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Abstract. In this paper, we consider the modified quasi-geostrophic equation

∂tθ + (u · ∇) θ + κΛαθ = 0

u = Λα−1R⊥θ.

with κ > 0, α ∈ (0, 1] and θ0 ∈ L2(R2). We remark that the extra Λα−1 is
introduced in order to make the scaling invariance of this system similar to the
scaling invariance of the critical quasi-geostrophic equations. In this paper, we
use Besov space techniques to prove global existence and regularity of strong
solutions to this system.

1. Introduction

The 2-dimensional quasi-geostrophic equations are

∂tθ + (u · ∇) θ + κΛαθ = 0(1.1)

u = R⊥θ(1.2)

where α > 0, κ > 0, Λ = (−△)1/2 is the Zygmund operator, and

R⊥θ = Λ−1(−∂2θ, ∂θ).

The case α = 1 (termed as the critical case) arises in the geophysical study of
rotating fluids [10].

In this paper we consider the following modification of the 2 dimensional dissi-
pative quasi-geostrophic equation:

∂tθ + (u · ∇) θ + κΛαθ = 0(1.3)

u = Λα−1R⊥θ(1.4)

We assume κ > 0 and α ∈ (0, 1].
Note that when α = 1 this is the critical dissipative quasi-geostrophic equation.

The case of α = 0 arises when θ is the vorticity of a two dimensional damped
inviscid incompressible fluid [3]. When κ > 0, α ∈ (0, 1), the dissipation term is
the same as that of the supercritical quasi-geostrophic equation, however the extra
Λα−1 in the definition of u makes the drift term (u · ∇)θ scale the same way as
the dissipation Λαθ. Precisely, equations (1.3)–(1.4) are invariant with respect to
the scaling θε(x, t) = θ(εx, εαt), similar to the scaling invariance of the critical
dissipative quasi-geostrophic equation.
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Our goal in this paper is to show the global existences of smooth solutions to
(1.3)–(1.4) with L2 initial data. For the dissipative quasi-geostrophic equations
(1.1)–(1.2), this problem has been extensively studied, partly because several au-
thors have emphasized a deep analogy between the 2-dimensional critical dissipa-
tive quasi-geostrophic equations and the 3-dimensional Navier-Stokes equations.
While global existence of the Navier-Stokes equations remains an outstanding open
problem in fluid dynamics [4, 8], the global existence of the 2-dimensional quasi-
geostrophic equations was recently settled by Kiselev, Nazarov and Volberg [9] in
the periodic case.

Using different techniques, the global existence of smooth solutions to (1.1)–(1.2)
(with α = 1) was proved in general R

n by Caffarelli-Vasseur [1]. In the supercritical
case (0 < α < 1) global existence of smooth solutions is still open. The works [6,7]
have extended the framework of Caffarelli-Vasseur [1] to apply in this situation,
however two parts of this proof require additional assumptions: Hölder continuity
of weak solutions, and smoothness of Hölder continuous solutions. In this paper,
we show that both these difficulties can be resolved for the modified equation (1.3)–
(1.4). We describe briefly outline this below.

Following Caffarelli-Vasseur [1], the first step is to show that Leray-Hopf weak
solutions to (1.3)–(1.4) are in fact L∞. Using a level set energy inequality this was
shown in [1] for general equations of the form (1.3), provided α = 1 and ∇ · u = 0.
In the case 0 < α < 1, the same result has been shown in [7] for the equations
(1.1)–(1.2). The latter result directly applies in our situation, and thus Leray-Hopf
weak solutions to (1.3)–(1.4) are automatically L∞.

The next step is to show that an L∞ Leray-Hopf weak solution of (1.3)–(1.4)
is also Hölder continuous, with some small exponent δ. For α = 1, this has again
been shown by Caffarelli-Vasseur [1] using a diminishing oscillation result and the
natural scaling invariance of the critical quasi-geostrophic equations. The paper [7]
generalizes the diminishing oscillation result in the supercritical case. However the
natural scaling of (1.1)–(1.2) when 0 < α < 1 will not preserve the BMO norm of u,
which is required in order to apply the diminishing oscillation result. To circumvent
this difficulty, [7] assumes that u is apriori C1−α, which gives the desired control
on the BMO norm of u after the appropriate rescaling.

We remark however that the natural scaling of (1.3)–(1.4) preserves the BMO
norm of u for any α > 0. Thus the method of Caffarelli-Vasseur can be applied to
show that Leray-Hopf weak L∞ solutions of (1.3)–(1.4) are actually Cδ for some
small δ. However, one can directly deduce this from the work [7]. Note that
equation (1.4) guarantees u ∈ C1−α provided θ ∈ L∞ which we know to be true for
Leray-Hopf weak solutions. Thus the result of [7] directly applies in this situation
and hence weak solutions of (1.3)–(1.4) are automatically Hölder continuous with
some small exponent δ > 0.

The final step is to show that a Leray-Hopf weak solution which is Cδ is a smooth
solution. The paper [6] shows this for the supercritical quasi-geostrophic equations
provided δ > 1 − α, and that result applies in the present case. Thus the only
case that requires special attention is that when 0 < δ 6 1 − α. This is the main
theorem of this paper, and the only theorem for which we present the complete
proof. Following the method of [6], we essentially show that if a Leray-Hopf weak

solution of (1.3)–(1.4) is spatially Ḃδ1
p,∞ for some δ1 ∈ (0, 1), then it is actually Ḃδ′

p,∞,
where δ′ = δ1 + min{δ1, α}. Successive application of this result will guarantee our
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weak solution is in fact a classical solution, which can be shown to be smooth via
well known methods.

In the next section, we establish our notational convention, and prove improved
regularity of Hölder continuous solutions to (1.3)–(1.4) (the main theorem). We
only provide a proof for two spatial dimensions, but we remark that the proof
goes through almost verbatim in higher dimensions. Finally for completeness, we
conclude the paper by stating the required theorems from [1, 6, 7] and using them
to deduce smoothness of weak solutions of (1.3)–(1.4).

2. Improved Hölder regularity

We recall that θ is a Leray-Hopf weak solution of (1.3)–(1.4) if

θ ∈ L∞([0,∞), L2(R2)) ∩ L2([0,∞), Ḣ
α
2 (R2))

and θ solves (1.3)–(1.4) in the distribution sense.
In this section we will show that if for some δ1 ∈ (0, 1), a Leray-Hopf weak

solution of (1.3)–(1.4) is spatially Hölder continuous with exponent δ ∈ (0, 1),
then it is actually (spatially) Hölder continuous with a better exponent δ′ = δ +
1
2 min{δ, α}.

We begin with a brief description of our notation. Let {φj | j ∈ Z} be a standard
dyadic decomposition of R

2. Namely, for each j ∈ Z, φj is a Schwartz function
with Fourier support (compactly) contained in the annulus 2j−1 < |ξ| < 2j+1 and
∑

j φ̂j(ξ) = 1 for ξ 6= 0.

We define ∆j by ∆jf = φj ∗ f , Sj =
∑

k<j ∆jf , and the (homogeneous) Besov
norm of f by

‖f‖Ḃs
p,q

=







(

∑

j

(

2js‖∆jf‖Lp

)q
)

1
q

if q < ∞

supj 2js‖∆jf‖Lp if q = ∞

and the homogeneous Besov space Ḃs
p,q to be the set of all f such that ‖f‖Ḃs

p,q
< ∞.

We refer the reader to [6] for a concise statement of standard embedding theo-
rems, and inequalities we use subsequently. For a more detailed account, and proofs
we refer the reader to Stein [13, Chapter 5], Stein [14, p264], Schlag [12], or the
classical papers of Taibleson [15–17].

Finally, we need a lower bound on the (dissipative) term that arises in the process
of obtaining L

p estimates of (1.3)–(1.4) (see [18], or Chen, Miao, Zhang [2]).

Lemma 2.1. Let α ∈ (0, 2), and 2 6 p < ∞, j ∈ Z and f be a tempered distribution

on R
n. Then there exists c = c(n, α, p) such that

∫

Rn

|∆jf |
p−2

∆jfΛα∆jf >
2αj

c
‖∆jf‖

p
Lp

We now state and prove the main result of this section.

Theorem 2.2. Suppose θ is a Leray-Hopf weak solution of (1.3)–(1.4) such that for

some δ > 0, we have θ ∈ L∞([t0, t1], C
δ). Then for any t′0 > t0, θ ∈ L∞([t′0, t1], C

δ′

)
where δ′ = δ + 1

2 min{δ, α}.

Proof. Let p > 2, and δ1 = (1 − 2
p )δ. Then

‖θt‖Ḃ
δ1
p,∞

= sup
j

2δ1j‖∆jθt‖Lp
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6 sup
j

2δ1j‖∆jθt‖
1− 2

p

L∞ ‖∆jθt‖
2
p

L2

6 ‖θt‖
1− 2

p

Cδ ‖θt‖
2
p

L2

Thus θ ∈ L∞([t0, t1], Ḃ
δ1
p,∞). Note that we use the notation θt to denote the function

θ(·, t), and not the time derivative of θ.
Now applying ∆j to (1.3) gives

(2.1) ∂t∆jθ + κΛα∆jθ = −∆j(u · ∇θ)

We know that

∆j(u · ∇θ) =
∑

|j−k|62

∆j (Sk−1u · ∇∆kθ) +
∑

|j−k|62

∆j (∆ku · ∇Sk−1θ)+

+
∑

k>j−1

∑

|k−l|61

∆j (∆ku · ∇∆lθ)

Multiplying (2.1) by p|∆jθ|
p−2

∆jθ, integrating over R
2 and using Lemma 2.1 gives

(2.2) ∂t‖∆jθ‖
p
Lp +

κ2αj

c
‖∆jθ‖

p
Lp 6 I1 + I2 + I3

where

I1 = −p
∑

|j−k|62

∫

|∆jθ|
p−2

∆jθ · ∆j (Sk−1u · ∇∆kθ)

I2 = −p
∑

|j−k|62

∫

|∆jθ|
p−2

∆jθ · ∆j (∆ku · ∇Sk−1θ)

I3 = −p
∑

k>j−1

∫

|∆jθ|
p−2

∆jθ ·
∑

|j−l|61

∆j (∆ku · ∇∆lθ)

We first bound I3 directly using Hölder’s and Bernstein’s inequalities.

|I3| 6 cp‖∆jθ‖
p−1
Lp

∥

∥

∥

∥

∥

∥

∆j∇ ·





∑

k>j−1

∑

|l−k|61

∆lu∆kθ





∥

∥

∥

∥

∥

∥

Lp

6 cp‖∆jθ‖
p−1
Lp 2j

∑

k>j−1

∑

|l−k|61

‖∆lu‖L∞‖∆kθ‖Lp(2.3)

Similarly for I2.

|I2| 6 c‖∆jθ‖
p−1
Lp

∑

|j−k|62

‖∆ku‖Lp‖∇Sk−1θ‖L∞

6 cp‖∆jθ‖
p−1
Lp

∑

|j−k|62

∑

m6k−1

‖∆ku‖Lp2m‖∆mθ‖L∞(2.4)

For I1, we note
∑

|j−k|62

∆j (Sk−1u · ∇∆kθ) =
∑

|j−k|62

[∆j , Sk−1u · ∇] ∆kθ +
∑

|j−k|62

Sk−1u · ∇∆j∆kθ

=
∑

|j−k|62

[∆j , Sk−1u · ∇] ∆kθ +
∑

|j−k|62

Sju · ∇∆j∆kθ
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+
∑

|j−k|62

(Sk−1u − Sju) · ∇∆j∆kθ

where we use the notation [A, B] to denote the commutator AB − BA. Since we
know

∑

|j−k|62 ∆j∆k = ∆j , we have

I1 = I11 + I12 + I13

where

I11 = −p
∑

|j−k|62

∫

|∆jθ|
p−2∆jθ · [∆j , Sk−1u · ∇] ∆kθ

I12 = −p

∫

|∆jθ|
p−2∆jθ · (Sju · ∇∆jθ)

I13 = −p
∑

|j−k|62

∫

|∆jθ|
p−2

∆jθ · ((Sk−1u − Sju) · ∇∆j∆kθ)

Note that u (and hence Sju) is divergence free, thus I12 = 0. We bound I13

directly using Hölder’s inequality:

|I13| 6 cp‖∆jθ‖
p−1
Lp

∑

|j−k|62

‖Sk−1u − Sju‖Lp‖∇∆jθ‖L∞

6 cp‖∆jθ‖
p−1
Lp 2(1−δ1)j‖θ‖C

δ1

∑

|j−k|62

‖∆ku‖Lp(2.5)

We now split the analysis into two cases.

Case 1. δ1 < α.

In this case, we will show that for any t′0 > t0, θ ∈ L∞([t′0, t1], Ḃ
2δ1
p,∞) for any

t > t0. After this the theorem will follow using standard embedding theorems about
Besov spaces.

We first bound I2, I3 further. The idea is to obtain a 2(α−2δ1)j times norms which
are apriori controlled on the right. As we shall see, this doubles the regularity of θ.

From (2.3) we have

|I3| 6 cp‖∆jθ‖
p−1
Lp 2j‖u‖C

δ1+1−α

∑

k>j−1

2−(δ1+1−α)k‖∆kθ‖Lp

= cp‖∆jθ‖
p−1
Lp 2(α−2δ1)j‖u‖C

δ1+1−α

∑

k>j−1

2(1+2δ1−α)(j−k)2δ1k‖∆kθ‖Lp

6 cp‖∆jθ‖
p−1
Lp 2(α−2δ1)j‖θ‖C

δ1 ‖θ‖Ḃ
δ1
p,∞

.

For I2, we have from (2.4)

|I2| = cp‖∆jθ‖
p−1
Lp

∑

|j−k|62

‖∆ku‖Lp2(1−δ1)k
∑

m6k−1

2(m−k)(1−δ1)2mδ1‖∆mθ‖L∞

6 cp‖∆jθ‖
p−1
Lp ‖θ‖C

δ12(α−2δ1)j
∑

|j−k|62

2(k−j)(α−2δ1)2(δ1+1−α)k‖∆ku‖Lp

6 cp‖∆jθ‖
p−1
Lp 2(α−2δ1)j‖θ‖C

δ1 ‖u‖Ḃ
δ1+1−α
p,∞

6 cp‖∆jθ‖
p−1
Lp 2(α−2δ1)j‖θ‖C

δ1 ‖θ‖Ḃ
δ1
p,∞
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For I1, we bound I11, . . . , I13 individually. For I13 we have from (2.5)

= cp‖∆jθ‖
p−1
Lp 2(α−2δ1)j‖θ‖C

δ1

∑

|j−k|62

2(j−k)(δ1+1−α)2(δ1+1−α)k‖∆ku‖Lp

6 cp‖∆jθ‖
p−1
Lp 2(α−2δ1)j‖θ‖C

δ1‖θ‖Ḃδ
p,∞

The term I12 = 0 and requires no bounding. Finally we bound the commutator
I11. Note that

[∆j , Sk−1u · ∇] ∆kθ =

∫

φj(x − y) [Sk−1u(y) − Sk−1u(x)] · ∇∆kθ(y) dy

Since δ1 < α, δ1 + 1 − α < 1, thus

‖Sk−1u(x) − Sk−1u(y)‖L∞ 6 ‖u‖C
δ1+1−α |x − y|δ1+1−α

6 c‖θ‖C
δ1 |x − y|

δ1+1−α
.

Hence

|I11| 6 cp‖∆jθ‖
p−1
Lp 2−(δ1+1−α)j‖θ‖C

δ1

∑

|j−k|62

2k‖∆kθ‖Lp

6 cp‖∆jθ‖
p−1
Lp 2(α−2δ1)j‖θ‖C

δ1

∑

|j−k|62

2δ1k‖∆kθ‖Lp

6 cp‖∆jθ‖
p−1
Lp 2(α−2δ1)j‖θ‖C

δ1‖θ‖Ḃ
δ1
p,∞

Combining estimates, we have from (2.2)

(2.6) ∂t‖∆jθ‖Lp +
κ2αj

c
‖∆jθ‖Lp 6 c2(α−2δ1)j‖θ‖C

δ1‖θ‖Ḃ
δ1
p,∞

which upon integration yields

‖∆jθt‖Lp 6 e−
κ2αj

c
(t−t0)‖∆jθt0‖Lp + c

∫ t

t0

e−
κ2αj

c
(t−s)2(α−2δ1)j‖θs‖C

δ1 ‖θs‖Ḃ
δ1
p,∞

ds.

Multiplying by 22δ1j and taking the supremum in j gives

‖θt‖Ḃ
2δ1
p,∞

6 sup
j

e−
κ2αj

c
(t−t0)22δ1j‖∆jθt0‖Lp+

+
c

κ
sup

j

(

1 − e−
κ2αj

c
(t−t0)

)

sup
s∈[t0,t]

‖θs‖C
δ1‖θs‖Ḃ

δ1
p,∞

which immediately shows that for any t′0 > t0, θ ∈ L∞([t′0, t1], Ḃ
2δ1
p,∞).

Now note that

2δ1 −
2

p
= 2

(

δ −
2

p

)

−
2

p

and hence as p → ∞, 2δ1 − 2
p → 2δ. Thus for some large choice of p, we have

2δ1 −
2
p = 3δ

2 . Thus for this p, we have

Ḃ2δ1

p,∞ ⊂ Ḃ3δ/2
∞,∞

by the Besov embedding theorem. Finally we know L∞ ∩ Ḃ
3δ/2
∞,∞ = C

3δ
2 , concluding

the proof for Case 1.

Case 2. δ1 > α.
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This case can already be handled by result of [6], and we only provide a brief
sketch here for completeness. The main difference here is in the commutator I11,
where we can only get a 2−δ1j on the right. Consequently, this will increase the
regularity of θ by α (and not δ1, as in the previous case).

We deal with the commutator I11 first. Note that δ1 > α implies δ1 + 1−α > 1,
and hence

‖Sk−1u(x) − Sk−1u(y)‖L∞ 6 ‖∇u‖L∞ |x − y|

6 ‖θ‖C
δ1 |x − y|

This in turn gives

|I11| 6 cp‖∆jθ‖
p−1
Lp 2−j‖θ‖C

δ1

∑

|j−k|62

2k‖∆kθ‖Lp

6 cp‖∆jθ‖
p−1
Lp 2−δ1j‖θ‖C

δ1

∑

|j−k|62

2δ1k‖∆kθ‖Lp

6 cp‖∆jθ‖
p−1
Lp 2−δ1j‖θ‖C

δ1‖θ‖Ḃ
δ1
p,∞

The bounds for I2, I3 and I13 are similar to the first case, and we omit the
details. Combining our estimates leads us to (2.6) with 2(α−2δ1)j replaced with
2−δ1j . Multiplying by 2(α+δ1)j and integrating gives

‖θt‖Ḃ
δ1+α
p,∞

6 sup
j

e−
κ2αj

c
(t−t0)2(α+δ1)j‖∆jθt0‖Lp+

+
c

κ
sup

j

(

1 − e−
κ2αj

c
(t−t0)

)

sup
s∈[t0,t]

‖θs‖C
δ1‖θs‖Ḃ

δ1
p,∞

.

As before, this shows that for any t′0 > t0, θ ∈ L∞([t′0, t1], Ḃ
δ1+α
p,∞ ).

Now, δ1 + α − 2
p converges to δ + α as p → ∞. Thus for some large p, we must

have δ1 + α − 2
p = δ + α

2 . Applying the Besov embedding concludes the proof in

Case 2. �

3. Regularity of weak solutions

Given Theorem 2.2, one can use the work [7] and [1] to immediately show the
existence of global smooth solutions to (1.3)–(1.4) with L2 initial data. We recall
the relevant facts from [1, 6, 7] in this section, and briefly outline the proof.

Theorem 3.1 (Caffarelli-Vasseur [1], Constantin-Wu [7]). Let θ0 ∈ L2(R2), and

θ be a Leray-Hopf weak solution of (1.3)–(1.4) with initial data θ. Then for any

t > 0, θt ∈ L∞(R2), and further

‖θt‖L∞ 6 c
‖θ0‖L2

(κt)1/α

We remark that Caffarelli-Vasseur [1] only proves Theorem 3.1 for α = 1, and
Constantin-Wu [7] only prove Theorem 3.1 for the system (1.1)–(1.2). The proof of
this theorem in Constantin-Wu [7] however only uses the fact that u is divergence
free, and thus applies directly for the system (1.3)–(1.4). We do not present the
proof of Theorem 3.1 here.
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Corollary 3.2. Under the assumptions of Theorem 3.1, for any t > 0, ut ∈ C1−α

and further

‖ut‖C1−α 6 c
‖θ0‖L2

(κt)1/α

Proof. This follows immediately from the fact that
∥

∥Λα−1f
∥

∥

C1−α 6 c‖f‖L∞ �

Corollary 3.3. Under the assumptions of Theorem 3.1, for any t0 > 0, θ ∈
Cδ(R2 × [t0,∞)) for some δ > 0.

Proof. By Corollary 3.2, we know u ∈ L∞([t0,∞), C1−α(R2)). Thus the results of
Constantin and Wu [7] (Theorem 4.1 in particular) applies proving the corollary. �

Lemma 3.4. Suppose θ is a Leray-Hopf weak solution of (1.3)–(1.4). If for any

θ ∈ L∞([t0, t1], C
δ(R2) for some δ ∈ (0, 1), then θ ∈ C∞((t0, t1] × R

2).

Proof. We apply Theorem 2.2 can be applied repeatedly to show that for any t′0 >

t0, θ ∈ L∞([t′0, t1], C
δ′

) for some δ′ > 1. Now the space regularity can be converted
to time regularity, showing that θ is a classical solution of (1.3)–(1.4) on the interval
[t′0, t1]. Higher regularity now follows via standard techniques. �

Theorem 3.5. For any θ0 ∈ L2(R2), there exists θ ∈ C∞(R2×(0,∞)) which solves

(1.3)–(1.4) with initial data θ0.

Proof. Global existence of Leray-Hopf weak solutions to (1.3)–(1.4) can be estab-
lished using the standard method of Galerkin approximations (see for instance [11],
in the case of (1.1)–(1.2), or [5] in the case of Navier-Stokes). The proof is now
immediate from the above results. �
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