| )z

<3 / (3 + 2V3)| Lafh — IV (R — ) e
Q

+ /Q (1 + 4VD)|Lalh — (VI + [VaP)(h2 — m)tde.  (3.19)

Note that 3 +2v2 < 1+ 4\/5, hence if we assume at initial time

V2
1Qo| = /2(p2 + @2) = V2ho < (3.20)
’ o " 1+ 4V2)|Ly|
then it follows from (3.19) that
dx < Vit T
G 107 =y Par <0, vie o)
which concludes the proof. O

Remark 3.2. For L, = 0 the previous result is to be expected, as the energy is just
the usual Dirichlet type energy, up to a null-Lagrangian (see (C.4) in Appendix C).
The unexpected aspect captured by the lemma is that through the gradient type
evolution, the coercive part of the energy manages to control the size of the badly
behaved cubic term that is present for Ly # 0.
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3.2. A priori estimates for higher norms

For small data, Proposition 2.1 shows that the L° smallness is preserved. Con-
sequently, this will imply coercivity of the second-order terms and positivity of
the energy £. The main result of this section uses this and the dissipative energy
law (3.1) to a priori control higher-order norms of Q.

Proposition 3.1. For Q C R? smooth and bounded, there exists an ny > 0 depend-
ing on L;,i =1,2,3,4 and Q so that if:

Qo€ HY(Q)NL®(Q), Qe H3(60),
1Qoll o) < V22, and 1 <,

then under the coercivity condition (1.4) and structural assumptions (1.3), for any
T > 0, and any smooth solution @ of (1.6) and (1.7) we have

(3.21)

QI Lo o,rsmr ) <€ and  [|QllL2(0,m;12(0)) < C,

for some constant C' depending on T, 02, ||Qo| g and HQHH%(QQ),

Proof. As mentioned earlier, the assumption (1.4) guarantees coercivity of the
linear terms in 2D and quantitatively gives

(L1IVQP + L20;Qir0kQij + L30;Qi;0kQur) (z) > v|VQ|?(z), (3.22)
where
v min{L, + Ly, Ly + L3} > 0.

For continuity we prove this in Lemma C.1 in Appendix C below, and refer the
reader to Refs. 8 and 13 for the three-dimensional analog.
Now define:

N S and def 1 ¢ (3.23)
m (1+4\/§)2Li7 T2 60 8L421»144L421012»771 ) .

where (] is the constant appearing in Lemma 3.1.
To begin, an argument analogous to the proof of Proposition 2.1 gives

Q)| Loy < V212, Vtel[0,T].

Next, we infer from the basic energy law (3.1), Lemma C.1, that there exists
7 = v — 2|L4|y/212 > 0, such that:

£(Q) = Q) = [ vIVQP +LiQudiQuiny + § (@) + S (@)s

2 2
> [vvepa - Ll @ivar+§ [ {[o@)+ 2] - Sha

a?

> IVQU)I* - LI
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Hence Q € L*(0,T; H'(2)). Furthermore, it follows from the basic energy law
(3.1) and Eq. (1.6) that

Q: € L*(0,T; L*(92)).

By Lemma 3.1, Proposition 2.1 and Cauchy—Schwarz inequality, we deduce from
(3.7) and (3.8) that:

AP < llpell + [Lal|(81p)? = (919)* — (92p)? + (920)* + 201pD2q + 205pD14||
+2[La||lpdr01p + 2901 0ap — pdadapl| + |lap + 2¢(p* + ¢*)p|
< lpell + 2| Lall[(81p)? + (92p)* + (919)* + (929)? |
+ 2| Lal|[pll Lo (@) |1 01|
+ 4| La|llql| oo () [|0102p]| + 2| Lall|p]| Lo (2 [ 0202p]| + C

< lIpell + 21Z4lC1 [l (1AP] + 1Pl + 11815 )

+lallz (I18all + llall + 1l e, ) |

+8LalCu bl (1871 + Pl + 1715 ) +C

< lpell + [ La|Cul| Al L (10| Ap]l + 2[|Agl) + C. (3.24)

Here C depends on €, Qo, Q, and the coefficients of the system. Analogously,
we know

CllAg@) < llgell + [La|Crl| Al Lo (10] Agl| + 2] Ap]]) + C. (3.25)
After summing up, we get
CUlAp@I+ 1Aq@) < Qell + 12| La|Crl[R]| = (| Aql| + [|Apl) + €, (3.26)

which yields the bound of ||AQ|| in L?(0,T), due to the choice of 7y and the fact
12l o0, 150) < /T2 O

Remark 3.3. The factor % in (3.23) is not used the proof above. However, it will
be necessary in the proof of Theorem 2.1, Part (i), as described in the discussion
before (3.46).

3.3. Weak solutions

The purpose of this section is to show that the a priori estimates previously estab-
lished are enough to show global existence and uniqueness of weak solutions for
small initial data. While this is usually standard, the nonlinearity appearing in
the higher-order terms makes things complicated in our situation. Specifically, we
crucially need ||Q||L= to be small in order to obtain coercivity of the second-order
terms. Thus any approximating scheme devised to prove the existence of weak solu-
tions must preserve L smallness of the initial data. Since @ is a 2 X 2 matrix we
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do not have the luxury of a maximum principle that a priori preserves ||Q| e,
and the approximating scheme must be constructed carefully. We carry out this
construction below.

We begin by recalling the definition of weak solutions in our context.

Definition 3.1. For any T € (0, +00), a function @ satisfying:
Q € L™(0,T; H' N L) N L*(0,T; H?),
0:Q € L*(0,T; L%, and
QeS?, ae inQx(0,7T)

is called a weak solution of the problem (3.7) and (3.8), if it satisfies the initial and
boundary conditions (3.9), and we have:

—/ Q : Oy Rdxdt
Qx[0,T]

= —2L1/ OrQ : O Rdzdt — / [a+ctr(Q?)]Q : Rdxdt
Qx[0,1] Qx[0,7]

— 2(L2 + Lg) / 8ink6jRijda:dt

Qx[0,7]

+ (L2 + LS)/ Ok QuiOi Riidxdt

Qx1[0,7]
— 2L4/ QurOr Q01 Rijdxdt — L4/ 0iQr0;QrRijdxdt
Qx[0,T] Qx[0,T7]
L
+4 |VQ|2Riidxdt—/Q0:R(O)da:.
2 Jaxp,m Q

Here R € C°([0,T) x Q, M?*%(R)) is arbitrary.

Remark 3.4. The notion of weak solution above is similar to the one considered in
Definition 3.2 and Remark 4 of Ref. 20 for a related system. The main difference in
our situation is the regularity requirement on R. The more standard requirement
would be that R € H}(Q2), however, because of the presence of the cubic term
we need a stronger assumption. A similar situation occurs in Ref. 7, where test
functions are taken in a smaller space than H{ (2) because of the presence of similar
terms. For simplicity we take here only smooth functions although a larger class of
test function should still work for obtaining existence of solutions.

Proof of Theorem 2.1, Part (i). For simplicity we only consider the homoge-
neous boundary problem. The analysis of the corresponding inhomogeneous bound-
ary condition is similar but involves many lengthy computations which obscure the
heart of the matter. We start by augmenting (3.7) and (3.8), (1.6) with a singular
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potential. Explicitly, consider the system:

0 0
o = A= <5l () + Lal(O1p)* — (010)* ~ (@up) + (0a0)” + 201702
+ 2L4(02pOrq + pd101p + 2q0102p — pd2dap) — ap — 2¢(p® + ¢*)p,  (3.27)
0 0
8_3 = (Aq — €a—£(p, q) + 2L4[01q02q — 01pdap + O1p01q — O2pDag]
+2L4(p0101q + 2q0102q — pD202q) — aq — 2¢(p* + ¢°)g, (3.28)
with initial data
p(x,0) =p5(z), q(z) =q5(x), VzeQ, (3.29)
and boundary conditions
p(z,t) =0, gq(z,t)=0, Ve (3.30)

Here p§, g5 € C°°(Q2) N H(Q) are such that
Py —po and g5 —qo in H'(Q)NL>(Q),
and f(p, q) is the singular potential®:
—In(4ny — p? — ¢?) if p® + ¢ < 4na,
T = { if p* +¢* > dipy

(where 72 is as defined in (3.23)). The advantage of this approximating system is
that it has a singular potential term in its energy:

&l [ VB + 1VaP) + <fp.a)do
Q
+2L4/ p(101pl* — |02p)?)da
Q
+ 4Ly / q(01pO2p + 01q02q)dx
Q

+/ a(p® + ¢*) + c(p* + ¢*)*dz. (3.31)
Q

Hence finite energy will imply p? + ¢ < 41y almost everywhere. We will then
prove an additional preservation of smallness principle for the approximate system
(3.27)-(3.30). Namely, we will show the stronger L> bound p? + ¢®> < 7, almost
everywhere in time and space, provided this is true initially, at ¢ = 0. Thus we
will be able to conclude that the terms coming from the singular potential become
uniformly small and disappear in the limit ¢ — 0.

“Let us note that this choice of the singular potential ensures that the system thus obtained
satisfies the symmetry and tracelessness constraints. The partial derivatives will only make sense
for solutions of finite energy, hence such that p? 4+ ¢® < 472 a.e. so that we are in the effective
domain of the convex potential f.
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In order to obtain the existence of the approximate system (3.27)-(3.30), we
regularize the singular potential f and construct an approximating sequence using
the Galerkin method. To regularize the singular potential we use an approximating
sequence of functions fy : R? — R that satisfy the following properties:

(1) fn:R? — R is O and convex,
(2) there exists a constant & € R such that

—a? < fy(p,q), VYp,g€R and VN >1, (3.32)

(3) fv < fn41 < fonR?forall N €N,
(4) fn — f in C*(D(f)) as N — oo (where D(f) is the domain of f, namely

D(f) :={(p,q) € R%p* + ¢* < 4n2}).

A similar construction was carried out in Ref. 22 using Moreau—Yosida approxima-
tion and a suitable smoothing, and we refer the reader to Ref. 22 for the details.
For the Galerkin approximation, let {¢1,...,%n,...} be an orthonormal basis

of L?(Q) consisting of eigenvectors of the Laplacian (with zero Dirichlet boundary

conditions). Let P,, : L? — H,, where H,, def span{y1, ..., pm}. Consider the

finite-dimensional system:

Opm 0
D Ap — P d 22 (g o) b+ LaPon{ (019)? — (Brm)? — (Bap)}
ot Op
+ L4Pm{(a2qm)2 + 2alpm82qm + 282pmalqm} + 2L4Pm{pmalalpm
+ 2¢m,0102Pm — Pm0202Pm — AP — 2C(pgl + qgn)pm}v (3'33)
Oqm 0
Zm = CAQm —ePm ﬁ(pm:Qm) + 2L4Pm{81Qma2Qm - 81pm62pm}
ot dq
+ 24P {010m01Gm — 020m02Gm } + 2L4Pr{pm01014m
+ 20 0102Gm — Pm0202Gm — aqm — 2¢(p2, + ¢2)m }» (3.34)

with initial conditions

Pm(2,0) = (Pmpp)(x),  q(x) = (Pmgg)(z), Ve (3.35)

The above system depends on three parameters: €, m and N. For simplicity
we drop the explicit dependence on € and N from the notation, and only keep the
subscript m in the solutions py,, ¢,,. We will first send N — oo and then m — oo to
obtain solutions to the approximate continuous system (3.27) and (3.28). Finally
we will pass to the limit € — 0. We divide the remainder of the proof into three
steps.

Step 1: Sending N — oo. We look for solutions of the form

pm(t2) & 37 ab (O0i(), gm(t,2) = - b (Di(2).
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The existence of solutions for short time is a consequence of the standard Cauchy—
Peano local existence theory for systems of ordinary differential equations. The
bounds (3.39) obtained below will suffice for showing that the existence of the
system holds for arbitrary intervals of time.

Note that for £ > 0 small enough we have (p§)?+(g5)? < 272 almost everywhere.
Since for m — oo we have Py,,p§ — p5 in H? — L we can arrange

Hpmng%oo + ”,qu(%”%‘” < 27727 (336)

for m = m(e) large enough, and e sufficiently small.
Multiplying Eq. (3.33) by 0:pm, and Eq. (3.34) by 0:¢m, adding and integrating
over §) gives

Elpm(t), (1)) + £ /Q I (Prs @)+ 195Dl 22 0.y

+10:qm | 20,1y x0) < E°[Pm(0), ¢m (0)]. (3.37)

Here &[v,w) of Ev,w] — € [, fn(v,w)de with E° as defined in (3.31). To
obtain (3.37) we integrated by parts and used the fact that P, is a self-adjoint
operator on L2.

We now focus on understanding what a priori bounds are provided by (3.37).
We claim that the finite dimensionality of H,, allows us to find a large enough
constant C'(m), which depends on m but not on N or €, such that

| 5050 OF + 190, (0P )ds < Epn0.an (0] + Cm). (338)

To see this, observe that there exists a constant C (m) depending only on m and €2,
such that:

/ 2L4[pin (|019m|* — |02Pm|?) + 2m (01Pm O2pm + 01mDo2qm)]dx
Q
+/ a(ph, + a) + c(ph, + q5) da
Q
2 3 3 4 3
o l3 3
4 3 2 2 2 2 \2
+ §L4|qu| +a(py, + @) + c(pr, + ¢7,)7 | d
< C/ La(pd, + @) + a(p?, + a2,) + clpp, + 42) da
Q

+ LyC(m) / (P2, + ¢3,)dz
Q

3
(where for the first inequality we used Young’s inequality ab < ‘13—3 + szz and for
the second the finite dimensionality of H,,). This immediately implies (3.38) as
claimed.
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For the rest of this step, for the sake of clarity we will specify the hidden depen-

dence on N, namely denote p o P> @y o Qm-

Thus using (3.32), adding C(m) +ea?|Q| to both sides of (3.37) and taking into
account (3.38), we have the a priori bounds:

Il o,y < C 0wl 202 < G,
lag Il o= 0.7y < Cs N[ Oeam |l 20.7i22) < C

where the constant C' is independent of N but depending on m. Further, since
pN ¢N € H,, and H,, is a finite-dimensional space with a C> basis the above
implies that for all k € N,

]SVU% HP%HLOO(O,T;H’@) + HCI%”LW(O,T;H’C) + ||8tP%HL2(0,T;Hk)
=

+110ea Nl 220,710y < 0. (3.39)

The above estimates show that as N — oo, the limit of pY and ¢} exist (along
a subsequence) and in suitable spaces, to be denoted p,,, respectively ¢,,,. Further,
using the above a priori estimates in (3.37) we obtain

e / I, gY)dz < C,
Q

where the constant C' is independent of N. In particular, using the monotonicity of
fn (-, ) with respect to N, we have that for any Ny > 1:

6/ fNo(p;\/wquX)dx <C, VYN > Ng;
Q

N

N g respectively to p., qm we get:

hence using the pointwise convergence of p

5/ FngPm, gm)dz < C.
Q

Since Ny was chosen arbitrarily the monotone convergence theorem now implies

e /Q F(Pros @)z < C, (3.40)

in the limit NV — oo, along a subsequence. Thus, as N — oo along a subsequence, we
obtain a solution to (3.33) and (3.34) with fx replaced by f. Further (3.40) shows
that for all £ > 0 the limiting functions p,, and ¢, are in the effective domain of
the convex potential f.

Step 2: Sending m — oco. Since (3.40) implies p2, +¢2, < 41 for all m € N, almost
everywhere in (0,77) x €, the same argument as in Proposition 3.1 now shows:

2
217/ VD (2,)]? + |Vam (2, 1) |*dx — %|Q| < Epm(t), gm(t)], Vt>0, meN.
Q
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Using (3.37) (with fx replaced by f) shows the existence of a constant C(e) such
that

T
/ / (0] + [Ougon )zt < C(e). (3.41)
0 Q

Since we work on a domain where f is finite almost everywhere, Eqgs. (3.33)
and (3.34) (with fxn replaced by f) show:

' A . 2d d
/0 /Q<C pm_gpm{4n2—(p%n+q;i)}+gm) vt

/ / (CAqm £Pm {4772 — (25::+ 2 } + Hm)2 dzdt < C(e). (3.42)

The quantities G, and H,,, above are defined by:

def 8pm 2pm

Gm = T — CApm + P, {—4772 sy } and (3.43)
def Ogm 2qm

Ho T (A + 2Py {—4772 ) } (3.44)

Expanding the left-hand side of (3.41), we have:
T T
> [ [P+ CAam st [ [ (1G4 [P
0 Q 0 Q
r 2p : 2q
N [ (S P .
/0 /n dng — (P2, +¢2,) dnz — (p2, + q2,)
T
2pm }
- 2 AP P 4 —— L dadt
/0 /9 ehp {4772—(p%n+q;‘)n)
T
2qm
- 2 eAGn P {4 ———— L drdt
/0 /Q A {4n2—(p%n+q?n)}
- 2P, 4 —— "\ G drdt
/0 /Q {4n2—(p$n+q?n)
/ / 2P, { 24 }Hmdazdt
4ny — (P2, + ¢2)

T
+/ / 2C(ApmGm + AgmH o )dxdt
o Jao

2
dxdt

Cn+ + 1L (3.45)
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Clearly I, I and I3 are positive. For Iy + I5, we integrate by parts to obtain:
Iy+1 :4{5/ /me~V{—m}da:dt
’ o Ja dne — (p7, +43,)

T
2qm
+4 5/ /v m-v{—}dxdt
¢ 4 4ng — (p2, + ¢2,)

— 4Ce / / e (Vpnl” 1Vl g gy
Az — (p7, + )

V|2 Yam
+4<//me Pl + @ qlddt
dng — (p2, +42,)
P2Vaml? + ¢4 |Voml? = mam VomVam
—4Ce 5 3
dng — (p2, +42,)

S ace /T/ 202 |V |* + 262, |V g |* + 49m@m Vo Vam
- dnp — (P2, + ¢2,)

dxdt

dxdt

Here we used the fact that p2, + ¢2, < 42 a.e. in (0,7) x Q.
By Young’s inequality we see

1
Ig+I7 +Ig > —5(11 —|-13) — 1615.
Consequently
1
0(6) > 5(]1 + 13) — 1515.

We claim that due to our choice of 72, the 155 term can be hidden in I; /2. Indeed,
using (3.33), (3.34), (3.43) and (3.44) we see that G,, and H,, are respectively all
the terms in (3.33) and (3.34) that have Ly as a coefficient. Of these, the second-
order terms are all multiplied by p., or ¢,,, both of which are uniformly bounded
by m2. The first-order terms can be handled by interpolation. Consequently when
72 is sufficiently small we can arrange [1515| < I /4 (see also Remark 3.3).

The above shows

T
/ /50|Apm|2 60| Agum [2dadt < C(e), (3.46)
0 Q

for some small constant dp > 0 independent of m. This allows us to pass to the limit
m — oo and obtain weak solutions of (3.27) and (3.28). Moreover, these solutions
are such that the limits p®, ¢° belong to L>(0,T; H' N L°>°) N L?(0,T; H?). Since
H' — L5 we now have p®,¢° € L*(0,T; W3). Consequently using the definition
of weak solutions we see that (3.27) and (3.28) hold pointwise with all the terms
interpreted as elements of L2(0,T; L?).

Step 3: Sending e — 0. We recall that for clarity of presentation we have suppressed
the e superscript, and p, ¢ are solutions of the e-dependent system (3.27) and (3.28).
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Since all terms in Eqs. (3.27) and (3.28) are L2(0,T;L?) we can use the same
argument we used in the proof of Proposition 2.1. Namely letting h? = p? + ¢2,
multiplying (3.27) by p(h? — n2)", (3.28) by q(h? — 12)*, adding and integrating
over ) leads to the analogue of (3.19):

100 [ 102 =m)P(0)ds < 5 [ (342D Lalh = V(R = o) Pla
+ [0+ VDLl = QT + 900 = ) da
_/gwdx_ (3.47)
Q

4ny — (p® +¢?)

Recall that we chose the initial data such that for the € > 0 small enough we
have

C2

ETWoDEL (3.48)

1R(0, Mo <12 <m1 =

Inequality (3.47) shows that
Or||(h(t)? —m2) T |22 <0 provided ||h(t)||2e < 1.

This immediately shows that if ||(h(t)? — n2)"||2, = 0 at time 0, it must remain 0
for all t > 0. Consequently p? + ¢ < 1y for all ¢ > 0.

This immediately shows that |pd, f (p, ¢)| < C(n2), and the extra e-terms appear-
ing in (3.27) converge to 0 uniformly as e — 0. Following the proof of Proposition 3.1
this will now give (3.24) with additional € terms that are uniformly converging to
0. This gives uniform in e estimates for p,q in L%(0,7; H?) and for d;p,d;q in
L2(0,T; L?), which is enough to pass to the limit & — 0. O

Lemma 3.2. Suppose

Q= (5%‘ _q;) & 15°(0, 00; HY()) N L2, (0, 003 HA(Q) (i = 1,2)

are two global weak solutions to the problem (3.7)(3.9) on (0,T), which satisfy
[Qill Lo ((0,00)x2) < V212 (i =1,2),

with n2 as in Theorem 2.1.
Then for any t € (0,T), we have

1(Q1 — Q2)®)]| < Ce“"[|Qor — Quzll, (3.49)

where C' > 0 is a constant that depends on Q, Qo; (i = 1,2), Q and the coefficients
of the system, but not t.
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Proof. Let p =p1 — p2, § = q1 — 2. We see
P = CAP — ap — 2¢(pi + p1p2 + 3 + ¢3)P — 2cp2(q1 + 42)@
+ L4[01p01 (p1 + p2) — 01@01(q1 + g2) — D2p02(p1 + p2)]
+ L4[02G02(q1 + q2) + 201902q1 + 201p202G + 201¢1 02D + 202p201 4]
+2L4(p0101p1 + p20101p + 240102p1 + 2q20102p — pO202p1 — p20202D),

(3.50)
and
@ = CAG— ag — 2¢(q; + q1q2 + @ + p3)q — 2cq1(p1 + p2)p
+2L4[01G02q1 + 019202 — 01p02p1 — O1p20-p]
+2L4[01p01q1 + O1p201q — D2pdaqr — O2padaq]
+2L4(p0101q1 + p20101G + 2¢01 021
+ 2201029 — pOadaqr — p2020249), (3.51)
p(0,2) = q0,2) =0, YzeQ, plaa={qlaa=0. (3.52)

Multiplying Eq. (3.50) with p, Eq. (3.51) with ¢, integrating over 2 and using
the boundary condition (3.52) gives:

~—(lIplI* + llall*) + <IIVal® + ¢ Vall?
=1Ly /[81]751 (p1 + p2) — 01401 (g1 + g2) — O2p02(p1 + p2) + 02G02(q1 + q2)
+201p02q1 + 20192027 + 20141 02D + 202p201q|pdax

—1/aﬁ44k@%+pr+p§+ﬁﬁﬁ+2qmmn+qﬁﬂ@m

+2L4 /(]58181]71 + p20101D + 2G0102p1 + 2q20102p

— PO20ap1 — P20202D)pdx

+2L4 /[81q82q1 + 019202q — 01002p1 — 01p202D + 01p01q1 + 01p201q
— 02p02q1 — Oop202q]qdx

—/m“Mdﬁ+m@+ﬁ+£ﬁﬂﬂmmm+mﬂ@x

+2L4 /(]53131(11 + p20101q + 2q0102q1 + 2¢20102q

— Pp0202q1 — p20202q)qdx
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Note that DP1,P2:41,92,D,q € LOO(OvoO; Hl(Q)) n L2

loc

(0, 00 H2(2)) 1 L=((0, 00) %
), hence we know by Lemma 3.1 that:

L+ I < CIpllzaey + 1) sy IVBN + IVaD IV Q1 Loy + IV Q2 2ae)
< C(AQ:IZIVQuIZ + IVQull + [AQ2 ]2 [VQall* + [ VQall)
x (12112 + l21>)(IVBlI* + [ val?)
guwwnz +IVal?) + COUAQL? + [AQ2l®) (212 + llall?),  (3.54)
I + I, < (Il + llal?). (3.55)

For I3, integrating by parts gives:

I3 = —2L4{2/p81p81p1dx+/81p2p81pdx+/pz(alp)Qd{L‘—l—Q/palqagpldx
2 / qopOaprdx + 2 / PO q202pdx + 2 / q201pOapdix

-2 / DO2pOaprdx — / Oap2pOapdx — / p2(0ep)?dx }

= I3q + -+ I3;.
Among all these I3, ..., I3;, we may estimate separately. First, by the assump-
tion
Q1] Lo ((0,00)x0) < V212, [|Q2lLoe((0,00)x0) < /272,
we see

Is. + I3y + I3 = 214 {/P2(31p)2d95 + 2/(12311582]5d$ - /Pz(azp)zdx}
< 2[Lal{lpall o< 0:10]1° + llg2]l = (101511 + [|920]1)
+ [[p2ll 102017}
< 2| La|[|hal L {[1010]1* + 101p]1* + (|02l + [| 0251}
< 4\L4|WL2||L°<>||V25||2

Vol

1+4f

2o
—=|Vp||~.
211V

A

Here hy = /p3+ ¢35 is defined in the same way as (3.13), and we know from

(3.23) and Proposition 3.1 that [|h| =) < /M2 < Next, similar to

¢
(1+4v2)|La|’
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the estimates for I; and I, we have

I3 + I3p + I3q + I3c + I3y + I3, + I3
- _ _ _
< §(HVP||2 +IVal®) + CUIAQ1 1 + [|AQ: |l + 1)(IIpII* + llall*).
Therefore,
(- Cios _ _
Iy < 3||Vpu2 + §HV(1||2 +C(JAQ” + AQ21* + D)(IIpl1* + llg*).  (3.56)
We control I in a manner similar to I3:
Q- 7Clro- _ _
Is < §HVPH2 + gHVqH2 + C|AQ ] + 1AQ2[* + 1)(IIp]I? + lal*).  (3.57)

Combining our estimates we have
5212 +1lal?) < CUAQLIP + [AQ2)1* + D)(IIpI* + 1all*), ¥t >0. (3.58)

Here C' is a positive constant that depends on Qq, Q, and the coefficients of the
system. Using Proposition 3.1 and (3.1), then a direct application of Gronwall’s
inequality leads to (3.49) O

4. Blow-Up for Large Initial Data

In this section we aim to prove Theorem 2.2 by constructing (large enough) initial
data for which the solution of (1.6) exhibits a finite time blow-up of the L2-norm.
For this purpose we use a hedgehog type ansatz:

{L‘i.’tj (Sij

Qij(t7.%') = 0(t, |.’E|)S”, where Sij = ( |J,‘|2 - 7), i,j = 172, (41)

on the spherical domain Bp, (0)\Bg,(0). Using the rotational symmetry of the
ansatz and domain, we reduce the evolution of ) to a scalar one-dimensional scalar
PDE for 6. For this it suffices to only take boundary conditions for 8. It turns out
that boundary conditions of the form

e(t,Ro) = H(t,Rl) >0, Vt>0 (42)

are enough for our purposes. The main result of this section shows that any solution
to (1.6) of the form (4.1) with boundary conditions (4.2) and large enough initial
data blows up in finite time.

We begin with an evolution equation for 6.

Lemma 4.1. Let Q be of the form (4.1). Then Q is a smooth solution of (1.6) if
and only if 0 is a smooth solution of

7\2 / 2 / 4 3
3759:_[,4(@4_%4’_&9”4_%)+C9”+£_g_a _i, (43)
2 T T T r 2

where ( is defined in (3.10).
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Remark 4.1. By the coercivity condition (1.4) we know ¢ > 0.

Postponing the proof of Lemma 4.1 to Appendix D, we prove Theorem 2.2.

Proof of Theorem 2.2. Let _ = —min{#, 0}. Multiplying Eq. (4.3) by —6_r,
integrating over Ry, R;]| and integrating by parts gives:
1d [,
5% R G_Td’f'
Ry o’ 29_ 693 Ry
= —L4/ [( -) r—|—92_9’_—|——] dr—/ Ly0* 0" r + C(0")rdr
Ro 2 r Ro
Ry Ry R, 2
/ / 97 2 €
—¢ 0" 0_dr+¢ 0" 0_dr — 4C— + (ab” + =02 )rdr
Ro Ro Ro r 2
Ry o’ 297 603 Ry
= —L4/ [Lr +0%0" + —] dr + L4/ (026" 4 2(0")%0_r]dr
Ro 2 r Ro
Ry ) Ry p2 Ry ) ¢,
— 0" )ordr — 4C —dr — / af® + =0 ) rdr
Ro ( ) Ro T Ro ( 2 >
Ry Ry 03 R1 R1 p2
_ 3L (0")20_rdr — 6L4/ —dr —¢ (0" )2rdr — AC —dr
2 Ro Ro r RO RO r
R,
- / (02 + S0%) rar. (4.4)
Ro 2

Next multiplying (4.3) by —0:0_r and integrating over [Ry, R1], and integrating by
parts wherever necessary gives:

R,
0 S / (8t9_8t9_)7‘d7‘

Ro

Ry 9/ 2 9_0/ 692 Ry
=14 0:0_ [( -) + -+ —2} rdr + Ly 00" 6_6" rdr
Ro 2 T T Ro
Ry Ry Ry
+ Ly 040 (0 )2rdr + Ly O0_0_0" _dr — ¢ 0,0 0" rdr
Ro Ro Ro
R1 Ry Ry 02 02 04
| 80 0 dr+c | 060_0 dr— i/ 20— + <G—+C—> rdr
Ro Ro dt Ro r 2 8

d [ (0)2 202 (07)> 262
:5/30 {Lﬁ[ 5 —T—Q}—g{ 5 +r—2]—(%02+§04>}rdr.

Hence if we denote by

def B (9/,)2 2602 (GL)Q 202 a c
]:(t)_/Ro {L49|: B _7‘—2:|_C|: B) +r—2]—(§02+§64>}rdr7

(4.5)
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we have F(t) > F(0) and

R .
—2( (0_)2rdr > 4F(0) _/ <2L49_ [(01) 492} ) %—22) -

Ro Ro r?
f 2, Cpa
—|—/ 200~ 4 -0~ ) rdr. (4.6)
. ( 2 )

We divide the argument into two cases: Ly < 0 and Ly > 0. Suppose first Ly < 0.
Then ¢ > 0 shows that —( le 0" )2rdr > —2¢ le 0’ )?rdr. Using (4.6) in (4.4),
we obtain:

1d 5
2 9 rdr
3Ly [P /Rl 63 /Rl 6% s Co4
> 27e _ —dr — = z
=7 (0_)*0_rdr —6L4 T dr . 4¢ " + (aﬁ_ + 29_) rdr
s 4621  8¢H* 5 Coy
+4F(0) — /RO <2L49 [(0/) = ] — 2 2a0* — 50) rdr

which becomes:

1d

2
Sq 9 rdr
L Ry 03 92 Ry
> ((9/_)29_rdr —2L4— — 4{—_) dr +4F0) +a 02 rdr
2 Ro r r Ro
L Rl 2L, [T f
>_Lip / @20 dr+ 224 [ B ar a5 0) — o) [ Zrdr.  (47)
2 Ro Ro Jg, Ro
Using Poincaré’s inequality, we get
R1 Ry 2 Ry
4 47
0 )20_dr > —/ 0%/2)12dr > 63 dr.
/1%0 ( ) o 9 Ro [( )] 9(R1 - R0)2 Ro
Therefore, if we choose Ry, R; so that
Rin?
—— > 1, 4.8
9(R1 — Ro)? (48)
the inequality (4.7) reduces to:
1d 9
YT 0 rdr
L4 4R07T2 4 :l 3 2
> | 0°dr —|a 97‘d7‘+4]-'0
2 L)(Rl ~RP R “I /s, v

3

Rl 2 Rl

> My ( 92_rdr> —|al 02 rdr + 4F(0). (4.9)
Ro RO
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Here
dﬁf 2L4R0 7T2 1

My = - —.
* T /RF—R: 9B —Ro)?  R3

Consequently, if one assumes || 150 ' 02_rdr is suitably large, then (4.9) will force

fliil 0% rdr — oo in finite time, concluding the proof when L; < 0. The above
argument with 6_ replaced by 6, will handle the case when Ly > 0. |

Remark 4.2. Our technique does not seem to have a straightforward extension to
domains which are not radially symmetric. In such domains, we do not know if a
similar phenomenon occurs for large enough initial data.

5. The Physicality Preservation Argument

Our aim in this section is to prove Proposition 2.2, showing that certain eigenvalue
constraints (the so-called physicality constraints) are preserved by the evolution
equation (1.6). This issue is more subtle than the preservation of the L>°-norm.

Proof of Proposition 2.2. Under the assumption Ly + L3 = Ly = 0 and in
d = 2,3 system (1.6) becomes

(9;2;3' =2L1AQi; —aQ4j +b (Qikaj - Tdij) —ctr(Q)Qij,  (5.1)

with 7,5 = 1,...,d. Note that when d = 2, the constant 2L; is replaced by ( =
2L1 + Ly + Lg > 0 in (5.1). Thus the argument below is also valid even if Ly +
L3 # 0. For consistency, we only consider Lo + L3 = 0.

The proof will be done by using a nonlinear Trotter product formula (see for
instance Chap. 15, Sec. 5 in Ref. 21). To briefly describe the idea, let us denote by
e?tL1A R the solution of the heat equation in the whole space, starting from initial
data R (where R is assumed to take values into the space of d x d matrices):

tr(Q?)

o —y|?

(2 1AR) i (t, x) = e ST Rij(y)dy, i,j=1,....,d,  (5.2)

1
(47t)d/2 /Rd
and by S(t,S) € 8@ the flow generated by the ODE part of (5.1), i.e. S(t,5)
satisfies:
9
ot
S(O, S)” = Sij,

withd,j =1,...,d.

Then the Trotter formula provides a way of expressing the solution of (5.1) as
a limit of successive superpositions of solutions of the heat equation part and the
ODE part, namely by denoting Q(¢,z) the solution of (5.1) starting from initial
data Qo(x) we have, loosely speaking:

Q(t,x) = nlingo(eQTLl/"AS(T/n, N"Qo, Yt el[0,T).

tr(S?)

Sij (t, S) = —aSij +b (SikSkj i

(Sij) — ctr(SQ)Sij7 (5.3)
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Let us note now that a set of the form

{Q e R, Q = Q%3 < \(Q) <7, for all eigenvalues \;(Q) of Q}

is convex (as the largest eigenvalue is a convex function of the matrix, while the
smallest eigenvalue is a concave function, see for instance Ref. 5).

It is then clear that if we manage to show that both e*£14 and S(t,-) preserve
the closed convex hull of the range of the initial data then this will also hold for
the limit Q(¢, ). The arguments consist of three steps.

Step 1: The convex hull preservation under the heat flow.
Denote

-1
ly|? ly|?
def ) (4mt)?/? / e StLid e stLi for |y| <mn,
B, (y) < (4mt) 5.(0) Y lyl <

0 for y| > n.

For any f € L'(R?), we obtain that

(47Tt1)d/2 /Rd @ = y)®n(y)dy — 2 [ (), (5.4)

pointwise as n — oo.

Now, let us observe that the measures u,(y) = ®,(y)dy belong to the set
M41(Bn(0)) of regular Borel probability measures supported on B,(0). The
extremal set of the convex set My;(B,(0)) consists of delta measures 0, with
x € Bp(0), where §,(F) = 1 if and only if x € E for any Borel set E C B, (0);
see for instance, (Example 8.16, p. 129 in Ref. 19). On the other hand, by Krein—
Milman theorem (see also Chap. 8 in Ref. 19), we know that p,, can be written as a
limit of convex combinations of extremals in the weak-star topology of M (B, (0))
interpreted as a subset of the dual space [C(B,(0))]*, i.e.

J (k)
9;?530? X, as k— oo,
j=1

with the convexity condition

J(k)
k

> oo =1,

j=1

where 0¥ >0,V 1 < j < J(k), k € N. Therefore, for any « € R and n large enough
so that |z| < n, it holds

J(k)

Jim. ; 05 f(zh —2) = /Rd [z —y)dun(y)dy.

After passing to the limit n — oo, we henceforth get (e**/14 f)(x) is in the convex
hull of the image of the initial data f.
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Step 2: The physicality preservation under the ODE.
We divide the argument into two cases.

The 2D case: We consider the ODE:

d  Ofg 1 dfp
for @ denoting 2 x 2 matrices, where we use the standard bulk term:
a b c
fB(Q) = §tr(Q2) - gtr(Q?’) + Z(tr(QQ))z' (5.6)

Taking into account the specific form (5.12) of fp, Eq. (5.11) becomes:
1
%Q =—aQ+b (Q2 -3 tr(QQ)]I> — cQtr(Q?). (5.7)

Multiplying the equation scalarly by @, and using that tr(Q) = 0 and also the
fact, specific to 2 x 2 Q-tensors, that tr(Q?) = 0 we obtain:

Ld o _ 2 4

L0 = il - 6.9
Let ¢(|Q]) def —a|Q* — c|Q|* = —|Q*(|Q]* + £). We consider the following two
possibilities.

Case A:a > 0. Then ¢g(|Q]) < 0, for |Q| # 0. Hence (5.8) implies |Q(¢)|? < |Q(0)|%.
Case B: a < 0. Then
9@ <0, for |QP>-=>0. (5.9)

We claim that:

1Q(0)] < —%:>|Q(t)|<\/—7%, Vit > 0. (5.10)

In order to prove the claim let us assume for contradiction that there exists a
e > 0 such that at some positive time [Q(t)] = \/—2 + ¢ and let us denote by
to the smallest such positive time. Then Eq. (5.8) together with (5.9) imply that
4|QI*> < 0 hence there exists an earlier time t_; < g so that |Q(t—1)| = /=% +¢
contradicting our hypothesis on ¢y and proving the claim (5.10).

The 3D case: We consider the ODE:

do_ s 1 (0fs
%Q_ 8Q+3tr<8Q>]L (5.11)
where we use the standard bulk term:
F5(Q) = 2 r(Q?) ~ 2 (Q") + S(1x(Q?)”. (512)

Taking into account the specific form (5.12) of fg, Eq. (5.11) becomes:

%Q =—aQ+b <Q2 — %u(@%ﬂ) —cQtr(Q?). (5.13)
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Now take the scalar product of this equation with @. (Recall, scalar product of
def

matrices A, B is defined by (A, B) = tr(AB) and |A| = /tr(A?).) Using addition-
ally the fact that tr(Q) = 0 gives

5 1017 = ~alQP + br(@®) - QI (5.14)

We recall that (see for instance Ref. 15) we have |tr(Q?)| < |3|6 which used in
(5.14) (under assumptions (1.3)) implies:

w

d 2 2 b 3 4

— Q" < — —|Q" — : 1

719" < —alQF + —&IQP — Q| (5.15)

Let us denote h(Q) = —alQP* + L5|QJ* — clQ[*. 2 are | /25,
with

b+ Vb2 —24
sy = (5.16)
4c
Then
2
B(IQD) <0 for |Q|>\ﬁs+ (5.17)

Taking into account (5.15) we claim that, if we denote by Qo the initial data of
the ODE (5.13):

2 2
1Qo|* < =55 = [Q()* < gsi, vt > 0. (5.18)

Indeed, if our claim were false, for any € > 0, let us denote by ¢o(¢) the first time
when |Q|? reaches the value 252 + ¢, i.e.

2 2
1Q(to)]? = gsi +e, and |Q(t)]? < gsi +e, Vt<to.

Then (5.17) and (5. 15) imply that £|Q(to)|? < 0. Hence there exists a time &y < o,
such that |Q(fo)| > 2s3 + ¢, which contradicts our choice of #o. Thus for [Qo|* <
252, Eq. (5.13) has a solution that is bounded, and the right-hand side of (5.13)
is globally Lipschitz on the ball where the solution evolves. As a consequence, we
obtain that for |Qo|*> < 252, Eq. (5.13) has a unique global solution evolving with
the property that |Q(t )|2 < 257

Let us consider now the system:

d\ s o A2oo2., 2

L — N [2e(N2 4 A2 4+ AN R YD

7 1[2¢(AT + A5 + M A2) +a] + <3 372~ ghide ),

dX A2 2 2 (5:19)
d_; = —X[2¢(A\F+ A3+ A A2) +a] +b <§ - —)\2 /\1>\2>

The right-hand side of the system is a locally Lipschitz function so the system has
a solution locally in time (in fact with some more work global in time and bounded,
using arguments similar to the ones before for the matrix system).



Dynamic cubic instability for liquid crystals 1507

On the other hand, let us note now that if we take

)\(1) 0 0
QO - 0 )‘g 0 )
0 0 —X—)
then
A1 (t) 0 0
QY= 0 X 0

0 0 —Ai(t) = a(t)

Hence if \; (), A2(t) are solutions of (5.19) with initial data (A9, ) then Q(¢) is a
solution of (5.13) with initial data Q. On the other hand, by uniqueness of solutions
of (5.13), it must be the only solution corresponding to the diagonal initial data Q.
Thus we have shown that a diagonal initial data will generate a diagonal solution.

For an arbitrary, non-diagonal initial data Q07 since Qo is a symmetric matrix,
there exists a matrix R € O(3), such that:

A0 0
RQoR'= [0 X 0 :
0 0 =X —2X9
where (A%, X9, =A% — A9) are the eigenvalues of Q. If Q(t) is a solution of (5.13)
with initial data Qo, then multiplying on the left by the time-independent matriz

R, and on the right by the time-independent matriz R?, using the fact that RR? =1
(as R € O(3)), we obtain the following equation:

%RQ(t)Rt — _aRQ()R' +b (RQ(t)RfRQ(t)Rt - %tr(RQ(t)RtRQ(t)Rt)]I)
— cRQ() R tr(RQ(1) R'RQ(1) RY). (5.20)

Hence if we denote by M (t) def RQ(t)Rt, we conclude that M satisfies Eq. (5.13)

with initial data
A0 0
Mo RQR' =] 0 X 0
0 0 —X0—2A9
Since the initial data is diagonal, we infer by previous arguments that M (t) is
diagonal for all times and

0 0 —Ai(t) — A2(?)
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with A; (), A2 (t) solutions of (5.19) with initial data (A9, A9). Thus we obtain that

A1(t) 0 0
M(t)=RQWE = | 0 X(t) 0 ,
0 0 —Ai(t) = A2()
hence
A1 (t) 0 0
Qty=R'| 0 Xt 0 R.

0 0 —Ai(t) —A(?)
This shows that we can reduce the study of the system (5.13) with an arbitrary

initial data to the study of the system (5.19).
The bound (5.18) expressed in terms of eigenvalues A1, Ay becomes

2
2[(AD)? 4+ (A9 + (AIA))] < 533_, Vi > 0. (5.21)
Note that 2 ’ < A? + 42 4+ A\, hence the last bound implies

2 2
2[(A)? + (A9)% + A0A9)] < 583 = @] (] < 354+, VE20. (5.22)

We consider now the difference A\1(t) — Aa(¢t), and out of inspection from the
system (5.19) we see that it satisfies an equation of the form:

L0(0) = (1)) = (1) = X(D)E (1), Mo (1),
for some function G. This shows that if A < A9, then A\;(t) < A2(¢),Vt > 0. We
assume without loss of generality that this is indeed the case.

We aim to show now that A;(0) > —3= implies Ay () > —5- for all t > 0. We
assume for contradiction that this is not the case and there exists a first time ¢y
after which A (¢) + 5~ becomes negative, i.e. Ai(to) = —%5- and there exists a § > 0
so that A (t) < —F for t € (fo, o+ 0). The right-hand side of Eq. (5.19) evaluated
at tp becomes:

2 5 2s
(es =) (alto) + 5) (deltn) - 257, (5:23)
Then Eq. (5.21) implies A2(tg) € [—%,QSﬂ If X\o(to) € {—3% 28*} then
for all ¢ > 0 we have A\(t) = —3, Aa(t) = Az2(to), due to the fact that the

pairs (—%, 258 (— %, %) are stationary points of the system (5.19). Thus we
assume without loss of generality that Az (to) € (=3, 2S+) and henceforth, taking
into account assumption (2.4), we infer that the expression in (5.23) is positive so
d’\l +(to) > 0, which contradicts our assumption that there exists a 6 > 0 so that

/\1( ) < —2F for t € (to,to + 6).

Thus we have shown that if —%5 < A} < A3 < 22 then \i(t) € [-3F, 22t
for all ¢ > 0. The fact that \;(t) < \a(¢) for all times enbures £ < \o(t) for all

times.
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Step 3: The Trotter product formula.
We use Proposition 5.3 on p. 313 in Ref. 21. To this end, we denote

Vi (t) € es28(s, ) (e2TL /"2 8(T I, ))*Qo,
for t = kTT +swith 0 <s < % Then Proposition 5.3 ensures that we have

1Q, ) = Va®)llzx < CI1Qoll 5 )7, (5.24)

for 0 <y < 1,and all ¢t € [0,77. O

Appendix A. Derivation of the Gradient Flow Equation

Our goal in this subsection is to derive (1.6), the equation for the gradient flow

of £.

Proposition A.1. The gradient flow defined by (1.5) satisfies (1.6).

Proof. Choosing a test function ¢ € C°(Q2, M?*4(R)) and integrating by parts
gives:

d
/]—“el Q + to)dr + — /]:bulk Q +tp)dx
- / 2010k i Ok Qij + L2(0;0ik0rQij + Orpij 0;Qir)da
Q

+ L3/ 0jijOkQik + Orpir0;Qijdx
Q

+ L4/ galkainjalQij + Qlkak@ijalQij + Qlkak@ijal@ijdm
Q

b
+ /Q aQijpij — g(%‘k@kaji + Qirprj Qji + QirQujpji)

+ctr(Q?)Qyjpijdx

= -2 / (LlAQij + L28j8ink + Lg@jaink)gpijdx
Q
- 2L4/ (01Qi;0kQui. + 00k Qi;Qui — 0;Q110; Q1) pijda
Q

+ /Q aQijpi; — bQikQripij + ctr(Q*)Qijpijdr.
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Since ¢ is arbitrary this allows the identification:

o0&
(@) = —2L1AQs; + aQij — bQ;kQri + ctr(Q*)Qy;
ij
—2(La + L3)0;0kQir — 2L401Qi;0x Qui — 2L4010k Q5 Qi
+ L40;Qri0 Q.-

Substituting this in (1.5) and choosing u to enforce the symmetry constraint
Qij = jS forces

i — pji = (L2 + L3)(0;0rQjr — 0j0kQik)-
Similarly, choosing A to enforce the trace-free constraint @);; = 0 forces

b L
A= =3 t1(Q%) = (L2 + Lo)0dkQue + 5 IVQP

Substituting A, x4 and 6€/0Q in (1.5) immediately gives (1.6). m|

Appendix B. The Reduction of the Landau—de Gennes
to Oseen—Frank in 2D

Our goal in this Appendix is to show that if @ takes a special form, then the
Landau-de Gennes energy can be reduced to the Oseen—Frank energy functional.
We recall that the 3D Oseen—Frank energy functional is

W = Ki(divn)? + Ky|n - curln|? + K3|n A curln|?
+ (Ko 4 Ky)[tr(Vn)? — (divn)?], (B.1)

where K; are elastic constants measuring the relative strength of the various types
of spatial variations of the unit vectors n € S? (see Ref. 11). In 2D we clarify that
for a vector function n given by

n = (ny,na,0),
we have
curln = (0,0, 01n2 — dang),
and hence
n-curln =0, |nAcurln|? = |curln|?
On the other hand, n? 4+ n3 = 1 implies
(n1,n2,0) - 01(n1,n2,0) = (n1,n2,0) - 92(n1,n2,0) =0,

and hence (01m1,01m2,0) = c(0anq, dans,0) for some ¢ € R. Thus d1n10ane =
Oon101no, which shows

tr(Vn)? = (divn)?.
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Consequently, the Oseen—Frank energy in 2D reduces to:
Wap = Ki(divn)? + Kz|curln|? + (Ko + K4)[tr(Vn)? — (divn)?]
= Ki(divn)? + Ks|curln|?. (B.2)

If @ takes the special form:

st(n@n—g),

where s is a constant, then the 2D Landau-de Gennes energy functional reads:
E(Q,VQ) = L1|VQ|* + L29;Qir0kQi; + L30;Qi;0kQik + L1Qui0iQi; 0k Qs
= 2L 8%[[curln|? + tr(Vn)?] + Los?[Jcurl n|? + tr(Vn)?]
+ L3s?[(divn)? + |curl n|?] + Lys®[|curln|* — tr(Vn)?]
= (2L + Ly)s*[|curl n|? + tr(Vn)?] + Lzs*[(divn)? + |curln|?]
+ Lys®[|curl n|? — tr(Vn)?]
= (L18° + L3s? — Lys®)(divn)? + (L1s® + Lys® + Lys®)|curl n|?
+ (L18% — Lys®)[tr(Vn)? — (divn)?]
= (L18° + L3s* — Lys®)(divn)? + (L1s® + Lzs® 4 Lys®)|curl n|?.
(B.3)
Here we denote
Ly =2L; + Lo.
We let
Ky = L1s* 4+ Lss® — Lys®, K3 = L1s* + Las® 4+ Lys°, (B.4)

then £(Q,VQ) is reduced to Wap. And conversely, f/h L3, Ly can be expressed in
terms of K in the following way:

K3 — K,
—
Remark B.1. Note that if Ly = 0, then K7 = K3 in (B.4), which indicates that the

Oseen—Frank energy (B.2) cannot be completely recovered without L. Therefore,
the cubic term is necessary.

L382 = Kl, 2L483 = K3 — K17 f/182 = (B5)

Appendix C. Energy Coercivity in 2D

In this Appendix we prove that the condition (1.4) (reproduced as (C.1) below) is
equivalent to coercivity in two dimensions, and quantitatively gives the estimate
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(3.22) (reproduced as (C.2) below). As mentioned earlier, the three-dimensional
analog can be found in Refs. 8 and 13.

Lemma C.1. If n =2 and the elastic constants Ly, Lo, L3 satisfy
Li+ Ly >0, Li+L3>0, (C.1)
then for all x € Q) we have
(L1|VQ* + L20;Qir0kQij + L30;Qi;0xQir ) (z) > v|VQ[*(2), (C.2)
where

v < min{Ly + Ly, Ly + L3} > 0. (C.3)

Proof. Due to the special structure (3.6) of @ in 2D, the elastic energy can be
rewritten as

(L1|VQ* + L20;Qir0kQij + L30;Qij 0k Qi)
= (2L1 + Lo + L3)(|Vp|2 + |Vq|2) + 2(L3 — L2)81p82(] + Q(Lz — L3)82p81q

=xTBx, (C.4)

where
X = (01p, 02p, 019, 929)" € RY,

and

201+ Lo+ L3 0 0 Ls— Lo
B 0 2Ly + Lo+ Ls Lo — L3 0 c RiX4

0 Lo— L3 2L+ La+ L3 0
Ls— Lo 0 0 201+ Lo+ L3

By a direct calculation, we see that the eigenvalues of B are
A =X =2(L1+ La) and A3 =Xy =2(L1+ L3).
Consequently,
(L1IVQP + L20;Qir0kQij + L30;Q:01 Qi)
= x"Bx = min{A1, Ao} [x|* = 20[|Vp|* + [Vq?] = v|VQP,

as desired. O

Appendix D. Calculations for the Hedgehog Ansatz

In this section we prove Lemma 4.1 deriving the evolution of 6 that reduces the
gradient flow dynamics in the case of the Hedgehog ansatz.
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D.1. Calculations for Hedgehog type solutions: L4
and L4 parts
We begin by computing the first derivative of Q);; in terms of 6:
e S Sords 4 Saras  Dpawadn
Qijk = OkQij = ok (am;] — ﬂ) +9< %5 1 Ok _ xw]xk)

ol \ f2> 2 J? |

Next we compute the second derivative of Q;; in terms of 6:

i 5 (5“ (Skl XX XT;X 4 (5“
o = g IR (TG O\ g (KL TR [T Oij
Qi P\~ 2 ) T\ TP )\ T 2

,:L‘_k <5ilxj 5jlxi _ QxifL‘j:L‘l> ,ﬂ <§ikxj 5jk515i _ Qxixjxk)
[ \ |=[*  2[? |z [* [ \ fz> o 2f? ||

) 5ik5jl - 25ik1’j$l 5il6jk _ 25jk’$l1’i
|| || || ||

_o 2(6azjar + dwixn + dpaixy)  Bazjaem
Edl ||

Thus for the term 2L4Q;;,:Qik k in (1.6), we have:

2L04Qi5,1Qukk = 2Ly [0’£ (xixj — (Si> +46 ((M%‘ + Oui _ 2xixjxl>-

z| \ [=[> 2 [z |z]? |z|*
i (TiTE ik Owwr Tk 2wxpwy |
w2 (e Ok g -
{ B <le2 2)* <|x|2 TRl T Tl )

_ 2L4 |:0,£ (J%J)j - %) +0 (51137]' T xiéﬂ _ 2331‘%’36;)'

ol \ f2> 2 2 fal? |

For the term 2L4Q1Qij,11, We get:

2L4Q11Qij k1
Tpxr Ol n Tkl (O TRT Ti%; O
— L0 (ZEEL QKLY g TR g (0K TR _ %
! (ac 2” o2 " (ac |x|3>} (ac 2

XX 5/@[ 1 Lk 5ilfL‘j :L‘i(sj'l 2xixjxl
2140 B N el -
T (az 2 )[ al <le2 T T e

TEx| o 5kl> |:0, Xy (511@1’3 l’iisjk- 2331‘33]'1%)]

R

|
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2 2 o2 Jalt EEE

T Okl 2(5ilxjxk + xi(Sﬂxk + :L‘ixj(skl) Sxixjxkxl
—2L40 —— )0 —
lz> 2 ||* |

00’ 462 TiTi O
n_ 77 - vy 2
(99 El |x|2) (|x|2 2 )

For —L4le,ile7j, we have:

Ok 0; 2 i
—L4Qii1,iQrij = —La [0’ p (mkxl _ @) +0< Wi TEOi 2wkt )}

+2L460 (xkxl — %) 0 [5“@'51'1 20;x751 040 2$l$¢5jk:|

> 2 z[*  [=f? ||
€Z, x| 5kl 5k' iy J)k(s il 2$k1‘l$ i
P -%) (- -]
{wl > 2 =2 |z[? |z [*
xix; 20460 €T;x
= —Ly(0')? 55 — = <5lj J)

22 2> |2

and

02 9/ 2
—|VQ| 5 = L [| T+ %} 55
For terms related to Ly, we get:

AQij = Qij.kk

PR 0 1 [ aizs O
= 0" Ly _ Qi 9 — i ij
<x|2 2 ) TR\ P T 2

+29,‘ I <5ik1‘j n l’iisjk- 2$¢1‘j1‘k)
x

R

4920 [§ik5jk|$|2 — Oinxjxp — il (Oik®jxp + OjkZiky + OpriT;)

|z[* x|

8l‘il‘j
|z [*

o’ 40 TiTi O
" - = vy 2
(9 e |x|2) (|x|2 2 )

D.2. Terms related to Lo + L3

+0

There are two extra terms in this case, namely 2(Lg + L3)9,;0,Qqr and
L3)0;0kQux0i;. For the former, we calculate

Tk xixk_dz_‘k / %_wkxj %_(Sz_k
Qikkj =0 EE < EE 2 ) 0 <|$| |3 ) ( |z[? 2

9, 0ij Tk n 20k B 2%, T n T 0ikTr  TiOkk B 20 TLT L
z2  Jzf? |z |* 2| \ |z[? |z|? |z |*

—(Ls +
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+9 5ik5kj _ 26ik1’k1’j 5ij5kk _ 2$j$i5kk
|| || || ||

| |
Y Tilj il [ Tily Ty 5”' il
= (T - o) o (T - T ot )

+9, (% T Tilj - 2l‘i$j> +9, <$¢J)j n 2l‘i$j _ 2$¢$j)

o[ 2P e R N

+0 < (Sij 2.’I,'i$j 2(5@' 4{,Ei.’IJj Q(Sij 4.’L'i.’I,'j 8.’1,'1{1,‘])

9 [2(5ijxkxk + 0k + Opjz;xy) Sxixkxkxﬂ

o L N I - N |z[*
0" xiz; 0" [ xix; 0 20,7 ;
- - 8 ) + — (6, — 2421,
2 P " 2f] <|x|2 o) TR T Tap
While for the latter, it holds:
Otk O T 1T Ok
_ 9,,xkxl LT} Ok 9, Okl Ty Ok
Quetre =g \ o =2 ) V0 ol "ol ) (e ™ 2

Lo (5113% 210k 2$l$z$k> ;T <5zk$k 10k 2$z$k$k>

|| ||

2 [af? |[* 2 J2? |[*

4o OkOuk 2016k n Oudkk  2z1x10kk
|[? |z[* |z |[*
_ g | 20uzkri + Sy + duntir) 8T Tk
|[* |[®
6" 3
_L 2y
> o]

We conclude after putting them together that
(Lo + L3)(Qik,kj + Qikki) — (L2 + L3)Quie,10i5

/ L ..
= (L2 + L3) (9”+ L ﬁ) (WS] - %).

e[ |22/ \J2* 2

Tilj 5”' Tilj 5”' 1
_ _ :Si'Si':_~
<|x|2 2><|x|2 2 0Ty

Hence summing up the above calculations, then taking the inner product with S,
and denoting

It is noted that

¢ =2L1 + (L2 + L3),

we arrive at the following equation for the scalar unknown 6 only:

/\2 / 2 /
010 = Ly @+%+09”+@ +§9”+@—@—a0—503.
2 r r2 r r2 2
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