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Abstract. Consider a discrete time Markov process Xε on Rd that makes
a deterministic jump based on its current location, and then takes a small
Gaussian step of variance ε2. We study the behavior of the asymptotic variance
as ε → 0. In some situations (for instance if there were no jumps), then the
asymptotic variance vanishes as ε → 0. When the jumps are “chaotic”, however,
the asymptotic variance may be bounded from above and bounded away from 0,
as ε → 0. This phenomenon is known as residual diffusivity, and we prove this
occurs when the jumps are determined by certain expanding Bernoulli maps.

1. Introduction
1.1. Main Result. Consider a Markov process {Xε

n}n⩾0 that makes a deterministic
jump based on its current location, followed by a Gaussian step of variance ε2.
Explicitly, Xε

n+1 is determined from Xε
n by

(1.1) Xε
n+1 = φ(Xε

n) + εξn+1 .

Here {ξn}n⩾1 is a family of independent standard Gaussian random variables,
and φ : Rd → Rd is a Lebesgue measure preserving map with a periodic displacement
(i.e. the function x 7→ φ(x) − x is Zd periodic).

In this situation it is easy to see that for any v ∈ Rd, the variance var(v · Xε
n)

grows linearly with n as n → ∞. Our interest is to study the growth rate of the
variance asymptotically as ε → 0. More precisely, we are interested in the behavior
of the asymptotic variance

lim
n→∞

varµ0(v ·Xε
n)

n

in the vanishing noise limit ε → 0. Here µ0 is a probability distribution on Rd, and
the notation varµ0(v ·Xε

n) denotes the variance of v ·Xε
n given Xε

0 ∼ µ0.
If φ is “not too chaotic”, then the asymptotic variance of v ·Xε may either vanish

as ε → 0 (for instance, if φ is the identity map) or diverge to +∞ (for instance, if
the map φ has a shear structure, with unbounded orbits). If, however, φ is “chaotic”,
then it may be possible for the asymptotic variance of v ·Xε to be bounded from
above and bounded away from 0 as ε → 0. This phenomenon is known as residual
diffusivity and its study originated in fluid dynamics [Tay21,BCVV95,MCX+17].
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The main result of this paper shows that the processes Xε exhibits residual diffusivity
when φ is obtained from a certain class of expanding Bernoulli maps (see Section 2,
below). To the best of our knowledge, this is the only class of chaotic maps for
which residual diffusion has been rigorously proved.

Figure 1. One example of an expanding Bernoulli map φ. The
colored regions on the left are mapped to regions of the same color
on the right.

Our main result is the following:

Theorem 1.1. Suppose φ is obtained from an expanding Bernoulli map satisfying
the conditions in Assumption 2.1, below. For all v ∈ Rd, and all subgaussian initial
distributions µ0 we have

(1.2) lim
ε→0

lim
n→∞

varµ0(v ·Xε
n)

n
= varπ0(v · ⌊X0

1 ⌋) .

Here π0 denotes the uniform distribution on the unit cube Q0
def= [0, 1)d, and the

notation ⌊·⌋ denotes the bottom left vertex of the containing unit integer lattice
cube. Explicitly, for x ∈ Rd, the notation ⌊x⌋ denotes the unique element in Zd for
which x ∈ ⌊x⌋ +Q0.

Notice that the right side of (1.2) is non-zero if the image of Q0 under φ intersects
more than one cube. One example of an expanding Bernoulli map that satisfies the
conditions of Theorem 1.1 is shown pictorially in Figure 1. Another example can be
constructed from the one dimensional doubling map, and is defined by
(1.3) φ(x) = 2x− ⌊x⌋ , x ∈ R .

Interestingly, if we introduce a shift by 1/2 into (1.3) then we obtain an example of
a mixing map which does not exhibit residual diffusivity. Explicitly, we define the
shifted doubling map by

φ2(x) = 2x− ⌊x⌋ − 1
2 , x ∈ R .
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The shifted doubling map satisfies all but one of the required hypothesis in Theo-
rem 1.1 (specifically, for the shifted doubling map the cube centers oi in Section 2,
below, are not integers). The results of the numerical simulations in Figure 2 show
that the doubling map exhibits residual diffusivity, while the shifted doubling map
does not.
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Figure 2. Asymptotic variance for the doubling map, and the
shifted doubling map as ε varies from 10−1 to 10−5. For the
doubling map the asymptotic variance approaches the value on the
right of (1.2) (blue dashed line) as ε → 0. The shifted doubling map,
however, doesn’t exhibit residual diffusivity and the asymptotic
variance approaches 0 instead of the value on the right of (1.2)
(orange dashed line).

The main idea behind the proof of Theorem 1.1 is to use mixing to show that
the asymptotic variance starting from any (subgaussian) initial distribution µ0 is
close to the asymptotic variance starting from the uniform distribution π0 on Q0.
When Xε

0 ∼ π0, the Bernoulli structure of φ serendipitously makes increments
of ⌊φ(Xε

n)⌋ − ⌊Xε
n⌋ independent, allowing us to compute the asymptotic variance

explicitly. Before delving into the technical details of the proof we briefly survey
the literature and place Theorem 1.1 in the context of existing results.

1.2. Motivation and Literature review. Our interest in this problem stems
from understanding the long time behavior of diffusions whose drift has “chaotic
trajectories”. Explicitly, consider the continuous time diffusion process Xε

t defined
by the SDE
(1.4) dXε

t = u(Xε
t ) dt+ ε dWt on Rd ,

where W is a d-dimensional Brownian motion, and u is a spatially periodic, diver-
gence free vector field. One physical situation where this is relevant is in the study
of diffusive tracer particles being advected by an incompressible fluid.

On small (i.e. O(1)) time scales, it the process of Xε stays close to the deter-
ministic trajectories of u, and a large deviations principle can be established (see
for instance [FW12]). On intermediate (i.e. O(|ln ε|/εα) for α ∈ [0, 2)) time scales

certain non-Markovian effects arise and lead to anomalous diffusion [You88,YPP89,
Bak11, HKPG16, HIK+18]. On long (i.e. O(1/ε2)) time scales, homogenization
occurs and the net effect of the drift can be averaged and the process Xε can be
approximated by a Brownian motion with covariance matrix Dε

eff called the effective
diffusivity. This was first studied in this setting by Freidlin [Fre64], and is now the
subject of many standard books with several important applications [BLP78,PS08].

The effective diffusivity matrix Dε
eff is the unique symmetric matrix whose action

on vectors v ∈ Rd is given by

vDε
effv = lim

t→∞

var(v ·Xε
t )

t
.

This, however, is hard to compute explicitly and authors usually characterize it in
terms of a cell problem on Td, or a variational problem. In a few special situations
(such as shear flows, or cellular flows) the asymptotic behavior of Dε

eff as ε → 0 is
known [Tay53,CS89,FP94,FP97,MK99,Hei03,Kor04,NPR05,RZ07].

The motivation for the present paper comes from thinking about the case when
the deterministic flow of u is chaotic on the torus. In this case it has been conjectured
that Dε

eff is O(1) as ε → 0, a phenomenon known as residual diffusivity. Study of this
was initiated by Taylor [Tay21] over 100 years ago, and has since been extensively
studied by many authors [ZSW93,BCVV95,MK99,Zas02,MCX+17]. While this has
been confirmed numerically and studied for elephant random walks [LXY17,LXY18,
MCZ+20,WXZ21,WXZ22,LWXZ22,KLX22], a rigorous proof is of this in even one
example is still open.

The goal of this paper is to rigorously exhibit residual diffusivity in a simple
setting. First we replace the notion of “chaotic” with the assumption that the flow
of u on the torus Td is exponentially mixing (see [SOW06]). In continuous time,
however, examples of exponentially mixing flows are not easy to construct. The
canonical example of an exponentially mixing flow is the geodesic flow on the unit
sphere bundle of negatively curved manifolds [Dol98]. On the 3-torus, however, the
existence of a divergence free, C1, time independent, exponentially mixing velocity
field is an open question. To the best of our knowledge, there are only examples
of lower regularity [EZ19], and several time dependent examples [Pie94,BBPS19,
MHSW22,BCZG23,ELM23,CFIN23].

On the other hand, there are several simple, well known, examples of exponentially
mixing dynamical systems on the torus [SOW06]. Therefore, instead of studying a
continuous-time system, we study the discrete time system (1.1). The system (1.1)
can be viewed as a discretization of (1.4) where φ is the flow map of u after a
fixed amount of time. The periodicity of u translates to the requirement that the
displacement x 7→ φ(x) − x is periodic. Incompressibility of u translates to the
requirement that φ is Lebesgue measure preserving. This leads us to study (1.1)
in the general situation that φ is any Lebesgue measure preserving with a periodic
displacement (and not necessarily a diffeomorphism obtained as the flow of an
incompressible vector field). Such systems are interesting in their own right, and
various aspects of them have been extensively studied [FW03,FNW04,TC03,FI19,
OTD21, ILN24].
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In this time-discrete setting, Theorem 1.1 exactly computes the vanishing noise
limit of the effective diffusivity. Our proof, however, relies on the Bernoulli structure
of φ and will not apply to general mixing maps. For general mixing maps φ we
conjecture that (1.2) in Theorem 1.1 should be replaced with

lim
ε→0

lim
n→∞

varµ0(v ·Xε
n)

n
= lim
n→∞

varπ0(v ·X0
n)

n
.

Note, when ε > 0 it is natural to expect that the mixing effects of the noise
eliminate the dependence of the asymptotic variance on the initial distribution. The
same is true when ε = 0, provided the dynamics of φ are mixing and the initial
distribution is regular. There is, however, no explicit formula for the asymptotic
variance and no easy way to compute it in general. In our situation, the Bernoulli
structure of φ allows us to compute the asymptotic variance when the initial
distribution is π0, and this is used in the proof of Theorem 1.1.

Plan of this paper. In Section 2 we fix our notation convention and precisely
state the assumptions under which Theorem 1.1 is true. In Section 3 we explain
the main idea behind the proof of Theorem 1.1, and carry out the details modulo
the computation of the asymptotic variance when the initial distribution is uniform
(Lemma 3.2, below). Finally in Section 4 we prove Lemma 3.2.

Acknowledgements. The authors would like to thank Jack Xin and Albert Fan-
njiang for helpful discussions.

2. Expanding Bernoulli maps
We begin by precisely describing the class of maps φ for which Theorem 1.1 holds.

Partition Rd into unit cubes {Qk | k ∈ Zd}, where Qk = k + [0, 1)d. Let M ⩾ 2 and
E1, . . . , EM ⊆ Q0 be a Borel measurable partition of Q0, with

|E1| ⩽ |E2| · · · ⩽ |EM | .
For each i ∈ {1, . . . ,M}, let oi ∈ Zd and φi : Ei → Qoi be a Borel measurable
bijection which pushes forward the normalized Lebesgue measure on Ei to the
Lebesgue measure on Qoi .

Given x ∈ Rd we let n = ⌊x⌋ denote the unique element in Zd such that
x ∈ Qn = n+Q0. Define φ : Rd → Rd by
(2.1) φ(x) = n+ φi(x− n) if x− n ∈ Ei .

Clearly the function x 7→ φ(x) −x is Zd periodic, and so φ projects to a well-defined
map φ̃ : Td → Td given by

φ̃(x̃) = ỹ , where y = φ(x) .
Here x, y ∈ Rd and x̃, ỹ ∈ Td denote the equivalence classes x and y modulo Zd
respectively.

We note the map φ̃ defined above is conjugate to a one-sided Bernoulli shift on
sequences {1, . . . ,M}Z. Moreover, since φ̃ expands each set Ẽi to the torus Td, we
can view φ̃ as an expanding Bernoulli map. In addition to the above structure, we
require a mixing assumption φ̃ in order to prove Theorem 1.1. We now state this
assumption precisely.

Assumption 2.1. The map φ̃ : Td → Td, defined as above, is piecewise C1 and
exponentially mixing. That is, there exist constants D < ∞ and γ > 0 such that for
every pair of test functions f̃ , g̃ ∈ H1(Td), we have

(2.2)
∣∣∣⟨f̃ , g̃ ◦ φ̃n⟩ −

ˆ
Td
f̃ dx

ˆ
Td
g̃ dx

∣∣∣ ⩽ De−γn∥f̃∥H1∥g̃∥H1 .

We clarify that Ẽi ⊆ Td is the projection of Ei ⊆ Rd to the torus Td. We
also note that (2.1) and the fact that φ̃ : Td → Td is Lebesgue measure preserving
implies φ : Rd → Rd is also Lebesgue measure preserving. The shift invariance of φ
implies the projected process X̃ε is a Markov process on the torus Td. Equation (1.1)
and the fact that φ is Lebesgue measure preserving implies that the stationary
distribution of X̃ε is π̃, the uniform measure on Td.

Remark 2.2. The exponential mixing requirement in Assumption 2.1 can be weakened.
In the proof, this condition is only used to ensure the right hand side of (4.3) in
Proposition 4.2 (below) vanishes. Theorem 1.1 will still hold provided we replace
Assumption 2.1 with the assumption that
(2.3) lim

ε→0
εt̃εmix = 0 ,

where t̃εmix is the 1/2 mixing time of X̃ε on Td. Available results (see for in-
stance [FI19, ILN24, IZ23]) show even a quadratic decay in (2.2) implies (2.3).

Notation and convention. We now briefly clarify several convention that will be
used throughout this paper.
(1) A tilde is used to denote projections onto the torus. That is if x ∈ Rd, then

x̃ ∈ Td denotes the equivalence class x (mod Zd). Conversely if ỹ ∈ Td, we will
implicitly use y ∈ Rd to denote any representative of the equivalence class ỹ.

(2) If f : Rd → R is a function then f̃ : Td → R denotes its periodization

f̃(x̃) def=
∑
k∈Zd

f(x+ k) .

Similarly, if µ is a measure on Rd then µ̃ is the measure on Td defined by µ̃(Ẽ) =∑
k∈Zd µ(E + k), where E ⊆ Rd is any Borel set such that Ẽ = {x̃ | x ∈ E}.

(3) The expectation operator has lower precedence than multiplication. That
is, if X,Y are random variables then EXY denotes the expectation of the
product E(XY ), and EX2 denotes the expectation of the square E(X2).

(4) When X is a Markov process we will use EµXn to denote the expectation of Xn

given X0 ∼ µ. When x ∈ Rd, we use ExXn to denote the expectation of Xn

given X0 = x. For random variables that are not associated to Markov processes,
we will denote their expectation by E, without any sub or superscripts.

3. Proof of Theorem 1.1
To prove Theorem 1.1 we first need to show that the process Xε remains sub-

gaussian, with norm controlled independently of ε. Recall [Ver18] the subgaussian
norm of a random variable, denoted by ∥·∥ψ2 , is defined by

(3.1) ∥Y ∥ψ2
def= inf

{
c > 0

∣∣ Ee|Y |2/c2
⩽ 2

}
.
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Lemma 3.1. There exists a constant Λ > 0 such that for all n ∈ N, and all ε ∈ [0, 1]
we have

(3.2) ∥Xε
n∥ψ2 ⩽

Λ
2

(
∥X0∥ψ2 + n

)
.

Note that even though Lemma 3.1 gives an upper bound on ∥Xε
n∥ψ2 that is ε-

independent, it is more crude than Theorem 1.1. Indeed, the bound (3.2) implies the
quadratic upper bound var(v ·Xε

n) ⩽ C|v|2n2, whereas the conclusion of Theorem 1.1
involves bounds (both upper and lower) that are linear in n.

The next Lemma is a special case of Theorem 1.1 when the initial distribution is
uniform on Q0.

Lemma 3.2. If π0 = unif(Q0) denotes the uniform distribution on Q0 then∣∣∣ lim
n→∞

varπ0(v ·Xε
n)

n
− varπ0

(
v · ⌊X0

1 ⌋
)∣∣∣ ⩽ C|v|2

√
ε|ln ε|3 .

Lemma 3.2 is the only place in the proof of Theorem 1.1 which relies on the
Bernoulli structure of φ. Even if φ̃ is not an expanding Bernoulli map then one can
still show that the asymptotic variance of v·Xε starting from any (subgaussian) initial
distribution equals the asymptotic variance of v ·Xε starting form π0. Computing
this for ε > 0 (or even for ε = 0), however, is not easy in general. In our situation
we compute it because Assumption 2.1 makes the increments ⌊φ(Xε

n)⌋ − ⌊Xε
n⌋

independent (see Lemma 4.1, below).
Momentarily postponing the proof of Lemmas 3.1 and 3.2 we will now prove

Theorem 1.1.

Proof of Theorem 1.1. Before delving into the technical details of the proof, we will
first explain the main idea. Fix ε ∈ (0, 1), and let fn denote the density of Xε

n on
Rd. We will begin by choosing
(3.3) m = ⌊n1/4⌋ ,
and finding a probability density function gm such that
(3.4) g̃m = 1 and ∥fm − gm∥L1(Rd) = ∥f̃m − 1∥L1(Td) .

Once we have gm, we define two new (coupled) Markov processes Yk, Y ′
k, for k ∈

{m, . . . , n}, using the same evolution rule (1.1), the same noise, but different initial
distributions. We specify the initial distributions for Y and Y ′ at time m by

Ym ∼ gm and Y ′
m ∼ π0 ,

respectively. Since g̃m = 1, Ym and Y ′
m differ by an element of the integer lattice Zd,

and the periodic structure of φ will preserve this difference at all later times. This
combined with Lemma 3.2 will allow us to show
(3.5)

∣∣var(v · Yn) − var(v · Y ′
n)

∣∣ ⩽ |v|2o(n) .

The process X̃ε is a Markov process on the torus Td with stationary distribution
π̃, the uniform on Td. Additionally, available results [FI19, ILN24, IZ23] can be
used to show that X̃ε is mixing on Td. In fact, as we will see shortly, the mixing
time of X̃ε is at most O(|ln ε|3). Combined with (3.3) and (3.4), this will show
that ∥fm − gm∥L1 is small when n is large.

Finally, using subgaussianity and the fact that any Markov evolution induces a
contraction on the laws, we will show

(3.6) |var(v ·Xε
n) − var(v · Yn)| n→∞−−−−→ 0 .

Combining (3.5), (3.6) and Lemma 3.2 will conclude the proof of Theorem 1.1.

We will now prove each of the above claims. Moreover, the proofs of (3.5) and (3.6)
will be quantitative and we will obtain an explicit rate at which the right hand sides
vanish as n → ∞.
Step 1: Constructing the function gm. Order the elements of Zd as {0 = k0, k1, . . .}.
Fix x ∈ Q0, and define

ℓ0 = ℓ0(x) = inf
{
ℓ ∈ N

∣∣∣ ℓ∑
j=0

f(x+ kj) > 1
}
.

If ℓ0 = ∞, then for every ℓ ∈ N we define

gm(x+ kℓ) =
{
fm(x+ kℓ) ℓ > 0
fm(x+ k0) + 1 −

∑
ℓ′∈N fm(x+ kℓ′) ℓ = 0 .

If ℓ0 < ∞, then we define

gm(x+ kℓ) =


fm(x+ kℓ) ℓ < ℓ0

1 −
∑
ℓ′<ℓ0

fm(x+ kℓ′) ℓ = ℓ0

0 ℓ > ℓ0 .

Clearly, for every x ∈ Td we have

g̃m(x) =
∞∑
ℓ=0

gm(x+ kℓ) =
∑
k∈Zd

gm(x+ k) = 1 .

Moreover, when ℓ0(x) = ∞ we note gm(x + k) ⩾ fm(x + k) for all k ∈ Zd.
When ℓ0(x) < ∞, we note 0 ⩽ gm(x + k) ⩽ fm(x + k) for all k ∈ Zd. Thus,
in both cases, the sign of gm(x+k) − fm(x+k) does not change with k and we have∑

k∈Zd
|gm(x+ k) − fm(x+ k)| =

∣∣∣ ∑
k∈Zd

(gm(x+ k) − fm(x+ k))
∣∣∣

=
∣∣∣1 −

∑
k∈Z

fm(x+ k)
∣∣∣ = |1 − f̃m(x)|.

So integrating over x ∈ Td shows ∥fm − gm∥L1(Rd) = ∥f̃m − 1∥L1(Td). Thus gm
is a probability density function that satisfies both conditions in (3.4), as desired.
Observe that this construction with the choice of k0 = 0 guarantees that

gm(x) ⩽ fm(x), for all x /∈ Q0.

Step 2: Proof of the bound (3.5). Once we have gm, we define two new (coupled)
Markov processes Yk, Y ′

k, for k ∈ {m, . . . , n}, as described above. These processes
Y and Y ′ use the same evolution rule (1.1) as for X (for times k ∈ {m, . . . , n}).
Moreover, Y and Y are couplied, using the same noise for both processes; they differ
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only in the initial condition (at time m). Specifically, let Ym ∼ gm, and then define
Y ′
m by

Y ′
m = Ym − Im,

where
Im = ⌊Ym⌋ =

∑
k∈Zd

k1{Ym∈Qk} .

In particular, Y ′
m ∼ π0, since g̃m = 1. For k ∈ {m, . . . , n − 1}, define Yk+1 =

φ(Yk) + εξk+1 and Y ′
k+1 = φ(Y ′

k) + εξk+1. Because of this coupling and because Im
is integer valued, we have

Yk = Y ′
k + Im , ∀ k ∈ {m, . . . , n}.

Thus
(3.7) |var(v · Yn) − var(v · (Y ′

n))| ⩽ var(v · Im) + 2|cov(v · Y ′
n, v · Im)| .

By Lemma 3.1 we know
(3.8) var(v · Im) ⩽ C|v|2m2 .

Moreover, since Y ′
m ∼ unif(Q0), Lemma 3.2 implies there exists N0 = N0(ε) such

that
(3.9) var(v · Y ′

n) ⩽ C|v|2(n−m) ⩽ C|v|2n ,
for all n ⩾ N0. Using (3.8) and (3.9) in (3.7) immediately implies

|var(v · Yn) − var(v · (Y ′
n))| ⩽ C|v|2(m2 +m

√
n) ⩽ C|v|2n3/4 ,

for all n ⩾ N0. This proves (3.5) as desired.
Step 3: Proof of the bound (3.6). At time m, the density of Xm is fm, and the
density of Ym is gm. For k ∈ {m, . . . , n}, both processes evolve according to the
same transition probabilities, and we wish to compare their variances at time n.
Let hn be the density of Yn, and note

(3.10) |var(v ·Xn) − var(v · Yn)| ⩽
ˆ
Rd

(v · x)2|fn(x) − hn(x)| dx

+
(ˆ

Rd
|v · x||fn(x) − hn(x)| dx

)(
E(|v ·Xn| + |v · Yn|)

)
.

We will bound each term on the right hand side by splitting the integral into two
parts, one where |x| < n3/2 and the other where |x| ⩾ n3/2.
Step 3.1: First term in (3.10) when x ⩾ n3/2. We first claim that there exists m0
(depending only on the dimension), such that for all m ⩾ m0 we have
(3.11) ∥Ym∥ψ2 ⩽ Λ(∥X0∥ψ2 +m) .

To see this, we note that the construction of gm guarantees
gm(x) ⩽ fm(x) for all x ̸∈ Q0 ,

and hence
P (|Ym| ⩾ t) ⩽ P (|Xm| ⩾ t) for all t ⩾

√
d .

The definition of the subgaussian norm (3.1) implies

P (|Xm| ⩾ t) ⩽ 2e−t2/∥Xm∥2
ψ2 ,

and hence for any α > ∥Xm∥ψ2 we have

Ee|Ym|2/α2
= 1 +

ˆ ∞

0

2t
α2 e

t2/α2
P (|Ym| ⩾ t) dt

⩽ 1 +
ˆ √

d

0

2t
α2 e

t2/α2
dt+

ˆ ∞

√
d

2t
α2 e

t2/α2
P (|Xm| ⩾ t) dt

⩽ ed/α
2

+
ˆ ∞

0

4t
α2 exp

(
−t2

( 1
∥Xm∥2

ψ2
− 1

α2

))
dt

⩽ ed/α
2

+
2∥Xm∥2

ψ2

α2 − ∥Xm∥2
ψ2

.

Choosing

α = Λ(∥X0∥ψ2 +m)

and using Lemma 3.1 we see

Ee|Ym|2/α2
⩽ 2 , provided Λ2(∥X0∥ψ2 +m)2 ⩾

d

ln(4/3) .

This proves (3.11), as claimed.
Now, since the processes Yk and Xk evolve by the same transition probability for

k ∈ {m, . . . , n}, Lemma 3.1 and (3.11) imply

∥Yn∥ψ2 ⩽
Λ
2 (∥Ym∥ψ2 + (n−m)) ⩽ Λ2

2 (∥X0∥ψ2 + n) ⩽ Λ2n ,

provided n ⩾ ∥X0∥ψ2 . This implies

P (|Yn| > t) ⩽ 2e−t2/(n2Λ4) for all t ⩾ 0 .

Thus for any R > 0 we have

E
(
1{|Yn|>R}|Yn|2

)
=
ˆ ∞

R

2tP (|Yn| > t) dt ⩽
ˆ ∞

R

4te−t2/(n2Λ4) dt

= 2n2Λ4e−R2/(n2Λ4) .(3.12)

By the same argument and Lemma 3.1, we also obtain

(3.13) E
(
1{|Xεn|>R}|Xε

n|2
)
⩽ 2n2Λ2e−R2/(n2Λ2) ⩽ 2n2Λ4e−R2/(n2Λ4) .

Choosing R = n3/2 and combining (3.12) and (3.13) and shows

(3.14)
ˆ

|x|⩾n3/2
(v · x)2|fn(x) − hn(x)| dx ⩽ |v|24Λ2n2e−n/Λ4

for all n ⩾ ∥µ0∥ψ2 .
Step 3.2: First term in (3.10) when x < n3/2. We will show this term vanishes
by showing ∥fn − hn∥L1 vanishes exponentially as n → ∞. Let t̃εmix = t̃εmix(1/2)
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denote the mixing time of X̃ε. That is, if p̃εk is the k-step transition density of X̃ε,
then t̃εmix is the smallest k ∈ N for which

sup
x̃∈Td

1
2∥p̃εk(x, ·) − 1∥L1(Td) ⩽

1
4 .

Using the fact that a Markov process induces an L1 contraction on the density, and
the fact that (see for instance Section 4.5 in [LP17])

sup
x∈Td

1
2∥p̃εm(x, ·) − 1∥L1(Td) ⩽ 2−⌊m/t̃εmix⌋

we see

ˆ
|x|⩽n3/2

(v · x)2|fn(x) − hn(x)| dx ⩽ C|v|2n3∥fn − hn∥L1 ⩽ C|v|2n3∥fm − hm∥L1

= C|v|2n3∥fm − gm∥L1 = C|v|2n3∥f̃m − 1∥L1

⩽ C|v|2n32−⌊m/t̃εmix⌋ .(3.15)

Step 3.3: Second integral in (3.10). Using the same argument as in the previous two
steps we see∣∣∣ˆ

|x|⩾n3/2
(x · v)(fn(x) − hn(x)) dx

∣∣∣ ⩽ 4|v|
ˆ ∞

n3/2
e−t2/(n2Λ4) dt

⩽ 4|v|Λ4√
ne−n/Λ4

(3.16)

and

(3.17)
∣∣∣ˆ

|x|⩽n3/2
(x · v)(fn(x) − hn(x)) dx

∣∣∣ ⩽ C|v|n3/22−⌊m/t̃εmix⌋ .

Moreover, by Lemma 3.1 and (3.11) we see

E|Xε
n| ⩽ ∥Xε

n∥ψ2 ⩽
Λ
2

(
∥X0∥ψ2 + n

)
,(3.18)

and E|Yn| ⩽ ∥Yn∥ψ2 ⩽ Λ
(
∥X0∥ψ2 + n

)
.(3.19)

Using (3.14)–(3.19) in (3.10) and increasing N0 if necessary, and recalling (3.3)
we obtain (3.6), concluding Step 3.

Step 4: Combining (3.5) and (3.6) we obtain

lim
n→∞

var(v ·Xn)
n

= lim
n→∞

var(v · Yn)
n

= lim
n→∞

var(v · Y ′
n)

n
,

and using Lemma 3.2 concludes the proof. □

It remains to prove Lemmas 3.1 and 3.2. The proof of Lemma 3.1 follows quickly
from Hoeffding’s inequality, and we present it here. The proof of Lemma 3.2 is more
involved and we present it in Section 4, below.

Proof of Lemma 3.1. Notice first

Xε
n+1 −Xε

n = φ(Xε
n) −Xε

n + εξn+1 ⩽ A+ ε|ξn+1| ,

where

A
def= sup

x∈Rd
|φ(x) − x| .

Hence

|Xε
n| ⩽ |Xε

0 | +An+ εΞn , where Ξn
def=

n∑
1

|ξk| .

Inequality (3.2) now follows from Hoeffding’s inequality (see for instance Theorem
2.6.2 in [Ver18]). □

4. Proof of Lemma 3.2
To prove Lemma 3.2 we write

(4.1) Xε
n = Sn + Jn +Rn

where

Sn = Sn−1 + ⌊φ(Xε
n−1)⌋ − ⌊Xε

n−1⌋ ,
Jn = Jn−1 + ⌊Xε

n⌋ − ⌊φ(Xε
n−1)⌋ ,

Rn = Xε
n − Sn − Jn ,

with S0 = 0, J0 = 0, R0 = Xε
0 . We will prove Lemma 3.2 by obtaining a bound

on the asymptotic variances of each of the processes S, J and R. The Bernoulli
structure of φ implies the increments of S are independent, which allows us to
compute the variance of S exactly.

Lemma 4.1. For any v ∈ Rd, n ⩾ 0 we have

(4.2) varπ0(v · Sn) = n varπ0(v · ⌊X0
1 ⌋) .

To bound the asymptotic variance of J , we rely on the fact that the mixing time
of X̃ε is o(1/ε), which only requires φ̃ to be sufficiently mixing, and does not rely
on the Bernoulli structure.

Proposition 4.2. If t̃εmix = t̃εmix(1/2) denotes the mixing time of X̃ε, then for
all v ∈ Rd and all ε ∈ (0, 1) we have

(4.3) varπ0(v · Jn) ⩽ C|v|2nεt̃εmix .

Momentarily postponing the proofs of Lemma 4.1 and Proposition 4.2, we now
prove Lemma 3.2.

Proof of Lemma 3.2. For any v ∈ Rd, (4.1) implies

(4.4) |varπ0(v ·Xε
n) − varπ0(v · Sn)| ⩽ C

(
varπ0(v · Jn) + varπ0(v ·Rn)

+ stdπ0(v · Sn)stdπ0(v · Jn) + stdπ0(v · Sn)stdπ0(v ·Rn)
)
.
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Note
Rn −Rn−1 = Xn − ⌊Xn⌋ − (Xn−1 − ⌊Xn−1⌋)

and hence
Rn −R0 = Xn − ⌊Xn⌋ − (X0 − ⌊X0⌋) ∈ (−1, 1)d .

This implies varπ0(Rn) ⩽ C. Using this, Lemma 4.1 and Proposition 4.2 in (4.4)
implies

(4.5) lim
n→∞

|varπ0(v ·Xε
n) − varπ0(v · Sn)|
n

⩽ C|v|2
(
εt̃εmix +

√
εt̃εmix

)
.

To finish the proof we only a mixing time estimate which shows (2.3) holds. This can
be done quickly from existing results. Indeed, the exponentially mixing condition in
Assumption 2.1 allows us to use Corollary 2.5 in [FI19] to show that the dissipation
time (aka the L2 mixing time) of X̃ε is at most O(|ln ε|2). Following this Proposition
1.3 in [ILN24] (or Proposition 2.2 in [IZ23]) implies

t̃εmix ⩽ C|ln ε|3 .
This immediately implies (2.3) and using this and Lemma 4.1 in (4.5) finishes the
proof. □

The remainder of this section is devoted to the proof of Lemma 4.1 and Proposi-
tion 4.2

4.1. Variance of S (Lemma 4.1). The proof of Lemma 4.1 relies on the Bernoulli
structure of φ to show that the increments of S are independent.

Proof of Lemma 4.1. Define
Dn = Sn+1 − Sn = ⌊φ(Xε

n)⌋ − ⌊Xε
n⌋ .

By Assumption 2.1, for every ℓ ∈ Zd, the event {Dn = ℓ} can be partitioned into
events of the form {X̃ε

n ∈ Ẽi}. We will now show that
(4.6) P π0(Dn = k | X̃ε

n−1 ∈ Ẽi) = P π0(Dn = k) = P π0
(
⌊X0

1 ⌋ = k
)
.

We will first show the last equality in (4.6). For this, we recall π̃ is the Lebesgue
measure on Td, which is the stationary distribution for the Markov process X̃ε.
Since X0 ∼ π0 by assumption, and π̃0 = π̃, we must have X̃ε

n ∼ π̃ for every n ∈ N.
Thus, the right hand side of (4.6) is given by

P π0(Dn = k) = P
(
⌊φ(U)⌋ − ⌊U⌋ = k

∣∣ Ũ ∼ π̃
)

= P π0
(
⌊X0

1 ⌋ = k
)
,

proving the last equality in (4.6) as desired.
We now compute the left hand side of (4.6) and show it equals the right hand side

of (4.6). Since X̃ε
n ∼ π̃, Assumption 2.1 implies that conditioned on the event X̃ε

n−1 ∈
Ẽi, the distribution of φ(X̃ε

n−1) is also π̃. Since ξn is independent of Xε
n−1, this in

turn implies that conditioned on the event X̃ε
n−1 ∈ Ẽi, the distribution of X̃ε

n is the
uniform distribution on Td. Hence

P π0(Dn = k | X̃ε
n−1 ∈ Ẽi) = P π0(Dn = k | X̃ε

n ∼ π̃) = P π0
(
⌊X0

1 ⌋ = k
)
,

which concludes the proof of (4.6).
Now, (4.6) implies the increments of S are i.i.d. with distribution

P π0(∆n = k) = P (⌊X0
1 ⌋ = k) .

This immediately implies (4.2), completing the proof. □

4.2. Decorrelation bound for J (Proposition 4.2). For any n ∈ N define
∆n = Jn+1 − Jn = ⌊Xε

n+1⌋ − ⌊φ(Xε
n)⌋ .

We first claim all moments of ∆0 are of order ε.

Lemma 4.3. For all ε ⩽ 1, and all p ∈ [1,∞) we have
(4.7) Eπ0 |∆0|p ⩽ Cpε .

Next, we claim that the increments ∆n decorrelate rapidly.

Lemma 4.4. For any v ∈ Rd, m,n ∈ N we have
(4.8) |covπ0(v · ∆m, v · ∆m+n+1)| ⩽ Cε|v|2 sup

x̃∈Td
∥p̃εn(x̃, ·) − 1∥L1(Td) ,

where as before p̃εn is the n-step transition density of the process X̃ε
n.

Momentarily postponing the proofs of Lemmas 4.3 and 4.4, we prove Proposi-
tion 4.2.

Proof of Proposition 4.2. Note

varπ0(v · JN ) = varπ0
(N−1∑
n=0

v · ∆n

)
=
N−1∑
n=0

varπ0(v · ∆n) + 2
N−1∑
m=0

N−m−1∑
n=0

covπ0(v · ∆m, v · ∆m+n+1)

⩽ N |v|2Eπ0 [|∆0|2 + |∆0|]
(

1 + C

∞∑
n=1

sup
x̃∈Td

∥p̃n(x̃, ·) − 1∥L1(Td)

)
.(4.9)

Now let T = t̃εmix, and observe that for every x̃ ∈ Td, n ∈ N and j ∈ {0, . . . , T − 1},
we have

∥p̃nT+j(x̃, ·) − 1∥L1(Td) ⩽
1
2n .

Thus the series on the right hand side of (4.9) is bounded by 2T . Combining this
with Lemmas 4.3 and 4.4, we obtain (4.3) as desired. □

It remains to prove Lemmas 4.3 and 4.4. We begin with the proof of Lemma 4.4.

Proof of Lemma 4.4. We first claim for any n ∈ N,
(4.10) Eπ0∆n = Eπ0∆0 .

Clearly, the Markov property implies

(4.11) Eπ0∆n = Eπ0EXεn∆0 = Eπεn∆0 ,
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where πεn = dist(Xε
n). Now we note note that adding an element of Zd to Xε

0 does
not change ∆n for any n ∈ N. Thus, if µ0, ν0 are any two probability measures such
that µ̃0 = ν̃0, then for any n ∈ N,

(4.12) Eµ0∆n = Eν0∆n .

Since the Lebesgue measure π̃ is the stationary distribution of X̃ε, we note π̃εn = π̃.
Hence (4.11) and (4.12) imply (4.10) as desired.

Now using the Markov property and (4.10) we compute

covπ0(v · ∆m, v · ∆m+n+1) = Eπ0v · (∆m − Eπ0∆0) v · (∆m+n+1 − Eπ0∆0)

= Eπ0EXεmv · (∆0 − Eπ0∆0) v · (∆n+1 − Eπ0∆0)

= Eπεmv · (∆0 − Eπ0∆0) v · (∆n+1 − Eπ0∆0)
= Eπ0v · (∆0 − Eπ0∆0) v · (∆n+1 − Eπ0∆0) ,(4.13)

where the last inequality followed because π̃εm = π̃.
Next we define the function f : Rd → R by

(4.14) f(x) def= Exv · (∆0 − Eπ0∆0) = Ex(v ·
(
⌊Xε

1⌋ − ⌊φ(Xε
0)⌋ − Eπ0∆0

)
.

The Markov property and (4.13) imply

(4.15) covπ0(v · ∆m, v · ∆m+n+1) = Eπ0
[
v · (∆0 − Eπ0∆0)P εnf(Xε

1)
]
.

Here P εn is the n-step transition operator, whose action of functions is given by

P εng(x) = Exg(Xε
n) =

ˆ
Rd
pεn(x, y)g(y) dy ,

where pεn is the n-step transition density of Xε.
Note that for x̃, ỹ ∈ Td, the n-step transition density of X̃ε is given by

p̃εn(x̃, ỹ) =
∑
k∈Zd

pεn(x, y + k) .

Thus if P̃ εn is the n-step transition operator of X̃ε, then the action of P̃ εn on
functions g̃ : Td → R is given by

P̃ εn g̃(x̃) def= Ex̃g̃(X̃ε
n) =

ˆ
Td
p̃εn(x̃, ỹ)g̃(ỹ) dỹ

=
ˆ
Rd
pεn(x, y + k)g(y) dy = P εng(x) .(4.16)

Returning to (4.15), we note that shift invariance of φ implies the function f is Zd
periodic. Thus, defining f̃ : Td → R by f̃(x̃) = f(x) and using (4.15) and (4.16) we
see

covπ0(v · ∆m, v · ∆m+n+1) = Eπ0
[
v · (∆0 − Eπ0∆0)P̃ εnf̃(X̃ε

1)
]

= Eπ0

[
v · (∆0 − Eπ0∆0)

(
P̃ εnf̃(X̃ε

1) −
ˆ
Td
f̃ dπ̃

)]
= Eπ0

[
v · (∆0 − Eπ0∆0)

(ˆ
Td

(
p̃εn(X̃ε

1 , y) − 1
)
f̃(y) dỹ

)]
.

Hence ∣∣covπ0(v · ∆m, v · ∆m+n+1)
∣∣

⩽ Eπ0
∣∣v · (∆0 − Eπ0∆0)

∣∣ sup
x̃∈Td

∥p̃εn(X̃ε
1 , y) − 1∥L1(Td)∥f̃∥L∞(Td)

= ∥f̃∥L1(Td) sup
x̃∈Td

∥p̃εn(X̃ε
1 , y) − 1∥L1(Td)∥f̃∥L∞(Td) .(4.17)

It remains to estimate ∥f̃∥L1 and ∥f̃∥L∞ . Using (4.14) and Lemma 4.3 with p = 1
we see

(4.18) ∥f̃∥L1 ⩽ 2|v|Eπ0 |∆0| ⩽ Cε ,

and

∥f̃∥L∞ ⩽ E = |v|
(

|Eπ0∆0| + sup
x∈Q0

E
∣∣⌊φ(x) + εξ1⌋ − ⌊φ(x)⌋)

∣∣)
⩽ C(1 + ε)|v| ⩽ C|v| .(4.19)

Using (4.18) and (4.19) in (4.17) implies (4.8), concluding the proof. □

Finally, we prove Lemma 4.3.

Proof of Lemma 4.3. For any j ∈ {1, . . . , d} define

∆j
n

def= ej · ∆n ,

and note

E|∆j
0|p =

ˆ
y∈Q0

E|ej · (⌊φ(y) + εξ1⌋ − ⌊φ(y)⌋)|p dy .

Clearly,

|ej · (⌊φ(y) + εξ1⌋ − ⌊φ(y)⌋)| ⩽ 1{ej ·εξ ̸∈[−ψj ,1−ψj)} + ε|ej · ξ1| ,

where

ψj = ej · (φ(y) − ⌊φ(y)⌋) .

Hence,

(4.20) E|ej · (⌊φ(y) + εξ1⌋ − ⌊φ(y)⌋)|p ⩽ Cp
(
P

(
ej · εξ ̸∈ [−ψj , 1 − ψj)

)
+ εp

)
When ψj ⩽ 1/2 a standard Gaussian tail bound implies

P
(
ej · εξ1 ̸∈ [−ψj , 1 − ψj)

)
⩽ P

(
ej · εξ1 ⩽ −ψj

)
⩽ 2e−ψ2

j/(2ε2) .

Similarly, when ψj ⩾ 1/2, we note

P
(
ej · εξ1 ̸∈ [−ψj , 1 − ψj)

)
⩽ P

(
ej · εξ1 ⩾ 1 − ψj

)
⩽ 2e−(1−ψj)2/(2ε2) .

Using these two inequalities and integrating (4.20) in y immediately implies (4.7)
as desired. □
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