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Abstract. We consider the incompressible Navier-Stokes equations with spa-
tially periodic boundary conditions. If the Reynolds number is small enough
we provide an elementary short proof of the existence of global in time Hölder
continuous solutions. Our proof is based on the stochastic Lagrangian formu-
lation of the Navier-Stokes equations, and works in both the two and three
dimensional situation.

1. Introduction

The Navier-Stokes equations

∂tu + (u · ∇)u − ν△u + ∇p = 0(1.1)

∇ · u = 0(1.2)

describe the evolution of the velocity field of an incompressible fluid with kinematic
viscosity ν > 0. One of the (still open) million dollar problems posed by the Clay
Institute [9] is to show that given a smooth initial data u0 the solution to (1.1)–(1.2)
in three dimensions remains smooth for all time.

In two dimensions, the long time existence of (1.1)–(1.2) is well known [3]. In
three or higher dimensions, long time existence is known provided a smallness
condition is imposed on the initial data (see for example [16] for a criterion which
in some sense is the most general smallness condition). Recently Chemin and
Gallagher found a (non-linear) criterion on the initial data that guarantees global
existence of (1.1)–(1.2), and does not reduce to a smallness criterion in BMO−1.

In this paper we prove global existence of (1.1)–(1.2) provided our initial data
has small Hölder norm. Though global existence under our assumptions can be
deduced from the Koch-Tataru result, the proof we present here (Section 5) is
short, ‘elementary’ and essentially relies only on the decay of heat flows (Section
4), and a stochastic representation of the Navier-Stokes equations using particle
trajectories (Section 3, see also [5, 14]).

2. Notational conventions and description of results

In this section we describe the notational convention we use, and state the main
result we prove. Let L > 0 be a fixed length scale, and I = [0, L]. We define the

2000 Mathematics Subject Classification. Primary 76D03; Secondary 76D05, 60K40.
Key words and phrases. stochastic Lagrangian, incompressible Navier-Stokes, global existence.

1



2 GAUTAM IYER

Hölder norms and semi-norms on Id by

|u|α = sup
x,y∈Id

Lα |u(x) − u(y)|
|x − y|α

‖u‖Ck =
∑

|m|6k

L|m| sup
Id

|Dmu|

‖u‖k,α = ‖u‖Ck +
∑

|m|=k

Lk|Dmu|α

where Dm denotes the derivative with respect to the multi index m. We let Ck de-
note the space of all k-times continuously differentiable spatially periodic functions
on I, and Ck,α denote the space of all spatially periodic k + α Hölder continuous
functions. The spaces Ck and Ck,α are endowed with the norms ‖·‖Ck and ‖·‖k,α

respectively.
We use I to denote the identity function on R

d (or on Id depending on the
context), and use I to denote the identity matrix. The main theorem we prove in
this paper is

Theorem 2.1. Let k > 1, α ∈ (0, 1) and u0 ∈ Ck+1,α(Id) be spatially periodic,

divergence free and have mean 0. Let R = L
ν ‖u0‖k+1,α be the Reynolds number of

the flow. Then ∃T = T (k, α, d, 1
L‖u0‖k+1,α) and R0 = R0(k, α, d) such that for all

R < R0 the solution u of (1.1)–(1.2) with viscosity ν = L
R‖u0‖k+1,α, initial data

u0 and periodic boundary conditions is in Ck+1,α for time T , and satisfies

(2.1) ‖uT ‖k+1,α 6 ‖u0‖k+1,α

We prove Theorem 2.1 in Section 5. A few remarks are in order.

Remark 2.2. Local existence (Theorem A.5) combined with the Theorem 2.1 im-
mediately show that for given initial data, we can choose ν large enough so that
(1.1)–(1.2) have time global Ck+1,α solutions. Alternately for fixed viscosity, if
‖u0‖k+1,α is small enough, Theorems 2.1 and A.5 again give time global Ck+1,α

existence of (1.1)–(1.2).

Remark 2.3. The assumption that u0 has mean 0 is not restrictive. First note that
our boundary conditions imply that

∫

ut is conserved in time. Set ū = 1
Ld

∫

u0

to be the mean velocity. Now if we change to coordinates moving with the mean
velocity by letting u′(x, t) = u(x+ ūt, t)− ū, then u′ solves (1.1)–(1.2) with mean 0
initial data u0− ū. Thus the smallness assumption in Remark 2.2 is really smallness
assumptions on the deviation from the mean velocity.

Remark 2.4. Theorem 2.1 shows that for some time T , equation (2.1) holds. Un-
fortunately our proof does not show that ‖ut‖k+1,α is decreasing in time.

3. The stochastic Lagrangian formulation

The Kolmogorov forward equation (or Feynman-Kac formula) [11,15] have been
extensively used to represent solutions of linear parabolic PDE’s as the average of
a stochastic process. In this section we briefly describe here a different approach
developed in [5,6,14], which we use to provide a representation of the Navier-Stokes
equations based on noisy particle paths.
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Let u : R
d × [0,∞) → R

d be some given (time dependent) vector field, and θ a
solution to the heat equation

(3.1) ∂tθ + (u · ∇)θ − ν△θ = 0

with initial data θ0. We impose either periodic or decay at infinity boundary
conditions on θ.

We express θ as the expected value of a stochastic process as follows: Let W be
a d dimensional Wiener process, and let X : R

d → R
d be a solution to the SDE

dX = u dt +
√

2ν dW

with initial data X0(a) = a. Standard theory1 [18] shows that the flow X is a
homeomorphism, and as spatially differentiable as u. We let At denote the spatial
inverse of the flow map Xt.

Proposition 3.1. If u ∈ C1, θ0 ∈ C2 then the unique solution θ of (3.1) with

initial data θ0 and either periodic or decay at infinity boundary conditions is given

by

(3.2) θt = Eθ0(At)

where E denotes the expected value with respect to the Wiener measure.

Note that if ν = 0, then Proposition 3.1 is nothing but the method of charac-
teristics. If ν > 0, this can be interpreted as solving along random characteristics,
and then averaging. Notice also that the Wiener process

√
2νWt is the natural one

to consider here, as it’s generator is ν△.
The reason we use the representation (3.2) and not the Kolmogorov forward

equation is because the Kolmogorov forward equation in it’s natural setting involves
final conditions, and not initial conditions. Thus the standard method employed
by probabilists is to make a t = T − s substitution [10]. The process obtained
in this manner will have the same one dimensional distribution as the process
At above, however spatial covariances and gradients of the two processes will in
general be different. The stochastic representation of the Navier-Stokes equations
we describe below involves spatial gradients of the flow map A, and for this reason
our representation will not be valid if we use the Feynman Kac formula.

We now use Proposition 3.1 to represent the solution to the Navier-Stokes equa-
tions as the expected value of a system that is nonlinear in the sense of McKean.
The essential idea is to find a representation of the Euler equations involving parti-
cle trajectories [4], and then add noise and average as in Proposition 3.1 (as opposed
to attempting to use the Kolmogorov forward equation).

Theorem 3.2. Let ν > 0, W be an n-dimensional Wiener process, k > 1 and

u0 ∈ Ck+1,α be a given deterministic divergence free vector field. Let the pair u, X

satisfy the stochastic system

dXt = ut dt +
√

2ν dWt(3.3)

At = X−1
t(3.4)

ut = EP [(∇∗At) (u0 ◦ At)](3.5)

1See also [5, 6, 14] for an elementary proof for flows of the type we consider here
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with initial data

X(a, 0) = a.(3.6)

We impose boundary conditions by requiring u and X − I are either spatially peri-

odic, or decay at infinity. Then u satisfies the incompressible Navier-Stokes equa-

tions (1.1)–(1.2) with initial data u0.

Here P in equation (3.5) denotes the Leray-Hodge projection onto divergence
free vector fields [2]. We remark that (3.5) is algebraically equivalent to

ωt = E[(∇Xt)u0] ◦ At(3.7)

ut = −△−1∇× ω(3.8)

and (3.5) can be replaced with (3.7)–(3.8) in Theorem 3.2. Note that (3.8) is exactly
the Biot-Savart law. When ν = 0, equation (3.7) reduces to the well known vorticity
transport for the Euler equations [2], and in this case (3.3)–(3.6) (or equivalently
the system (3.3), (3.4), (3.6)–(3.8)) are exactly a Lagrangian formulation of the
Euler equations [4].

We do not prove Proposition 3.1 or Theorem 3.2 here, and we refer the reader to
[5,14] instead. For a generalization of Proposition 3.1 where the diffusion matrix is
not spatially constant we refer the reader to [6, 14].

4. Decay of heat flows

In this section we prove a decay estimate for solutions to the heat equation
with an incompressible drift. Our first estimate is an L∞ → L∞ estimate that
is independent of the drift. A more general L1 → L∞ version of this estimate
appeared for example in [7] and [8]. We provide a proof that follows the proof in
[7] and keeps track of the dependence of the constants on viscosity and our length
scale L.

Lemma 4.1. Let u ∈ C1([0, T ], Id) be divergence free, and θ be a solution to the

equation (3.1) with initial data θ0. If θ0 is spatially periodic, mean 0, and the

dimension d > 3, then there exists an constant c = c(d) such that

‖θt‖∞ 6
cLd

(νt)d/2
‖θ0‖∞

Proof. Let ϕ be mean zero and periodic, p > d+2
4 and c = c(d, p) be a constant that

changes from line to line. Then the Hölder, Poincaré and Sobolev in inequalities
give

∫

ϕ2 =

∫

ϕ1/pϕ(2p−1)/p

6 ‖ϕ‖1/p
L1 ‖ϕ‖(2p−1)/p

L(2p−1)/(p−1)

6 cL(4p−d−2)/2p‖ϕ‖1/p
L1 ‖∇ϕ‖(2p−1)/p

L2

If we set q = 2
2p−1 this gives

‖∇ϕ‖2
L2 > cL(qd−4)/2‖ϕ‖2+q

L2 ‖ϕ‖−q
L1

Now let θ′ and θ′′ to be solutions of (3.1) with initial conditions θ−0 and θ+
0

respectively. Integrating (3.1) immediately shows that
∫

θ′ and
∫

θ′′ are conserved.
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Since θ′ and θ′′ are of constant sign, this means that ‖θ′‖L1 and ‖θ′′‖L1 are conserved
in time. Finally, the maximum principle implies that θ′ 6 θ 6 θ′′, and hence ‖θ‖L1

is nondecreasing in time.
Thus multiplying (3.1) by θ and integrating over Id gives

∂t‖θ‖2
L2 = −2ν‖∇θ‖2

L2 6 −cνL(qd−4)/2‖θ‖−q
L1 ‖θ‖2+q

L2 6 −cνL(qd−4)/2‖θ0‖−q
L1 ‖θ‖2+q

L2 .

Dividing by ‖θ‖2+q
L2 and integrating in time gives

‖θ‖L2 6 c
L2/q−d/2

(νt)1/q
‖θ0‖L1

Let Pt(u) be the solution operator of (3.1). The above estimate shows

‖Pt(u)‖L1→L2 6 c
L2/q−d/2

(νt)1/q

Since u is divergence free the dual operator P∗(u) = P(−u), and hence satisfies the
same bound. Thus

‖P2t‖L1→L∞ 6 ‖Pt‖L1→L2‖Pt‖L2→L∞

= ‖Pt‖L1→L2‖P∗
t ‖(L∞)∗→L2

6 ‖Pt‖L1→L2‖P∗
t ‖L1→L2

6 c
L4/q−d

(νt)2/q
.

Hence

‖θ‖L∞ 6 c
L4/q−d

(νt)2/q
‖θ0‖L1 6 c

L4/q

(νt)2/q
‖θ0‖L∞

Finally, p > d+2
4 is the same as q 6 4

d , and choosing q = 4
d concludes the proof. �

Remark 4.2. When d = 2, p > d+2
4 needs to be replaced with p > d+2

4 , and hence
the above proof will show that for any ε > 0,

‖θt‖∞ 6
cεL

d+ε

(νt)(d+ε)/2
‖θ0‖∞

The formulation of the Navier-Stokes equations (3.3)–(3.6) involves recovering
the velocity from the inverse flow map via a singular integral operator (either Biot-
Savart or Leray-Hodge). The unboundedness of singular integrals on L∞ (see [19])
causes Lemma 4.1 to be insufficient for our purposes. We now extend Lemma 4.1 to
Hölder spaces for use in our global existence proof. Using the stochastic flows from
[5,14] we obtain a Hölder estimate for solutions of (3.1) in an elementary manner.

The usual PDE methods [17] provide Hölder estimates that grow exponentially
in time. The estimate we provide here will in general grow exponentially in time,
however decays in time when the viscosity is large, or drift U is small.

Lemma 4.3. Let d > 3 and u ∈ Ck+1,α([0, T ], Id) be divergence free and define U

by

(4.1) U = sup
t∈[0,T ]

‖ut‖k+1,α.
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Let θ0 ∈ C(Id) have mean 0, and θ satisfy equation (3.1) with initial data θ0. Then

there exists T ′ = T ′(U
L , d, k, α) and a constant c = c(UT

L , d, k, α) such that

‖θ‖k+1,α 6 c

(

Ld

(νt)d/2
+

(

Ut

L

)α)

‖θ0‖k+1,α

holds for all t ∈ [0, T ′]. If d = 2, the above estimate is still true if we replace Ld

(νt)d/2

with cεLd+ε

(νt)(d+ε)/2 for any ε > 0.

Remark 4.4. Note that the growth term is independent of the viscosity, and the
decay term is independent of the drift u.

Proof. We present the proof for d > 3. The d = 2 case will then follow by replacing
d with d + ε. Define X, A by equations (3.3) and (3.4) respectively. From [5, 14]
and uniqueness of strong solutions to (3.1) we know

θt = Eθ0 ◦ At.

Let ℓ = A − I be the Lagrangian displacement. First notice that if f ∈ Cα then
Lemma A.4 shows

(4.2) |f ◦ At|α 6 c|f |α
(

Ut

L

)α

a.s.

Now, let m a multi index with 1 6 |m| 6 k. We note that Dmθt is a sum of terms
of the form

(4.3) Dnθ0

∣

∣

At

∏

16i6|n|

Dniℓt and Dnθ0

∣

∣

At

where ni’s are multi indices with |ni| > 1 and |n| + ∑

i |ni| = |m|. By Proposition

3.1 we know that EDnθ0

∣

∣

At
satisfies (3.1) with initial data Dnθ0, and hence by

Lemma 4.1 we know

‖E[Dnθ0] ◦ At‖L∞ 6
cLd

(νt)d/2
.

Thus using Lemma A.4, inequality (4.2) we have

(4.4) ‖E[Dnθ0] ◦ At‖α 6 c

(

Ld

(νt)d/2
+

(

Ut

L

)α)

.

Using (4.4) and Lemma A.4, we bound the remaining terms of (4.3), concluding
the proof. �

5. Global existence

In this section we prove Theorem 2.1. We start with a Lemma involving bounds
for the Leray-Hodge projection.

Lemma 5.1. Let k > 1, and A, v ∈ Ck+1,α be such that ∇A, v are spatially

periodic. There exists a constant c = c(d, α) such that

‖P[(∇∗A)v]‖k+1,α 6 c‖∇A‖k,α‖v‖k+1,α
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Proof. Since P vanishes on gradients, we can ‘integrate by parts’ to avoid the loss
of derivatives. Note

P[(∇∗u)v] = P[∇(u · v) − (∇∗v)u] = −P[(∇∗v)u]

for any u, v ∈ C1. Thus we have

∂iP[(∇∗A)v] = P[(∇∗A)∂iv] − P[(∇∗v)∂iA]

Since P is Calderon-Zygmund singular integral operator, it is bounded on Hölder
spaces [1,19]. Finally note that the right hand side only depends on first derivatives
of A and v, and the lemma follows by taking Hölder norms. �

We now prove Theorem 2.1. We restate it here for the readers convenience.

Theorem (2.1). Let k > 1, α ∈ (0, 1) and u0 ∈ Ck+1,α(Id) be spatially periodic,

divergence free and have mean 0. Let R = L
ν ‖u0‖k+1,α be the Reynolds number of

the flow. Then ∃T = T (k, α, d, 1
L‖u0‖k+1,α) and R0 = R0(k, α, d) such that for all

R < R0 the solution u of (1.1)–(1.2) with viscosity ν = L
R‖u0‖k+1,α, initial data

u0 and periodic boundary conditions is in Ck+1,α for time T , and satisfies

(2.1) ‖uT ‖k+1,α 6 ‖u0‖k+1,α

Proof. We assume that d > 3. The d = 2 case follows similarly by replacing
d with d + ε. Let C, δ be the dimensional constants in Theorem A.5. We let
U = C‖u0‖k+1,α, and choose T such that UT

L < δ. By Theorem A.5, there exist a

pair of Ck+1,α functions X, u : [0, T ] → Id which are the unique (strong) solution
to (3.3)–(3.6). Recall that ‖ut‖k+1,α 6 U for all t ∈ [0, T ].

From equation (3.5) we see

ut = EPu0 ◦ At + EP (∇∗ℓ)u0 ◦ At.

Let c = c(k, α, d) be a constant that changes from line to line. Applying Lemma
5.1 and Lemma A.4 to the second term we have

‖ut‖k+1,α 6 c‖Eu0 ◦ At‖k+1,α + cE‖∇∗ℓt‖k,α‖u0 ◦ At‖k+1,α

and hence by Lemma 4.3 we have

‖ut‖k+1,α 6 c

(

Ld

(νt)d/2
+

(

Ut

L

)α)

‖u0‖k+1,α.

Minimizing Ld

(νt)d/2 +
(

Ut
L

)α
in time shows that the minimum value is attained at

t0 = cL
U Rd/(2α+d), and the minimum value is cRαd/(2α+d). Thus we can choose R

small enough to ensure t0 < T and equation (2.1) is satisfied. �

Appendix A. Bounds for the Lagrangian displacement

In this section, we prove bounds on ‖∇X − I‖k,α. The estimates proved here

are elementary, and are taken directly from [13, 14]. We reproduce them here for
completeness and the readers convenience.

We remark that the estimates provided here were used in [13, 14] to prove local
existence for the system (3.3)–(3.6). As the local existence proof is a little lengthier,
we do not reproduce it here.
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Lemma A.1. Let X be a Banach algebra. If x ∈ X is such that ‖x‖ 6 ρ < 1 then

1 + x is invertible and ‖(1 + x)−1‖ 6 1
1−ρ . Further if in addition ‖y‖ 6 ρ then

∥

∥(1 + x)−1 − (1 + y)−1
∥

∥ 6
1

(1 − ρ)2
‖x − y‖

Proof. The first part of the Lemma follows immediately from the identity (1 +
x)−1 =

∑

(−x)n. The second part follows from the first part and the identity

(1 + x)−1 − (1 + y)−1 = (1 + x)−1(y − x)(1 + y)−1. �

Lemma A.2. If k > 1, then there exists a constant c = c(k, α) such that

‖f ◦ g‖k,α 6 c‖f‖k,α

(

1 + ‖∇g‖k−1,α

)k+α

and

‖f ◦ g1 − f ◦ g2‖k,α 6 c‖∇f‖k,α

(

1 + ‖∇g1‖k−1,α + ‖∇g2‖k−1,α

)k+1

·
· ‖g1 − g2‖k,α.

The proof of Lemma A.2 is elementary and not presented here.

Lemma A.3. Let X1, X2 ∈ Ck+1,α be such that

‖∇X1 − I‖k,α 6 d < 1 and ‖∇X2 − I‖k,α 6 d < 1.

Let A1 and A2 be the inverse of X1 and X2 respectively. Then there exists a constant

c = c(k, α, d) such that

‖A1 − A2‖k,α 6 c‖X1 − X2‖k,α

Proof. Let c = c(k, α, d) be a constant that changes from line to line (we use this
convention implicitly throughout this paper). Note first ∇A = (∇X)−1 ◦ A, and
hence by Lemma A.1

‖∇A‖C0 6
∥

∥(∇X)−1
∥

∥

C0 6 c.

Now using Lemma A.1 to bound ‖(∇X)−1‖α we have

‖∇A‖α =
∥

∥(∇X)−1 ◦ A
∥

∥

α
6

∥

∥(∇X)−1
∥

∥

α
(1 + ‖∇A‖C0) 6 c

When k > 1, we again bound ‖(∇X)−1‖k,α by Lemma A.1. Taking the Ck,α norm

of (∇X)−1 ◦ A we have

‖∇A‖k,α 6
∥

∥(∇X)−1
∥

∥

k,α

(

1 + ‖∇A‖k−1,α

)k

.

So by induction we can bound ‖∇A‖k,α by a constant c = c(k, α, d). The Lemma
now follows by applying Lemma A.2 to the identity

A1 − A2 = (A1 ◦ X2 − I) ◦ A2

= (A1 ◦ X2 − A1 ◦ X1) ◦ A2. �

Lemma A.4. Let u ∈ C([0, T ], Ck+1,α) and X satisfy the SDE (3.3) with initial

data (3.6). Let λ = X − I and U = supt ‖u(t)‖k+1,α. Then there exists T =

T (k, α, U
L ) and c = c(k, α, UT

L ) such that for t 6 T

‖∇λ(t)‖k,α 6
cUt

L
and ‖∇ℓ(t)‖k,α 6

cUt

L
.

hold almost surely.
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Proof. From equation (3.3) we have

X(x, t) = x +

∫ t

0

u(X(x, s), s) ds +
√

2νWt

=⇒ ∇X(t) = I +

∫ t

0

(∇u) ◦ X · ∇X.(A.1)

Taking the C0 norm of equation (A.1) and using Gronwall’s Lemma we have

‖∇λ(t)‖C0 = ‖∇X(t) − I‖C0 6 eUt/L − 1.

Now taking the Ck,α norm in equation (A.1) we have

‖∇λ(t)‖k,α 6 c

∫ t

0

‖∇u‖k,α

(

1 + ‖∇λ‖k−1,α

)k+α (

1 + ‖∇λ‖k,α

)

.

The bound for ‖∇λ‖k,α now follows from the previous two inequalities, induction

and Gronwall’s Lemma. The bound for ‖∇ℓ‖k,α then follows from Lemma A.3.
We draw attention to the fact that the above argument can only bound ∇λ, and

not λ. Fortunately, our results only rely on a bound of ∇λ. �

We conclude this appendix by stating a slightly modified version theorem which
appeared in [13]. The only modification we make is that we trace the dependence
of the constants in [13] to dimension less quantities, instead of absolute ones. The
proof that appeared in [13] goes through verbatim.

Theorem A.5. Let k > 1 and u0 ∈ Ck+1,α be divergence free. There exists

absolute constants δ = δ(k, α, d) and C = C(k, α, d) such that for U = C‖u0‖k+1,α,

and any T such that UT
L < δ there exist a pair of functions a pair of functions

λ, u ∈ C([0, T ], Ck+1,α) such that u and X = I + λ satisfy the system (3.3)–(3.6).
Further for all t ∈ [0, T ] we have ‖ut‖k+1,α 6 U .
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