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ABSTRACT

In this thesis, we quantitatively study the interaction between diffusion
and mixing in both the continuous, and discrete time setting. In discrete
time, we consider a mixing dynamical system interposed with diffusion. In
continuous time, we consider the advection diffusion equation where the
advecting vector field is assumed to be sufficiently mixing. The main result is
to estimate the dissipation time and energy decay based on an assumption
quantifying the mixing rate.

The thesis is mainly based on the paper [FI19].
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Chapter 1

Introduction

Diffusion and mixing are two fundamental phenomena that arise in a wide
variety of applications ranging from micro-fluids to meteorology, and even
cosmology. In incompressible fluids, stirring induces mixing by filamentation
and facilitates the formation of small scales. Diffusion, on the other hand,
efficiently damps small scales and the balance between these two phenomena
is the main subject of our investigation. Specifically, our aim is to quantify
the interaction between diffusion and mixing in a manner that often arises in
the context of fluids [DT06,CKRZ08,LTD11,Thi12].

In the absence of diffusion, the mixing of tracer particles passively ad-
vected by an incompressible flow has been extensively studied. Several au-
thors [MMP05,LTD11,Thi12] measured mixing using multi-scale norms and
studied how efficiently incompressible flows can mix (see for instance [Bre03,
LLN+12, IKX14, ACM16, YZ17] and references therein). In this scenario,
however, there is no apriori limit to the resolution attainable via mixing.

In contrast, in the presence of diffusion, the effects of mixing may be
enhanced, balanced, or even counteracted by diffusion (see for instance [FP94,
TC03,FNW04,CKRZ08, INRZ10,KX15,MDTY18,MD18]). In this thesis we
quantify this interaction by studying the energy dissipation rate. Explicitly, we
study the advection diffusion equation, and establish several explicit relations
between the mixing rate of the drift and the energy dissipation rate.

In this chapter, we begin by introducing the notion of mixing from the
dynamical system perspective in Section 1.1. Next, in Section 1.2 we describe
mixing rates in a manner that is well suited to the study of the advection
diffusion equation. In Section 1.3, we introduce the notion of dissipation
time in the context of pulsed diffusions and the advection diffusion equation.
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Finally in Section 1.4, we conclude this chapter with the statement of the
main results of this thesis.

1.1 Ergodicity and Mixing
Many physical phenomena can be modeled as dynamical systems, and

ergodic theory is the study of the long time behavior of these dynamical
systems. The abstract framework in ergodic theory starts with a probability
space (X,B, µ), and a measure preserving transformation T : X → X that
represents the time dynamics.

We recall that T is ergodic, if the only invariant sets are either null or
co-null (i.e. if for any A ∈ B we have T−1(A) = A, then µ(A) ∈ {0, 1}). If T
is ergodic, then the Birkhoff ergodic theorem (see for instance [EFHN15,
Corollary 11.2]) guarantees that for any f ∈ L1(X), we have

lim
n→∞

1
n

n−1∑
j=0

f(T jx) =
∫
X
f dµ , for almost every x ∈ X .

Roughly speaking, this means that if T is ergodic then the phase-space
averages and time averages are equal.

Given any two sets A,B ∈ B, we apply the Birkhoff ergodic theorem to
the function f = 1A, and multiply by 1B. This gives

lim
n→∞

1
n

n−1∑
j=0

µ(T−jA ∩B) = µ(A)µ(B) for any A,B ∈ B .(1.1.1)

From probabilistic point of view, we recall that two events A,B are inde-
pendent if µ(A ∩ B) = µ(A)µ(B). Thus the ergodicity of T tells us that,
for any pair of events A,B ∈ B, the events T−nA, B become approximately
independent as n → ∞. The notions of strong mixing and weak mixing,
defined below, impose stronger requirements on the sense in which T−nA,B
become independent as n→∞.

Definition 1.1.1. Let T be a measure-preserving transformation on the
probability space (X,B, µ).

(1) We say that T is weakly mixing, if for every A,B ∈ B, we have

lim
n→∞

1
n

n−1∑
j=0
|µ(T−jA ∩B)− µ(A)µ(B)| = 0 .
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(2) We say that T is strongly mixing, if for every A,B ∈ B, we have

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B) .

Clearly strong-mixing implies weak-mixing, which in turn implies ergodic-
ity. The converse implications, however, are both false. Roughly speaking,
strongly mixing says that for every Borel set A, successive iterations of the
map T will stretch and fold it over X so that it eventually the fraction of every
fixed region B ⊆ X occupied by iterates of A will approach µ(A). Figure 1.1
shows an example of the dynamics of successive iterations of a flow on the
Torus that is conjectured to be strongly mixing [Pie94]. For a comprehensive
review and more examples we refer the reader to [KH95,SOW06,EFHN15].

Figure 1.1: An example of mixing on the torus.

In general checking a particular dynamical systems is mixing is not an easy
task. While there are several equivalent characterizations of ergodicity and
mixing, none of these criterion are easy to check. The best known equivalent
characterizations involve spectral conditions, which we now describe. In order
to describe these conditions, we first reformulate our setup functionally.

Note that the dynamical system T : X → X induces an isometry U on
L2(X,B, µ) defined by composition:

Uf
def= f ◦ T for all f ∈ L2(X,B, µ) .

The operator U is known as the Koopman operator associated with T . Recall
L2(X,B, µ), hereafter abbreviated to L2, denotes the space of complex-valued
square-integrable functions on X with the inner-product

〈f, g〉 =
∫
X
fḡ dµ .
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The fact that T is measure preserving is equivalent to the operator U being
an isometry. If additionally T is invertible, then U is unitary.

As we will see below, the ergodicity and mixing of the dynamical system
T is intrinsically related to spectral properties of U .

Proposition 1.1.2. Let T : X → X be a measure preserving transformation.

1. The map T is ergodic if and only if 1 is a simple eigenvalue of U .

2. The map T is weakly mixing if and only if the only eigenvalue of U
is 1, and it is a simple eigenvalue.

The first part of this proposition is easily verified. Indeed, the definition of
ergodicity is equivalent to the fact that Tf = f if and only if f is a constant.
This immediately yields the first part of Proposition 1.1.2. The proof of the
second part is more involved, and we refer the reader to...

Invertible strongly mixing operators can also be characterized spectrally
by the property that its maximal spectral type consists of only Rajchman
measures. Since the precise definitions of this would involve too long a
digression, we refer the reader to [EFHN15, Chapter 18.4.2] instead.

We conclude this section with a few well known examples of ergodic and
mixing maps.
Example 1.1.3 (Irrational shift). Fix α ∈ R \Q and define T : R/Z→ R/Z by

T (x) = x+ α mod 1 .

It is well known that T is ergodic, but not mixing, with respect to the
Lebesgue measure (see for instance [EFHN15, Chapter 9.2]).
Example 1.1.4 (Uniformly expanding maps). Define ϕ : T1 → T1 by

ϕ(x) = mx mod 1 ,

for any m ∈ Z with m > 2. It is well known that ϕ strongly mixing with
respect to the Lebesgue measure (see for instance [KH95, Proposition 4.2.11]).
We will revisit this example in Chapter 1.2.1, and prove a stronger result
showing that uniformly expanding maps are in fact exponentially mixing.
Example 1.1.5. Consider the Bernoulli shift U : `2 → `2 defined by

U(x)n = xn−1 for n > 2 ,
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U(x)1 = 0 .

It is easy to see that the Bernoulli shift U is strongly mixing, and we refer
the reader to [EFHN15, Chapter 6.2] for the proof.
Example 1.1.6. The Bakers map and cat map are two other well known
examples of mixing maps, and are described in the next section.

1.2 Mixing Rates
In order to study rates of mixing, one needs to impose additional structure

on the underlying space. Instead of working on an abstract measure space,
we now work a d-dimensional Riemannian manifold M . For simplicity we
assume the metric is normalized so that the total volume of M is 1. In this
context, a volume preserving diffeomorphism ϕ : M →M is said to be mixing
(or strongly mixing) if for every pair of Borel sets A,B ⊆M , we have

(1.2.1) lim
n→∞

vol(ϕ−n(A) ∩B) = vol(A) vol(B) .

Approximating by simple functions we see that (1.2.1) immediately implies
that for any f, g ∈ L2

0, we have1

lim
n→∞
〈Unf, g〉 = 0 .

Thus, one can quantify the mixing rate by requiring the correlations 〈Unf, g〉
to decay at a particular rate. Since these are linear in f, g, a natural first
attempt is to require

(1.2.2)
∣∣∣〈Unf, g〉

∣∣∣ 6 h(n)‖f‖ ‖g‖ ,

where ‖f‖, ‖g‖ denote the L2 norms of f and g, respectively, and h(n) is some
decreasing sequence that vanishes at infinity. This, however, is impossible.
Indeed using duality, equation (1.2.2) immediately implies

(1.2.3) ‖Unf‖ 6 h(n)‖f‖ n→∞−−−→ 0 .

Of course, U is a unitary operator and hence we must also have ‖Unf‖ = ‖f‖,
which is in direct contradiction to (1.2.3).

1Recall L2
0 is the set of all mean zero square integrable functions, and U : L2

0 → L2
0 is

the Koopman operator defined by Uf = f ◦ ϕ.
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To circumvent this difficulty, one uses stronger norms of f and g on the right
of (1.2.2). The traditional choice in the dynamical systems literature is to use
Hölder norms. However, following Fannjiang et. al. [FW03,FNW04,FNW06],
we use Sobolev norms instead, as it is more convenient for our purposes.

Definition 1.2.1. Let h : N→ (0,∞) be a decreasing function that vanishes
at infinity, and α, β > 0. We say that ϕ is strongly α, β mixing with rate
function h if for all f ∈ Ḣα, g ∈ Ḣβ the associated Koopman operator U
satisfies

(1.2.4)
∣∣∣〈Unf, g〉

∣∣∣ 6 h(n)‖f‖α‖g‖β .

Here Ḣα = Ḣα(M) is the homogeneous Sobolev space of order α, and
‖·‖α denotes the norm in Ḣα.
Remark 1.2.2. It is easy to see that if U is unitary, then one must have both
α > 0 and β > 0. If, however, U is only an isometry (and not necessarily
invertible) it is possible to find examples where either α > 0, or β > 0. The
uniformly expanding map (discussed below) is one such example.
Remark 1.2.3. When U is the Koopman operator associated with a smooth
map ϕ, the rate function can decay at most exponentially. To see this,
note that for k ∈ N we have ‖Uf‖k 6 ck‖f‖k for some finite constant ck =
ck(‖ϕ‖Ck) > 1. Iterating this n times, choosing k = dβe, and g = Unf
in (1.2.4) gives

‖f‖2 = ‖Unf‖2 6 h(n)‖f‖α‖f‖kcnk ,
forcing

h(n) > ‖f‖2c−nk
‖f‖α‖f‖k

.

When the rate function h decays exponentially, the map ϕ is called
exponentially mixing.

Definition 1.2.4. We say ϕ is α, β exponentially mixing if ϕ is strongly α,
β mixing with an exponentially decaying rate function h.

We will shortly see that if ϕ is strongly exponentially mixing for some α,
β > 0, then it must be strongly exponentially mixing for every α, β > 0.
Remark 1.2.5. By duality equation (1.2.4) implies that if ϕ is α, β mixing
with rate function h, then

(1.2.5) ‖Unf‖−β 6 h(n)‖f‖α .

6



In particular, this implies ‖Unf‖−β → 0 as n→∞, and this has been used
by many authors [MMP05,LTD11,Thi12, IKX14] to quantify (strong) mixing.

We now address the role of α, β in Definition 1.2.1. It turns out that
if ϕ is strongly α, β mixing with rate function h, then it must be strongly
α′, β′ mixing (at a particular rate) for every α′, β′ > 0. This is stated as the
following proposition.

Proposition 1.2.6. Suppose for some α, β > 0, the map ϕ is strongly α,
β mixing with rate function h. Then, for any α′, β′ > 0, the map ϕ is
strongly α′, β′ mixing with rate function

h′(t) def= λ−γ1 h(t)δ ,

where λ1 > 0 is the first eigenvalue of −∆ on M ,

γ
def= (α′ − α)+ + (β′ − β)+ + (β′ ∧ β)

(
1− α′

α

)+
+ (α′ ∧ α)

(
1− β′

β

)+
,

and δ
def= (α′ ∧ α)(β′ ∧ β)

αβ
.

In particular, if for some α, β > 0, ϕ is strongly α, β exponentially mixing,
then it is strongly α′, β′ exponentially mixing for all α′, β′ > 0.

Proof. If β 6 β′, then we note

‖Unf‖−β′ 6 λβ−β
′

1 ‖Unf‖−β
6 λβ−β

′

1 h(n)‖f‖α .

On the other hand, if β > β′ then by Sobolev interpolation we have

‖Unf‖−β′ 6 ‖Unf‖β
′/β
−β ‖Unf‖1−β′/β

6 h(n)β′/β‖f‖β′/βα ‖f‖1−β′/β

6 λ
−α(1−β′/β)
1 h(n)β′/β‖f‖α .

This shows that ϕ is strongly α, β′ mixing with rate function

h1(t) def= λ
−(β′−β)+−α(1−β′/β)+

1 h(t)(β′/β)∧1 .

7



By dualizing, we see ϕ−1 is strongly β′, α mixing with rate function h1.
Thus, using the above argument, ϕ−1 must be β′, α′ mixing with rate function

h′(t) def= λ
−(α′−α)+−β′(1−α′/α)+

1 h1(t)(α′/α)∧1

= λ−γ1 h(t)δ ,

as desired.

We now turn our attention to weak mixing. Recall that the dynamical
system generated by ϕ is said to be weakly mixing if for every pair of Borel
sets A,B ⊆M , we have

(1.2.6) lim
n→∞

1
n

n−1∑
k=0

∣∣∣vol(ϕ−k(A) ∩B)− vol(A) vol(B)
∣∣∣ = 0 .

Approximating by simple functions, and using the fact that U is L2 bounded,
one can show that (1.2.6) holds if and only if

(1.2.7) lim
n→∞

1
n

n−1∑
k=0

∣∣∣〈Unf, g〉
∣∣∣2 = 0 ,

for all f, g ∈ L2
0 (see for instance [EFHN15, Theorem 9.19 (iv)]). We can now

quantify the weak mixing rate by by imposing a rate of convergence in (1.2.7).

Definition 1.2.7. Let h : N→ (0,∞) be a decreasing function that vanishes
at infinity. Given α, β > 0, we say that ϕ is weakly α, β mixing with rate
function h if for all f ∈ Ḣα, g ∈ Ḣβ and n ∈ N the associated Koopman
operator U satisfies

(1.2.8)
( 1
n

n−1∑
k=0

∣∣∣〈Ukf, g〉
∣∣∣2)1/2

6 h(n)‖f‖α‖g‖β .

Unlike Definition 1.2.1, the convergence rate need not involve stronger
norms of both f and g. Indeed we will show later (Chapter 3.1) that for toral
automorphisms, either α or β may be chosen to be 0. However, as we show
next, it is impossible to choose both α = 0 and β = 0, and thus convergence
rate must involve a stronger norm of either f , or of g.

Proposition 1.2.8. Let h be any function that decreases to 0. Then there
does not exist any diffeomorphism ϕ which is weakly 0, 0 mixing with rate
function h.
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Proof. Suppose for contradiction there exists a diffeomorphism ϕ which is
weakly 0, 0 mixing with some rate function h. Recall, by definition, the rate
function h must vanish at infinity. We will show that for any fixed N ∈ N,

(1.2.9) sup
‖f‖=‖g‖=1

( 1
N

n−1∑
k=0
|〈Ukf, g〉|2

)
= 1 .

This immediately implies h(N) > 1, contradicting the fact that h vanishes
at ∞.

Thus to finish the proof we only need to prove (1.2.9). For this, note
that ϕ must be weakly mixing (as h vanishes at infinity). Since weakly mixing
maps are ergodic, we know (see for instance [Wal82]) that almost every point
has a dense orbit. Let x0 be one such point, and note that ϕn(x0) 6= x0 for
all n 6= 0. By continuity of ϕ we can now find a δ = δ(N) > 0 such that

ϕn
(
B(x0, δ)

)
∩ ϕm

(
B(x0, δ)

)
= ∅ , ∀ |n|, |m| < N , m 6= n .

Now let ρ ∈ Cc(B(x0, δ) ∩ L2
0(M) be such that ‖ρ‖ = 1, and define the

test functions f, g by

f = 1√
N

N−1∑
i=0

U−iρ , and g = 1√
N

N−1∑
i=0

U iρ .

Note by definition of ρ we have 〈U iρ, U jρ〉 = 0 whenever 0 < |i − j| < N .
This implies ‖f‖ = ‖g‖ = 1, and

1
N

∣∣∣∣ k∑
k=0
〈Ukf, g〉

∣∣∣∣ = 1
N

N−1∑
k=0

1
N

N−1∑
i,j=0
〈Uk−iρ, U jρ〉 = 1 .

This proves (1.2.9) as desired, finishing the proof.

The analog of definition of mixing rates in continuous time is as follows.

Definition 1.2.9. Let h : [0,∞)→ (0,∞) be a continuous, decreasing func-
tion that vanishes at ∞, and α, β > 0. Let ϕs,t : M → M be the flow map
of u defined by

∂tϕs,t = u(ϕs,t, t) and ϕs,s = Id .
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1. We say that the vector field u is strongly α, β mixing with rate function h
if for all f ∈ Ḣα, g ∈ Ḣβ we have∣∣∣〈f ◦ ϕs,t, g〉∣∣∣ 6 h(t− s)‖f‖α‖g‖β . (1.2.10)

2. We say that ϕ is weakly α, β mixing with rate function h if for all
f ∈ Ḣα, g ∈ Ḣβ we have( 1

t− s

∫ t

s

∣∣∣〈f ◦ ϕs,r, g〉∣∣∣2 dr)1/2
6 h(t− s)‖f‖α‖g‖β . (1.2.11)

We devote the rest of this section to examples.

1.2.1 Example: Uniformly Expanding Map
Recall that the uniformly expanding map ϕ : T1 → T1 is defined by

ϕ(x) = mx mod 1 .

for m ∈ N with m > 2.

Proposition 1.2.10. The uniformly expanding map ϕ is 0, β exponentially
mixing.

Proof. Let U be the corresponding Koopman operator defined by ϕ. We find
that for any f ∈ L2

0(T1)

(Uf)∧(k) =

f̂
(
k

m

)
if k = mp for some p ∈ Z ,

0 otherwise .

Hence we have for any β > 0

‖Unf‖2
H−β =

∑
k 6=0
|mnk|−β|(Unf)∧(mnk)|2 =

∑
k 6=0
|mnk|−β|f)∧(k)|2

= m−βn‖f‖2
H−β 6 m−βn‖f‖2

L2 .

By duality, this shows that for any f ∈ L2
0(T1) and g ∈ Ḣβ(T1), we have

|〈Unf, g〉| 6 2−βn/2‖f‖L2‖g‖β .

This concludes the proof.
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Remark 1.2.11. Note, the above shows that the uniformly expanding map
is strongly α, β mixing with α = 0. The reason this does not contradict
Remark 1.2.2 is because the expanding map is not a diffeomorphism, and thus
the associated Koopman operator is not invertible. For any volume preserving
diffeomorphism, we must of course have both α > 0 and β > 0, as mentioned
in Remark 1.2.2.

1.2.2 Example: Baker’s map
Let X = [0, 1]× [0, 1] and define the map ϕ : X → X

ϕ(x, y) =


(2x, 1

2y) if 0 6 x <
1
2 ,

(2x− 1, 1
2(y + 1)) if 1

2 6 x 6 1 .

The Baker’s map is strongly exponentially mixing and we refer the reader
to [SOW06, Example 3.7.2] for a discussion, figures and a heuristic outline of
a proof.

1.2.3 Example: Cat map
Let

A =
(

2 1
1 1

)
.

The map ϕ, defined by

ϕ(x) = Ax (mod Z2) ,

on the two dimensional torus is strongly mixing. Maps of this form are known
as toral automorphisms, and have been extensively studied. We analyze them
in Chapter 3, below, where we prove that they are exponentially mixing.

1.3 Dissipation Time
In our setup we will consider a mixing map on a closed Riemannian

manifold. While the primary manifold we are interested in is the torus, there
are, to the best of our knowledge, no known examples of smooth exponentially
mixing maps on the torus that can be realized as the time one map of the flow
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of a smooth incompressible vector field. There are, however, several examples
of closed Riemannian manifolds that admit such maps (see [Dol98,BW16]
and references therein). Since working on closed Riemannian manifolds does
not increase the complexity by much, we state our results in this context
instead of restricting our attention to the torus.

Let M be a closed d-dimensional Riemannian manifold, and ϕ : M →
M be a smooth volume preserving diffeomorphism. For simplicity we will
subsequently assume that the volume form on M is normalized so that the
total volume, |M |, is 1. Let ν > 0 be the strength of the diffusion, ∆ denote
the Laplace-Beltrami operator on M , and L2

0 = L2
0(M) denote the space of

all mean zero square integrable functions on M . Given θ0 ∈ L2
0, we consider

the pulsed diffusion defined by

θn+1 = eν∆Uθn .(1.3.1)

Here U : L2(M)→ L2(M) is the Koopman operator associated with ϕ, and is
defined by Uf = f ◦ ϕ. Our aim is to understand the asymptotic behaviour
of the energy ‖θn‖L2

0
in the long time, small diffusivity limit. For notational

convenience, we will use ‖·‖ to denote the L2
0 norm, and 〈·, ·〉 to denote the

L2
0 inner-product.
Since ϕ is volume preserving, the operator U is unitary and hence if

ν = 0 the system (1.3.1) conserves energy. If ν > 0 and ϕ is mixing, then
Koopman operator U produces fine scales which are rapidly damped by the
diffusion. We quantify this using the notion of dissipation time in [FW03]
(see also [FNW04,FNW06]).

Definition 1.3.1 (Dissipation time). We define the dissipation time of the
operator U by

τd
def= inf

{
n ∈ N

∣∣∣∣ ‖(eν∆U)n‖L2
0→L

2
0
<

1
e

}
= inf

{
n ∈ N

∣∣∣∣ ‖θn‖ < ‖θ0‖
e

for all θ0 ∈ L2
0

}
.(1.3.2)

Since U is unitary we clearly have ‖θn‖ 6 e−νλ1‖θn−1‖, where λ1 > 0 is
the smallest non-zero eigenvalue of −∆ on M . Consequently, we always have

(1.3.3) τd 6
1
νλ1

,
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Our aim is to investigate how (1.3.3) can be improved given an assumption
on the “mixing rate” of ϕ.

In the continuous time setting, we consider the dissipation time for the
advection-diffusion equation. Let M be a (smooth) closed Riemannian mani-
fold, and u be a smooth, time dependent, divergence free vector field on M .
Let θ be a solution to the advection-diffusion equation

(1.3.4)
{
∂tθs + (u(t) · ∇)θs − ν∆θs = 0 in M , for t > s,

θs(t) = θs,0 for t = s.

for t > s, with initial data θs(s) = θs,0 ∈ L2
0(M). Since u is divergence free

we have

(1.3.5) 1
2∂t‖θs(t)‖

2 + ν‖∇θ‖2 = 0 ,

and hence

(1.3.6) ‖θs(t)‖ 6 e−νλ1(t−s)‖θs,0‖ .

Our interest, again, is to to investigate how this decay rate can be quantifi-
ably improved when the flow of u is mixing. At a first glance, this energy
estimate (1.3.5) hides the information from the advection flow u(x, t), which
says the change of rate of ‖θ‖L2 only depends on ‖∇θ‖L2 . We will show that
the advection flow u does play an important role in the decay of ‖θ‖L2 by
increasing the ‖∇θ‖L2 in some sense, which will be quantitatively studied
later.

To give readers an intuitive idea of this, we refer to Figure 1.2 from
paper [LTD11], which shows the snapshots of the scalar field evolution with
initial distribution θ0(x, y) = sin x under a specifically constructed mixing
flow on the domain [0, 2π]2. We can see from Figure 1.2, under the influence
of mixing, the space scales become smaller and smaller, which occurs along
with energy moving to high frequencies. It thus then yields to a faster energy
decay.

Similar to our treatment of pulsed diffusions, we define the dissipation
time of u by

τd
def= sup

s∈R

(
inf
{
t− s

∣∣∣∣ t > s, and ‖θs(t)‖ 6
‖θs,0‖
e

for all θs,0 ∈ L2
0

})
= sup

s∈R

(
inf
{
t− s

∣∣∣∣ t > s, and ‖Ss,t‖L2
0→L

2
0
6

1
e

})
,(1.3.7)
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Figure 1.2: Evolution of scalar field in [0, 2π]2 under an optimally mixing flow
with initial θ0(x, y) = sin x. This figure is taken from [LTD11].

where Ss,t is the solution operator to (1.3.4).
From (1.3.6) we immediately see that for any smooth divergence free

advecting field u we again have

τd 6
1
νλ1

,

where λ1 is the smallest non-zero eigenvalue of −∆ on M . If the flow of u
is mixing, then we expect that τd to be much smaller than than 1/(λ1ν).
It turns out that all stationary vector fields for which ντd → 0 can be
elegantly characterized in terms of the spectrum of the operator u ·∇. Indeed,
seminal work of Constantin et. al. [CKRZ08] shows2 that for time independent
incompressible vector fields u, ντd → 0 if and only if the operator (u · ∇) has
no eigenfunctions in Ḣ1. Consequently, it follows that if the flow generated
by u is weakly mixing, we must have ντd → 0 as ν → 0.

Our aim is to obtain bounds on the rate at which ντd → 0, under an
assumption on the rate at which the flow of u mixes.

2More precisely, in [CKRZ08] the authors show that an incompressible, time independent,
vector field u is relaxation enhancing if and only if (u · ∇) has no eigenfunctions in Ḣ1. It
is, however, easy to see that a vector field is relaxation enhancing if and only if ντd → 0.

14



1.4 Main results
The main results of this thesis quantifies the interaction between mixing

and diffusion by studying the energy dissipation rate. Roughly speaking, our
main results can be stated as follows:

1. In the continuous time setting we show (Theorem 4.1.1) that if the
flow is strongly mixing, then the dissipation time (i.e. the time required
for the system to dissipate a constant fraction of its initial energy)
can be bounded explicitly in terms of the mixing rate. In particular,
for exponentially mixing flows, then the dissipation time is bounded
by C|ln ν|2, where ν is the strength of the diffusion. If instead the flow
is weakly mixing at a polynomial rate, then the dissipation time is
bounded by C/νδ for some explicit δ ∈ (0, 1) (Theorem 4.2.1).

2. Under similar assumptions in the discrete time setting we obtain the
same bounds on the dissipation time (Theorems 2.1.1 and 2.2.1). We
also show (Theorem 3.2.1) that the energy can not decay faster than
double exponentially in time. Moreover, we obtain a family of examples
where the energy indeed decays double exponentially in time. (In
the continuous time setting the double exponential lower bound is
known [Poo96], however, to the best of our knowledge there are no
smooth flows which are known to attain this lower bound.)

3. In bounded domains, Berestycki et. al. [BHN05] studied asymptotics
of the principal eigenvalue of the operator −ν∆ + u · ∇ as ν → 0.
We show (Proposition 4.4.1) that one can use the dissipation time to
obtain quantitative bounds on the rate at which the principal eigenvalue
approaches 0.

Remark 1.4.1. In the continuous time setting similar results were obtained by
Coti Zelati et al. [CZDE18], and their work is discussed in Section 4, below.

In this thesis, we will study the dissipation enhancement for pulsed diffu-
sions in Chapter 2, and obtain an explicit formula bounding the dissipation
time in terms of the mixing rate. In Chapter 3 we study dissipation enhance-
ment and energy decay for pulsed diffusions under toral automorphisms, and
obtain an family of examples where the energy decays double exponentially
in time. In chapter 4, we study the dissipation enhancement for the advection
diffusion equations. Finally, in Appendix A we characterize pulsed diffusions
whose dissipation time vanishes faster than O(1/ν).
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Chapter 2

Dissipation Enhancement for
Pulsed Diffusions

In this chapter we study the dissipation time (1.3.2) for pulsed diffu-
sions (1.3.1). We will give upper bounds of the dissipation time for both
strongly and weakly mixing maps. Our result shows that given any mixing
rate of a map, the upper bound of dissipation time for the corresponding
pulsed diffusion model can be formulated explicitly. We will also briefly
discuss the relations between the strongly and weakly mixing cases after that
and give a characterization of the dissipation time on the map which has no
Ḣ1 eigenfunctions.

2.1 The Strongly Mixing Case
First recall that the pulsed diffusion is defined by

θn+1 = eν∆Uθn ,

where θ0 ∈ L2
0 and U is the Koopman operator associated with ϕ. Our main

results on the dissipation time when the underlying map is strongly mixing
are as follows:
Theorem 2.1.1. Let α, β > 0, and h : [0,∞) → (0,∞) be a decreasing
function that vanishes at infinity. If ϕ is strongly α, β mixing with rate
function h, then the dissipation time is bounded by

τd 6
C

νH1(ν) .(2.1.1)
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Here C is a universal constant which can be chosen to be 34, and H1 : (0,∞)→
(0,∞) is defined by

(2.1.2) H1(µ) def= sup
{
λ

∣∣∣∣ h( 1
2
√
λµ

)
6
λ−(α+β)/2

2

}
.

Before proceeding further, we compute the dissipation time τd in two
useful cases.

Corollary 2.1.2. Let α, β, h, ϕ be as in Theorem 2.1.1.

1. If the mixing rate function h : (0,∞)→ (0,∞) is the power law

h(t) = c

tp
, (2.1.3)

for some p > 0, then the dissipation time is bounded by

τd 6
C

νδ
where δ def= α + β

α + β + p
, (2.1.4)

and C = C(c, α, β, p) > 0 is a finite constant

2. If the mixing rate function h : [0,∞)→ (0,∞) is the exponential func-
tion

h(t) = c1 exp(−c2t) , (2.1.5)

for some constants c1, c2 > 0, then the dissipation time is bounded by

τd 6 C|ln ν|2 , (2.1.6)

and C = C(c1, c2, α, β) > 0 is a finite constant

Remark 2.1.3. In the proof of Corollary 2.1.2 (page 19) we will see that the
bound (2.1.6) can be improved to a bound of the form

τd 6 C0

(
|ln ν| − C1 ln

∣∣∣ln ν − ln|ln ν|
∣∣∣)2

for explicit constants C0, C1 depending only on c1, c2, α, β and the constant C
appearing in (2.1.1). However, since C is not optimal, this improvement is
not significant.
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To prove Theorem 2.1.1, we need two lemmas below.

Lemma 2.1.4. Given θ ∈ L2
0, define Eνθ by

(2.1.7) Eνθ
def= 1
ν

∥∥∥(1− e2ν∆)1/2Uθ
∥∥∥2
.

If for θ0 ∈ L2
0 and c0 > 0 we have

(2.1.8) Eνθ0 > c0‖θ0‖2 ,

then
‖θ1‖2 6 e−νc0‖θ0‖2 .

Lemma 2.1.5. Let 0 < λ1 < λ2 6 · · · be the eigenvalues of the Laplacian,
where each eigenvalue is repeated according to its multiplicity. Let λN be the
largest eigenvalue satisfying λN 6 H1(ν), where we recall that H1 is defined
in (2.1.2). If

(2.1.9) Eνθ0 < λN‖θ0‖2 ,

then for

(2.1.10) m0 = 2
⌈
h−1

(1
2λ
−(α+β)/2
N

)⌉
we have

(2.1.11) ‖θm0‖2 6 exp
(
−νH1(ν)m0

16

)
‖θ0‖2 .

Here h−1 is the inverse function of h.

Momentarily postponing the proofs of Lemmas 2.1.4 and 2.1.5 we prove
Theorem 2.1.1.

Proof of Theorem 2.1.1. Choosing c0 = λN and repeatedly applying Lem-
mas 2.1.4 and 2.1.5 we obtain an increasing sequence of times nk such that

‖θnk‖2 6 exp
(
−νH1(ν)nk

16

)
‖θ0‖2 , and nk+1 − nk 6 m0 .

This immediately implies

(2.1.12) τd 6
32

νH1(ν) +m0 .
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Note by choice of λN we have

h
( 1

2
√
νλN

)
6
λ
−(α+β)/2
N

2 .

And since h is decreasing, it further implies

h−1
(
λ
−(α+β)/2
N

2

)
6

1
2
√
νλN

.

By the choice of m0, we then have

(2.1.13) m0 6
1√
νλN

6
1

νλN
.

Recall by Weyl’s lemma (see for instance [MP49]) we know

(2.1.14) λj ≈
4π Γ(d2 + 1)2/d

vol(M)2/d j2/d ,

asymptotically as j → ∞. This implies λj+1 − λj = o(λj). Using this, and
the fact that H1(ν)→∞ as ν → 0, we must have

(2.1.15) 1
2H1(ν) 6 λN 6 H1(ν) ,

when ν is sufficiently small. Substituting this in (2.1.13) gives

m0 6
2

νH(ν) ,

and using this in (2.1.12) yields the desired result.

To prove Corollary 2.1.2, we only need to compute the function H1
explicitly for the specific rate functions of interest.

Proof of Corollary 2.1.2. When the mixing rate function h is the power law
as defined in (2.1.3), we compute

H1(ν) =
(4p−1

c2νp

) 1
α+β+p

.

Substituting this into (2.1.1) yields (2.1.4) as desired.
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When the mixing rate function h is the exponential function as defined
in (2.1.5), we can not compute H1 exactly, as (2.1.2) only yields

(2.1.16) H1(ν) = c2
2

4ν

(
ln 2 + ln c1 + α + β

2 lnH1(ν)
)−2

.

Since H1(ν)→∞ as ν → 0, we know H1(ν) > 1 for sufficiently small ν.

H1(ν) 6 C

ν
,

for some constant C = C(c1, c2, α, β). Using this in (2.1.16) yields

H1(ν) > C

ν|ln ν|2 .

Substituting this in (2.1.1) yields (2.1.6) as desired. This argument can also
be iterated to obtain improved bounds as stated in Remark 2.1.3.

It remains to prove Lemmas 2.1.4 and 2.1.5.

Proof of Lemma 2.1.4. Note first that (1.3.1) and (2.1.7) imply the energy
equality

‖θ1‖2 =
∞∑
i=1

e−2νλi |〈Uθ0, ei〉|2 =
∞∑
i=1
|〈Uθ0, ei〉|2 − νEνθ0

= ‖θ0‖2 − νEνθ0 .(2.1.17)

Now using (2.1.8) immediately implies

(2.1.18) ‖θ1‖2 6 (1− c0ν)‖θ0‖2 6 e−c0ν‖θ0‖2 .

In order to prove Lemma 2.1.5, we first need to estimate the difference
between the pulsed diffusion and the underlying dynamical system. We do
this as follows.

Lemma 2.1.6. Let φn, defined by

φn = Unθ0 ,

be the evolution of θ0 under the dynamical system generated by ϕ. Then for
all n > 0 we have

(2.1.19) ‖θn − φn‖ 6
n−1∑
k=0

√
νEνθk .
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Proof. Since φn = Uφn−1, we have

‖θn − φn‖ 6 ‖(eν∆ − 1)Uθn−1‖+ ‖U(θn−1 − φn−1)‖

=
( ∞∑
i=1

(e−νλi − 1)2|〈Uθn−1, ei〉|2
)1/2

+ ‖θn−1 − φn−1‖

6
( ∞∑
i=1

(1− e−2νλi)|〈Uθn−1, ei〉|2
)1/2

+ ‖θn−1 − φn−1‖

6
√
νEνθn−1 + ‖θn−1 − φn−1‖ ,

and hence (2.1.19) follows by induction.

We now prove Lemma 2.1.5.

Proof of Lemma 2.1.5. By (2.1.17), we have

‖θm0‖2 = ‖θ1‖2 − ν
m0−1∑
m=1
Eνθm .(2.1.20)

Thus the decay of ‖θm0‖ is governed by the growth of ∑m0−1
m=1 Eνθm. In order

to estimate Eνθm we claim

2‖θm+1‖2
1 6 Eνθm 6 2‖Uθm‖2

1 , for all m ∈ N .(2.1.21)

Indeed, by definition of Eν (equation (2.1.7)) we have

νEνθm =
∞∑
k=1

(
1− e−2νλk

)
|(Uθm)∧(k)|2 ,

where (Uθm)∧(k) def= 〈Uθm, ek〉 is the k-th Fourier coefficient of Uθm, and
ek is the eigenfunction of the Laplacian corresponding to the eigenvalue λk.
Now (2.1.21) follows from the inequalities

2νλke−2νλk 6 1− e−2νλk 6 2νλk .

We next claim that for all sufficiently small ν we have

‖θ1‖2
1 < λN‖θ1‖2 .(2.1.22)

To see this, note that (2.1.9) and (2.1.21) imply

(2.1.23) ‖θ1‖2
1 6

1
2Eνθ0 <

λN
2 ‖θ0‖2 .
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Moreover, our choice of λN (in equation (2.1.2)) guarantees λN 6 1/(2ν) for
all ν sufficiently small. Thus

‖θ1‖2 = ‖θ0‖2 − νEνθ0 > (1− νλN)‖θ0‖2 >
1
2‖θ0‖2 ,

and substituting this in equation (2.1.23) gives (2.1.22) as claimed.
We now claim that for N and m0 as in the statement of Lemma 2.1.5 we

have

(2.1.24)
m0−1∑
m=1
Eνθm >

λNm0

8 ‖θ1‖2 .

Note equation (2.1.24) immediately implies (2.1.11). Indeed, by (2.1.20), we
have

‖θm0‖2 6
(

1− νλNm0

8

)
‖θ1‖2 6 exp

(
−νλNm0

8

)
‖θ0‖2

6 exp
(
−νH1(ν)m0

16

)
‖θ0‖2 ,

where last inequality followed from (2.1.15).
Thus it only remains to prove equation (2.1.24). For this we let φm,

defined by
φm = Um−1θ1 ,

be the evolution of θ1 under the dynamical system generated by ϕ. Let
PN : L2

0 → L2
0 be the orthogonal projection onto span{e1, . . . , eN}. Us-

ing (2.1.21) we have

m0−1∑
m=1
Eνθm >

m0−1∑
m=m0/2

Eνθm > 2
m0−1∑

m=m0/2
‖θm+1‖2

1

> 2λN
m0−1∑

m=m0/2
‖(I − PN)θm+1‖2

> λN

( m0−1∑
m=m0/2

‖(I − PN)φm+1‖2

− 2
m0−1∑

m=m0/2
‖(I − PN)(θm+1 − φm+1)‖2

)
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> λN

(
m0

2 ‖φ1‖2 −
m0−1∑

m=m0/2
‖PNφm+1‖2 − 2

m0−1∑
m=m0/2

‖θm+1 − φm+1‖2
)
.

(2.1.25)

Now using Lemma 2.1.6 we estimate the last term on the right of (2.1.25)
by

m0−1∑
m=m0/2

‖θm+1 − φm+1‖2 6
m0−1∑

m=m0/2

( m∑
l=1

√
νEνθl

)2
6

m0−1∑
m=m0/2

mν
m∑
l=1
Eνθl

6
m2

0ν

2

m0−1∑
l=1
Eνθl .(2.1.26)

For the second term on the right of (2.1.25) we note that since U is
strongly α, β mixing with rate function h, we have

‖Umf‖−β 6 h(m)‖f‖α ,
for every f ∈ Ḣα (see also (1.2.5) ). This implies

m0−1∑
m=m0/2

‖PNφm+1‖2 6
m0−1∑

m=m0/2
λβN‖φm+1‖2

−β 6
m0−1∑

m=m0/2
λβNh(m)2‖φ1‖2

α

6 m0h
(
m0

2

)2
λβN‖φ1‖2

α 6 m0h
(
m0

2

)2
λβN‖θ1‖2−2α‖θ1‖2α

1

6 m0h
(
m0

2

)2
λα+β
N ‖θ1‖2 ,(2.1.27)

where the last inequality followed from (2.1.22).
Substituting (2.1.26) and (2.1.27) in (2.1.25) we obtain

(2.1.28)
m0−1∑
m=1
Eνθm >

m0λN
1 + λNνm2

0

(1
2 − h

(
m0

2

)2
λα+β
N

)
‖θ1‖2 .

Clearly, by choice of m0 in (2.1.10), we know

(2.1.29) h
(
m0

2

)2
λα+β
N 6

1
4 .

Moreover, using the definition of H1 (2.1.2) and the fact that λN 6 H1(ν),
we see
(2.1.30) λNνm

2
0 6 1 .

Now using (2.1.29) and (2.1.30) in (2.1.28) implies (2.1.24). This finishes the
proof of Lemma 2.1.5.
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2.2 The Weakly Mixing Case.
When ϕ is weakly mixing, the bounds we obtain for the dissipation time

are weaker than that in Theorem 2.1.1. We state these results next.
Theorem 2.2.1. Let α, β > 0, and h : [0,∞) → (0,∞) be a decreasing
function that vanishes at infinity. If ϕ is weakly α, β mixing with rate
function h, then the dissipation time is bounded by

(2.2.1) τd 6
C

νH2(ν) .

Here C is a universal constant which can be chosen to be 34, and H2 : (0,∞)→
(0,∞) is defined by

H2(µ) def= sup
{
λ
∣∣∣∣ h( 1√

2µλ

)
6

1
2
√
c̃
λ−(2α+2β+d)/4

}
,(2.2.2)

where c̃ = c̃(M) > 0 is a finite constant that only depends on the manifold M .
Remark 2.2.2. We will see in the proof of Theorem 2.2.1 that the constant c̃ can
be determined by the asymptotic growth of the eigenvalues of the Laplacian
on M . Explicitly, let 0 < λ1 < λ2 6 · · · be the eigenvalues of the Laplacian,
where each eigenvalue is repeated according to its multiplicity. Then for any
ε ∈ (0, 1) we can choose

c̃ = (1 + ε) lim
j→∞

λ
d/2
j

j
=

(1 + ε)(4π)d/2 Γ(d2 + 1)
vol(M) .

The existence, and precise value, of the limit above is given by Weyl’s lemma
(see for instance [MP49]).

We now compute τd explicitly when the weak mixing rate function h
decays polynomially.
Corollary 2.2.3. Let α, β, h, ϕ be as in Theorem 2.2.1. If the mixing rate
function h is the power law (2.1.3) for some p ∈ (0, 1/2]1, then the dissipation
time is bounded by

(2.2.3) τd 6 Cν−δ , where δ
def= d+ 2α + 2β
d+ 2p+ 2α + 2β ,

and C = C(ϕ,M, s, α, β) is some finite constant.
1We require p ∈ (0, 1/2], instead of p > 0, as the weak mixing rate can never be faster

than 1/
√
n. This can be seen immediately by choosing f = g in (1.2.8).
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We now turn our attention to Theorem 2.2.1. The proof is very similar
to the proof of Theorem 2.1.1, the only difference is that the analog of
Lemma 2.2.4 is not as explicit.

Lemma 2.2.4. Let λN be the largest eigenvalue of −∆ such that λN 6 H2(ν),
and suppose

Eνθ0 < λN‖θ0‖2 .

Then,
‖θm0‖2 6 exp

(
−νH2(ν)m0

16

)
‖θ0‖2 .

where

m0 =
⌈
h−1

( 1
2
√
c̃
λ
−(d+2α+2β)/4
N

)⌉
+ 1 ,(2.2.4)

and c̃ is the constant in Theorem 2.2.1 and Remark 2.2.2.

Given Lemma 2.2.4, the proof of Theorem 2.2.1 is essentially the same as
the proof of Theorem 2.1.1.

Proof of Theorem 2.2.1. Choosing c0 = λN and repeatedly applying Lem-
mas 2.1.4 and 2.2.4 we obtain an increasing sequence of times nk such that

‖θnk‖2 6 exp
(
−νH2(ν)nk

16

)
‖θ0‖2 , and nk+1 − nk 6 m0 .

This immediately implies

(2.2.5) τd 6
32

νH2(ν) +m0 .

By the choice of m0 and λN , we notice that

m0 6
1√
νλN

6
1

νλN
6

2
νH2(ν) .

This proves (2.2.1).

Before proving Lemma 2.2.4, we prove Corollary 2.2.3.

25



Proof of Corollary 2.2.3. The proof only involves computing H2 explicitly
when h is given by the power law (2.1.3). Using (2.2.2) we see

H2(ν) =
(

2(p+2)/2c
√
c̃
)−4δ′

ν−2pδ′ , where δ′
def= 1

2α + 2β + 2p+ d
.

Substituting this into (2.2.1) yields (2.2.3) as desired.

It remains to prove Lemma 2.2.4.

Proof of Lemma 2.2.4. We first claim that (2.1.24) still holds if λN ,m0 chosen
as in the statement of Lemma 2.2.4. Once (2.1.24) is established, then the
remainder of the proof is identical to that of Lemma 2.1.5.

To prove (2.1.24), we observe that the lower bound (2.1.25) (from the
proof of Lemma 2.1.5) still holds in this case. For last term on the right
of (2.1.25), we use the bound (2.1.26). The only difference here is to estimate
the second term using the weak mixing assumption (1.2.8) instead. Observe

1
m0

m0−1∑
m=0
‖PNφm+1‖2 =

N∑
l=1

1
m0

m0−1∑
m=0
|〈el, Umθ1〉|2 .

Since ϕ is weak α, β-mixing with rate function h, (1.2.8) yields

1
m0

m0−1∑
m=0
|〈el, Umθ1〉|2 6 h(m0 − 1)2‖θ1‖2

αλ
β
l 6 h(m0 − 1)2λβN‖θ1‖2

α

6 h(m0 − 1)2λβN‖θ1‖2−2α‖θ1‖2α
1 6 h(m0 − 1)2λβ+α

N ‖θ1‖2 .

Together with (2.1.22) this gives

1
m0

m0−1∑
m=0
‖PNφm+1‖2 6 h(m0 − 1)2Nλβ+α

N ‖θ1‖2

6 c̃h(m0 − 1)2λ
(d+2α+2β)/2
N ‖θ1‖2 ,

where the last inequality follows from the fact that c̃λd/2N /2 6 N 6 c̃λ
d/2
N

when N is sufficiently large. This yields2

m0−1∑
m=m0/2

‖PNφm+1‖2 6
m0−1∑
m=0
‖PNφm+1‖2‖θ1‖2(2.2.6)

2Note that in the proof of Lemma 2.1.5, we used
m0−1∑

1
Eνθm >

m0−1∑
m0/2

Eνθm
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6 c̃m0h(m0 − 1)2λ
(d+2α+2β)/2
N ‖θ1‖2 .

Substituting this and (2.1.26) in (2.1.25) gives

m0−1∑
m=1
Eνθm >

m0λN
1 +m2

0νλN

(1
2 − c̃ h(m0 − 1)2λ

(d+2α+2β)/2
N

)
‖θ1‖2 .(2.2.7)

Now, the choice of m0 in (2.2.4) forces

c̃ h(m0 − 1)2λ
(d+2α+2β)/2
N 6

1
4 .(2.2.8)

Moreover, using (2.2.2) and the fact that λN 6 H2(ν), we see

λNνm
2
0 6 4h−1

( 1
2
√
c̃
λ
−(d+2α+2β)/4
N

)2
νλN 6 1 .(2.2.9)

Substituting (2.2.8) and (2.2.9) in (2.2.7) implies (2.1.24), which finishes the
proof.

2.3 Relations between our bounds on the dis-
sipation time in the strong and weak mix-
ing cases

Note that as ν → 0, both H1(ν)→∞ and H2(ν)→∞. Thus the bounds
obtained in both Theorems 2.1.1 and 2.2.1, guarantee ντd → 0 as ν → 0, and
hence are stronger than the elementary bound (1.3.3).

Notice that if ϕ is strongly α, β mixing with rate function h, then it is
also weakly α, β mixing with rate function hw, where hw : [0,∞)→ (0,∞) is
any continuous decreasing function such that

hw(n) def=
( 1
n

n−1∑
k=0

h(k)2
)1/2

for every n ∈ N .

and focussed on bounding the tail of the sum in order to effectively use the decay of h.
In (2.2.6), however, using only the tail of the sum does not improve our final result, and
we can directly sum over the entire history. We only do it here because it allows us to
directly use last part of the proof of Lemma 2.1.5.

27



In this case, however, one immediately sees that the bound provided by
Theorem 2.2.1 is weaker than that provided by Theorem 2.1.1.

In particular, suppose ϕ is strongly α, β mixing with rate function h given
by the power law (2.1.3) for some p ∈ (0, 1/2]. Then ϕ is also weakly α, β
mixing with rate function given by

hw(t) =


Cp
tp

p < 1/2 ,(
Cp ln(1 + t)

t

)1/2
p = 1/2 ,

for some constant Cp = Cp(c, p). In this case Corollary 2.2.3 applies when
p < 1/2, and asserts that the dissipation time τd is bounded by (2.2.3). This,
however, is weaker than (2.1.4).

Before proceeding further, we note that Fannjiang et. al. [FNW04] (see
also [FW03,FNW06]) also obtain bounds on the dissipation time τd assuming
the time decay of the correlations of the diffusive operator eν∆U for sufficiently
small ν. Explicitly they assume sufficient decay of 〈(eν∆U)nf, g〉 as n→∞,
and then show that the dissipation time τd is at most C/|ln ν|. In contrast,
our results only assume decay of the correlations of the operator U (without
diffusion) as in Definition 1.2.1.

In continuous time, Constantin et. al. [CKRZ08] (see also [KSZ08]) char-
acterized flows for which the dissipation time is o(1/ν). Their result can
directly be adapted to pulsed diffusions as follows.

Proposition 2.3.1. The Koopman operator U has no eigenfunctions in Ḣ1

if and only if
lim
ν→0

ντd = 0 .

Since the proof is a direct adaptation of [CKRZ08,KSZ08], we relegate it
to Appendix A.
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Chapter 3

Toral Automorphisms and the
Energy Decay of Pulsed
Diffusions

In this chapter, we study the energy decay of pulsed diffusions with toral
automorphisms. Using results from algebraic number theory we show that
toral automorphisms are exponentially mixing, and that the L2 energy of the
associated pulsed diffusion decays double exponentially.

Recall a toral automorphism is a map of the form

(3.0.1) ϕ(x) = Ax (mod Zd) ,

where A ∈ SLd(Z) is an integer valued d×d matrix with determinant 1. Maps
of this form are known as “cat maps”, and one particular example is when
d = 2 and

A =
(

2 1
1 1

)
.

The reason for the somewhat unusual name is that originally “CAT” was an
abbreviation for Continuous Automorphism of the Torus. However, it has
now become tradition to demonstrate the mixing effects of this map using
the image of a cat [SOW06].

29



3.1 Mixing Rates of Toral Automorphisms
It is well known that no eigenvalue of A is a root of unity, if and only if ϕ

is ergodic, if and only if ϕ is strongly mixing (see [Kat71], Page 160, problem
4.2.11 in [KH95]) Our interest is in understanding the mixing rates in the
sense of Definition 1.2.1.

Proposition 3.1.1. Let A ∈ SLd(Z) be such that:

(C1) No eigenvalue of A is a root of unity,

(C2) and the characteristic polynomial of A is irreducible over Q.

If α, β > 0 then the toral automorphism ϕ : Td → Td defined by (3.0.1) is
strongly α, β mixing with rate function

(3.1.1) h(n) = Cα,β exp
(
− n

C0

(
α ∧ β

d− 1

))
,

for some finite non-zero constants Cα,β = Cα,β(A,α, β) and C0 = C0(A).

Remark 3.1.2. Condition (C2) above is equivalent to assuming that A has no
proper invariant subspaces in Qd.

For completeness, we also mention that if A satisfies Condition (C1) above,
then A is also weakly α, β mixing if either α = 0 or β = 0 (but not both).

Proposition 3.1.3. Let A ∈ SLd(Z) satisfy the condition (C1) in Proposi-
tion 3.1.1.

1. If either α > 0 and β = 0, or α = 0 and β > 0, then there exists a
finite constant Cα,β = C(α, β) such that ϕ is weakly α, β mixing with
rate function

(3.1.2) h(n) =



Cα,β√
n
, α ∨ β > d

2 ,

Cα,β

( lnn
n

)1/2
, α ∨ β = d

2 ,

Cα,β
n(α∨β)/d , α ∨ β < d

2 .
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2. If further A satisfies condition (C2) in Proposition 3.1.3, and both α > 0
and β > 0, then there exists a finite constant Cα,β = C(A,α, β) such
that ϕ is weakly α, β mixing with rate function

(3.1.3) h(n) = Cα,β√
n
.

When d = 2, Proposition 3.1.1 is well known and can be proved elemen-
tarily. In higher dimensions, a version of Proposition 3.1.1 was proved by
Lind [Lin82, Theorem 6] using a lemma of Katznelson [Kat71, Lemma 3] on
Diophantine approximation. Proposition 3.1.1 can also be deduced from the
results on the algebraic structure of toral automorphisms developed in [FW03].
These arguments, however, rely on three sophisticated results from number
theory: the Schmidt subspace theorem [Sch80], Minkowski’s theorem on linear
forms [New72, Chapter VI] and van der Waerdern’s theorem on arithmetic
progressions [vdW27,Luk48]. We will avoid using these results, and instead
instead prove Proposition 3.1.1 directly using the following two algebraic
lemmas. These lemmas will be reused subsequently in the proof of sharpness
of the double exponential bound (3.2.1) in Theorem 3.2.1.

Lemma 3.1.4. Suppose A ∈ SLd(Z) satisfies the assumptions (C1) and (C2)
in Proposition 3.1.1. There exists a basis {v1, . . . , vd} of Cd such that the
following hold:

1. Each vi is an eigenvector of A.

2. If k ∈ Zd − 0, and ai = ai(k) ∈ C are such that

k =
d∑
1
ai(k)vi =

d∑
1
aivi ,

then we must have

(3.1.4)
d∏
i=1
|ai(k)| > 1 .

Lemma 3.1.5 (Kronecker [Kro57]). Let p be a monic polynomial with integer
coefficients that is irreducible over Q. If all the roots of p are contained in
the unit disk, they must be roots of unity.
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The proofs of Lemma 3.1.4 and 3.1.5 use elementary facts about algebraic
number fields, and to avoid breaking continuity, we defer the proofs to
Section 3.3. The reason these lemmas arise here is as follows. Lemma 3.1.5
will guarantee that guarantee (AT )−1 has at least one eigenvalue, ζ1, strictly
outside the unit disk. Lemma 3.1.4 now guarantees that all non-zero Fourier
frequencies have a certain minimum component in the eigenspace of ζ1. This
will of course dominate the long time behaviour, leading to exponential mixing
of ϕ and rapid energy dissipation of the associated pulsed diffusion.

Proof of Proposition 3.1.1. Let B = (AT )−1, and f ∈ L2
0. Observe

(Uf)∧(k) =
∫
Td
e−2πik·xf(Ax) dx =

∫
Td
e−2πi(Bk)·xf(x) dx = f̂(Bk) ,

and hence

(3.1.5) (Unf)∧(k) = f̂(Bnk) ,

for all n > 0. Now to prove that ϕ is exponentially mixing, let f ∈ Ḣα, and
g ∈ Ḣβ. Using (3.1.5) we have

〈Unf, g〉 =
∑

k∈Zd−0
f̂(Bnk)ĝ(k) =

∑
k∈Zd−0

1
|Bnk|α|k|β

|Bnk|αf̂(Bnk)|k|β ĝ(k)

Consequently

(3.1.6) |Unf, g| 6
(

sup
k∈Zd−0

1
|Bnk|α|k|β

)
‖f‖α‖g‖β

We now estimate the pre-factor on the right of (3.1.6) using Lemmas 3.1.4
and 3.1.5. First note that B ∈ SLd(Z) also satisfies the assumptions (C1)
and (C2). Let v1, . . . , vd be the basis given by Lemma 3.1.4, and ζ1, . . . ,
ζd be the corresponding eigenvalues. Since the characteristic polynomial
of B satisfies the conditions of Lemma 3.1.5, we see that B has at least one
eigenvalue outside the unit disk. Without loss of generality we suppose |ζ1| >
1.

By equivalence of norms on finite dimensional spaces, we know there exists
c∗ > 0 such that

(3.1.7) 1
c∗
|k′| 6

(∑
|ai(k′)|2

)1/2
6 c∗|k′| , for all k′ ∈ Zd .
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Using Lemma 3.1.4, we note

|Bnk| =
∣∣∣∣∑ aiζ

n
i vi

∣∣∣∣ > |a1||ζ1|n

c∗
>

|ζ1|n

c∗|a2| · · · |ad|
>
|ζ1|n

cd∗|k|d−1 .

Thus
sup

k∈Zd−0

1
|Bnk|α|k|β

6 |ζ1|−nα
(

sup
k∈Zd−0

cdα∗
|k|β−(d−1)α

)
.

If (d−1)α 6 β, (3.1.6) and the above shows that ϕ is strongly α, β mixing with
rate function h(n) = C|ζ1|−nα. This proves (3.1.1) in the case (d− 1)α 6 β.

On the other hand, if (d−1)α > β, we let α′ = β/(d−1). By the previous
argument we know ϕ is α′, β mixing with rate function h(n) = C|ζ1|−nα

′ .
Since α > α′, ‖f‖α′ 6 ‖f‖α and it immediately follows that ϕ is also α, β
mixing with the same rate function. This proves (3.1.1) when (d− 1)α > β
completing the proof.

Proof of Proposition 3.1.3. The second assertion follows immediately from
Proposition 3.1.1. Indeed, when both α, β > 0, Proposition 3.1.1 implies ϕ
is strongly α, β mixing with rate function h given by (3.1.1). Since the rate
function decays exponentially, it is square summable and equation (3.1.3)
holds with Cα,β = (∑∞i=1 h(i)2)1/2.

To prove the first assertion, suppose first α = 0 and β > 0. As before set
B = (AT )−1, and let f, g ∈ L2

0 and observe

1
n

n−1∑
i=0
|〈U if, g〉|2 = 1

n

n−1∑
i=0

∣∣∣∣∣ ∑
k∈Zd−0

f̂(Bik)ĝ(k)
∣∣∣∣∣
2

6
‖g‖2

β

n

n−1∑
i=0

∑
k∈Zd−0

|f̂(Bik)|2
|k|2β

.(3.1.8)

We now split the analysis into cases. First suppose β > d/2. By Kro-
necker’s theorem (Lemma 3.1.5) we see that the matrix B can not have finite
order, and hence k, Bk, B2k, . . . , Bn−1k are all distinct. Thus (3.1.8) implies

1
n

n−1∑
i=0
|〈U if, g〉|2 6

‖g‖2
β

n

∑
k∈Zd−0

n−1∑
i=0

|f̂(Bik)|2
|k|2β

6
‖g‖2

β

n

∑
k∈Zd−0

‖f‖2

|k|2β
.

Since β > d/2, the sum on the right is finite, showing ϕ is 0, β mixing with
rate function C/n1/2 as desired.
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Suppose now β < d/2. Let m ∈ N be a large integer that will be chosen
shortly, and split the above sum as

1
n

n−1∑
i=0
|〈U if, g〉|2 6

‖g‖2
β

n

( ∑
0<|k|6m

n−1∑
i=0

|f̂(Bik)|2
|k|2β

+
n−1∑
i=0

∑
|k|>m

|f̂(Bik)|2
|k|2β

)(3.1.9)

6 ‖f‖2‖g‖2
β

[( 1
n

∑
0<|k|6m

1
|k|2β

)
+ 1
m2β

]
(3.1.10)

6 ‖f‖2‖g‖2
β

(
Cmd−2β

n
+ 1
m2β

)
,(3.1.11)

for some (explicit) constant C = C(d), independent of n. (Note, we again
used the fact that k, Bk, . . . , are all distinct when computing the first sum on
the right of (3.1.9) to obtain (3.1.10).) We now choose m = Cn1/d in order
to minimize the right hand side. This implies

1
n

n−1∑
i=0
|〈U if, g〉|2 6

C‖f‖2‖g‖2
β

n2β/d

proving (3.1.2) when β < d/2.
Finally, when β = d/2 we repeat the same argument above to ob-

tain (3.1.10). When summed (3.1.10) now yields

(3.1.12) 1
n

n−1∑
i=0
|〈U if, g〉|2 6 ‖f‖2‖g‖2

β

(
C lnm
n

+ 1
md

)
,

and choosing m = n yields (3.1.2) as desired.
We have now proved (3.1.2) when α = 0 and β > 0. For the case α > 0

and β = 0, note that 〈U if, g〉 = 〈f, U−ig〉. Thus replacing the matrix A
with A−1 reduces the case when α > 0, β = 0 to the case when α = 0, β > 0.
This finishes the proof.

3.2 Double Exponential Energy Decay
We now turn to studying the energy decay as n→∞. Clearly

‖θn‖ 6
∥∥∥∥((eν∆U)τd

)bn/τdc
θ0

∥∥∥∥ 6 ∥∥∥(eν∆U)τd
∥∥∥bn/τdc‖θ0‖ 6 e−bn/τdc‖θ0‖ ,
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and thus the energy ‖θn‖ decays at least exponentially with rate 1/τd as
n → ∞. This bound, however, is not optimal. Indeed, if ϕ is the Arnold
cat map, it is known [TC03] that the energy decays double exponentially.
We show that this remains true for a large class of toral automorphisms.
Moreover, Poon [Poo96] proved a matching lower bound for the continuous
time advection diffusion equation. This is readily adapted to the discrete
time setting.

Theorem 3.2.1 (Energy decay). For any θ0 ∈ Ḣ1, there exist finite constants
C = C(ϕ) > 0 and γ = γ(ϕ) > 1 for which the double exponential lower
bound

(3.2.1) ‖θn‖2 > ‖θ0‖2 exp
(
−Cν‖θ0‖2

1
‖θ0‖2 γn

)
,

holds. Moreover, there exists a smooth, volume preserving diffeomorphism on
the torus for which the above bound is achieved. Explicitly, if ϕ is any toral
automorphism which has no proper invariant rational subspaces, and has no
eigenvalues that are roots of unity, then there exists finite constants C and
γ > 1 such that

(3.2.2) ‖θn‖2 6 ‖θ0‖2 exp
(
−νγ

n

C

)
,

for all θ0 ∈ L2
0.

In the rest of this section, we aim to prove Theorem 3.2.1. Our first result
shows that if a toral automorphism satisfies conditions (C1) and (C2) in
Proposition 3.1.1, then the energy of the associated pulsed diffusion decays
double exponentially. This will prove sharpness of the lower bound (3.2.1) in
Theorem 3.2.1. Following this we will prove lower bound (3.2.1) itself using a
convexity argument.

Proposition 3.2.2. Suppose A ∈ SLd(Z) satisfies the assumptions (C1)
and (C2) in Proposition 3.1.1. Let ϕ be the associated toral automorphism
defined in (3.0.1), and θn be the pulsed diffusion defined by (1.3.1). Then
there exist constants c > 0 and γ > 1 such that

(3.2.3) ‖θn‖ 6 exp
(
−νγ

n

c

)
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Remark 3.2.3. In the proof of Proposition 3.2.2 we will see that the constant γ
can be chosen to be

γ =
d∏
i=1

(|ζi| ∨ 1)2/d

where ζ1, . . . , ζd are the eigenvalues of A.

Proof. Using (3.1.5) we see

θ̂n+1(k) = e−ν|k|
2
θ̂n(Bk) .

Setting A∗ = AT , iterating the above, squaring and summing in k gives

(3.2.4) ‖θn‖2 =
∑

k∈Zd−0
exp

(
−2ν

n∑
j=1
|Aj∗k|2

)
|θ̂0(k)|2 .

Observe that the matrix A∗ also satisfies the conditions (C1) and (C2) in
Proposition 3.1.1. Let v1, . . . , vd be the basis of Cd given by Lemma 3.1.4,
and ζ1, . . . , ζd be the corresponding eigenvalues. Now (3.2.4) implies

‖θn‖2 6
∑

k∈Zd−0
exp

(
−2ν
c2
∗

n∑
j=1

d∑
i=1
|ai|2|ζi|2j

)
|θ̂0(k)|2

=
∑

k∈Zd−0
exp

(
−2ν
c2
∗

d∑
i=1
|ai|2

( |ζi|2(n+1) − |ζi|2

|ζi|2 − 1

))
|θ̂0(k)|2

6 ‖θ0‖2 sup
k∈Zd−0

exp
(
−2ν
c2
∗

d∑
i=1
|ai|2

( |ζi|2(n+1) − |ζi|2

|ζi|2 − 1

))
.(3.2.5)

where c∗ is the constant in (3.1.7).
We will now show that the last term decays double exponentially in n.

Indeed, the inequality of the means implies

d∑
i=1
|ai|2

( |ζi|2(n+1) − |ζi|2

|ζi|2 − 1

)
> d

( d∏
i=1
|ai|2

( |ζi|2(n+1) − |ζi|2

|ζi|2 − 1

))1/d

= d
( d∏
i=1
|ai|2

)1/d( d∏
i=1

( |ζi|2(n+1) − |ζi|2

|ζi|2 − 1

))1/d

> d
( d∏
i=1

( |ζi|2(n+1) − |ζi|2

|ζi|2 − 1

))1/d
,(3.2.6)
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where the last inequality followed from Lemma 3.1.4. As in the proof of
Proposition 3.1.1, Lemma 3.1.5 guarantees that maxi|ζi| > 1. The right
hand side of (3.2.6) is of order ∏i(|ζi| ∨ 1)2n/d and substituting this in (3.2.5)
gives (3.2.3) as desired.

We now prove Theorem 3.2.1.

Proof. Proposition 3.2.2 immediately shows that the double exponential upper
bound equation (3.2.2) is achieved for the desired class of toral automorphisms.
Thus it only remains to prove the double exponential lower bound (3.2.1).
For this, observe

ln‖θn+1‖2 − ln‖θn‖2 = ln
(‖θn+1‖2

‖θn‖2

)
= ln

(‖θn+1‖2

‖Uθn‖2

)

= ln
(∑

i e
−2νλi|〈Uθn, ei〉|2∑
i|〈Uθn, ei〉|2

)
,

where we recall that λi are the eigenvalues of the Laplacian, and ei’s are the
corresponding eigenfunctions. Using concavity of the logarithm and Jensen’s
inequality to bound the last term on the right we obtain

ln‖θn+1‖2 − ln‖θn‖2 >
−2ν∑i λi|〈Uθn, ei〉|2∑

i|〈Uθn, ei〉|2
= −2ν ‖Uθn‖

2
1

‖Uθn‖2

> −2ν‖∇ϕ‖2
L∞
‖θn‖2

1
‖θn‖2 .(3.2.7)

We now claim

(3.2.8) ‖θn‖2
1

‖θn‖2 6 ‖∇ϕ‖2n
L∞
‖θ0‖2

1
‖θ0‖2 .

Note that substituting (3.2.8) in (3.2.7) and summing in n immediately
implies (3.2.1). Thus to finish the proof we only need to prove (3.2.8).

For this we observe

‖θn+1‖2
1

‖θn+1‖2 −
‖Uθn‖2

1
‖Uθn‖2 = ‖θn+1‖2

1‖Uθn‖2 − ‖θn+1‖2‖Uθn‖2
1

‖θn‖2‖Uθn‖2

= 1
‖θn‖2‖Uθn‖2

(∑
i,j

e−2νλi(λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2
)
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= 1
‖θn‖2‖Uθn‖2

(∑
i<j

e−2νλi(λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2

+
∑
i>j

e−2νλi(λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2
)

6
1

‖θn‖2‖Uθn‖2

(∑
i<j

e−2νλi(λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2

+
∑
i>j

e−2νλj(λi − λj)|〈Uθn, ei〉|2|〈Uθn, ej〉|2
)

= 0 .

Thus
‖θn+1‖2

1
‖θn+1‖2 6

‖Uθn‖2
1

‖Uθn‖2 = ‖Uθn‖
2
1

‖θn‖2 6 ‖∇ϕ‖2
L∞
‖θn‖2

1
‖θn‖2 ,

and iterating yields (3.2.8). This finishes the proof.

3.3 Diophantine Approximation and Krone-
cker’s Theorem

We now prove Lemmas 3.1.4 and 3.1.5. The proofs rely on standard facts
on algebraic number fields, and we refer the reader to the books [Mar77]
and [Rib01] for a comprehensive treatment.

Before beginning the proof of Lemma 3.1.4, we remark that a weaker
version of it follows directly from the Schmidt subspace theorem [Sch80, Ch
VI, Thm. 1B]. Explicitly, the Schmidt subspace theorem guarantees that for
any ε > 0 we have ∣∣∣∣ d∏

i=1
ai(k)

∣∣∣∣ > 1
|k|ε

,

at all integer points k ∈ Zd, except on finitely many proper rational subspaces.
To use the Schmidt subspace theorem in our context we would need to handle
the exceptional subspaces. The approach taken by Fannjiang et. al. in [FW03]
is to use van der Waerdern’s theorem on arithmetic progressions [vdW27,
Luk48] to construct an equivalent minimization problem whose minimizer is
guaranteed to lie outside the exceptional subspaces. In our specific context
we can directly prove the stronger bound (3.1.4), and avoid using the Schmidt
subspace theorem entirely.
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Proof of Lemma 3.1.4. Let p be the characteristic polynomial of A, and ζ1,
. . . , ζd be the roots of p. Let F = Q(ζ1, . . . , ζd) and G = Gal(F/Q) denote
the Galois group. Let Gi ⊆ G be the group of field automorphisms that fix
ζi, and Fi = {x ∈ F | σ(x) = x ∀σ ∈ Gi} be the fixed field of Gi. Since
det(A − ζiI) = 0, there must exist vi in the Fi vector space F d

i such that
Avi = ζivi. Viewing vi as an element of Cd, we let V ∈ GLd(C) be the matrix
with columns v1, . . . , vd. Dividing each vi by a large integer if necessary, we
may assume that each entry of V −1 is an algebraic integer. We claim that v1,
. . . , vd is the desired basis.

To see this suppose k = ∑
aivi. By construction of the basis note that if

σ ∈ G is such that σ(ζi) = ζj, then σ(vi) = vj. This implies that σ(ai) = aj.
Note also that since the groups Gi are conjugate, they all have the same
cardinality. Consequently

p∗
def=
∏
σ∈G

σ(a1) =
( d∏
i=1

ai

)m
,

where m = |G1|. Thus p∗ is in the fixed field of G, and hence must be rational.
Further, since ai = (V −1k) · ei, each ai must also be an algebraic integer.

This forces p∗ to be a rational algebraic integer, and hence an integer. By
transitivity of the Galois group we see that if ai = 0 for some i, then we must
have aj = 0 for all j. Thus p∗ must be a non-zero integer if k 6= 0. Hence
|p∗| > 1 and (3.1.4) follows.

Lemma 3.1.5 is due to Kronecker [Kro57]. This result was improved by
Stewart [Ste78] and Dobrowolski [Dob79]. More generally Lehmer’s conjec-
ture [Leh33] asserts that if ζ1, . . . , ζd are the roots of p and the product∏(1 ∨ |ζi|) is smaller than an absolute constant µ (widely believed to be
approximately 1.176 . . . ), then each ζi is a root of unity. For our purposes,
however, Kronecker’s original result will suffice. Since the proof is short and
elementary, we present it below.

Proof of Lemma 3.1.5. Let ζ1, . . . , ζd be the roots of p. For any n ∈ N, let pn
be the minimal monic polynomial satisfied by ζn1 . Since the Galois conjugates
of ζn1 are precisely ζn2 , . . . , ζnd , the coefficients of pn are symmetric functions
of ζn1 , . . . , ζnd . By assumption |ζi| 6 1, which implies |ζni | 6 1, which in
turn implies that the coefficients of pn are uniformly bounded as functions
of n. There are only finitely many polynomials with degree at most d, and
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uniformly bounded integer coefficients. Thus for some distinct m,n ∈ N we
must have pm = pn. This forces ζm1 = ζn1 showing ζ1 is a root of unity.

40



Chapter 4

Dissipation Enhancement for
the Advection Diffusion
Equation

The main results of this chapter are Theorems 4.1.1 and 4.2.1, which
bound the dissipation time (1.3.7) in the continuous time setting (1.3.4).
These results are improvements of the results in the original paper [FI19].
The improvement was obtained by using a better estimate for the difference
between the diffusive system and the underlying dynamical system taken
from [CZDE18], and then following the proof in [FI19]. As a result the
dissipation time bounds we obtain in the continuous setting match those
previously obtained in the discrete time setting.

4.1 The Strongly Mixing Case
Theorem 4.1.1. Let α, β > 0, and h : [0,∞) → (0,∞) be a decreasing
function that vanishes at infinity. If u is strongly α, β mixing with rate
function h, then the dissipation time is bounded by

(4.1.1) τd 6
C

νH3(ν) .
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Here C is a universal constant which can be chosen to be 18, and H3 : (0,∞)→
(0,∞) is defined by

H3(µ) = sup
{
λ
∣∣∣∣√λh−1

(
λ−(α+β)/2

2

)
6

1
64
√
µ‖∇u‖L∞

}
,(4.1.2)

where h−1 is the inverse function of h.

As before, we now compute H3 explicitly for polynomial, and exponential
rate functions. These special cases were previously obtained in [CZDE18].

Corollary 4.1.2. Let α, β, u, h be as in Theorem 4.1.1.

1. If the mixing rate function h is the power law (2.1.3), then

τd 6
C

νδ
, where δ

def= α + β

α + β + p
, (4.1.3)

and C = C(α, β, c, ‖∇u‖L∞) is a finite constant.

2. If the mixing rate function h is the exponential (2.1.5), then

τd 6 C|ln ν|2 , (4.1.4)

and C = C(α, β, c1, c2, ‖∇u‖L∞) is a finite constant.

As in Section 1.3, let θs,0 ∈ L2
0(M), let θs(t) be the solution of (1.3.4). By

the energy inequality (1.3.5) we know

‖θs(t)‖2 = ‖θs(s)‖2 exp
(
−2ν

∫ t

s

‖θs(r)‖2
1

‖θs(r)‖2 dr
)
.

Thus, ‖θs(t)‖ decays rapidly when the ratio ‖θs(t)‖1/‖θs(t)‖ remains large.
Precisely, if for some c0 > 0, we have

‖θs(t)‖2
1 > c0‖θs(t)‖2 , for all s 6 t 6 t0 ,

then

‖θs(t)‖2 6 e−2νc0(t−s)‖θs,0‖2 , for all s 6 t 6 t0 .(4.1.5)

As in the proof of Theorems 2.1.1 and 2.2.1, we will show that if the ra-
tio ‖θs,0‖1/‖θs,0‖ is small, then the mixing properties of u will guarantee that
for some later time t0 > s, ‖θs(t0)‖ becomes sufficiently small. This is the
content of the following lemma.
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Lemma 4.1.3. Choose λN to be the largest eigenvalue satisfying λN 6 H3(ν)
where H3(ν) is defined in (4.1.2). If

(4.1.6) ‖θs,0‖2
1 < λN‖θs,0‖2 ,

then we have

(4.1.7) ‖θs(t0)‖2 6 exp
(
−νH3(ν)(t0 − s)

8

)
‖θs,0‖2 .

at a time t0 given by

t0
def= s+ 2h−1

(
λ
−(α+β)/2
N

2

)
.

Momentarily postponing the proof of Lemma 4.1.3, we prove Theo-
rem 4.1.1.

Proof of Theorem 4.1.1. Choosing c0 = λN and repeatedly applying the in-
equality (4.1.5) and Lemma 4.1.3, we obtain an increasing sequence of times
(t′k), such that (t′k)→∞ and

‖θs(t′k)‖2 6 exp
(
− νH3(ν)(t′k − s)

8

)
‖θs,0‖2 , and t′k+1 − t′k 6 t0 .

This immediately implies

τd 6
16

νH3(ν) + (t0 − s) .(4.1.8)

By choice of λN and t0, we know that t0 − s 6 1/(νλN) 6 2/(νH3(ν)) for ν
sufficiently small. The last inequality followed from Weyl’s lemma as in the
proof Theorem 2.1.1 (equation (2.1.15)). This proves (4.1.1) as desired.

We now compute H3 explicitly when the mixing rate function decays
exponentially, or polynomially.

Proof of Corollary 4.1.2. Suppose first the mixing rate function h satisfies
the power law (2.1.3). In this case the inverse is given by h−1(t) = (c/t)1/p.
Thus, by definition of H3 (in (4.1.2)), we have

√
H3(ν)

(
2cH3(ν)(α+β)/2

)1/p
= 1

64
√
ν‖∇u‖L∞

.

43



Since H3(ν)→∞ as ν → 0, the above forces

H3(ν) ≈ Cν−p/(α+β+p) ,

asymptotically as ν → 0, for some constant C = C(c, p, α, β, ‖∇u‖L∞). Using
this in (4.1.1) yields (4.1.3) as desired.

Suppose now the rate function h is the exponential (2.1.5). Then we see
h−1(t) = (ln c1 − ln t)/c2. By the definition of H3 in (4.1.2), we have√

H3(ν)
(

ln c1 + α + β

2 ln(H3(ν)) + ln 2
)

= c2

64
√
ν‖∇u‖L∞

,

which implies

H3(ν) = O
( 1
ν|ln ν|2

)
,

asymptotically as ν → 0. Substituting this in (4.1.1) yields (4.1.4) as desired.

It remains to prove Lemma 4.1.3. For this we will need a standard result
estimating the difference between θ and solutions to the inviscid transport
equation.

Lemma 4.1.4. Let φs, defined by

φs = θs,0 ◦ ϕs,t ,

be the evolution of θs,0 under the dynamical system generated by ϕs,t. If
θs,0 ∈ Ḣ1(M), then for all t > s, we have

‖θs(t)− φs(t)‖2

6 2
√

2ν(t− s)‖θs,0‖
(

2‖∇u‖L∞
∫ t

s
‖θs‖2

H1 dγ + ‖θs,0‖2
H1

)1/2
.(4.1.9)

Proof. First multiplying (1.3.4) by ∆θs(t) and integrate over time, we get

d

dt
‖θs‖2

H1 + 2ν‖θs‖2
H2 6 2‖∇u‖L∞‖θs‖2

H1 ,

which yields

2ν
∫ t

s
‖θs‖2

H2 dγ 6 2‖∇u‖L∞
∫ t

s
‖θs‖2

H1 dγ + ‖θs,0‖2
H1(4.1.10)
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Also we note that
d

dt
‖θs − φs‖2 = 2ν〈∆θs, θs − φs〉

6 4ν‖θs‖H2‖θs,0‖ ,

where in the last inequality the energy conservation was used. Hence, for any
t > s, we have

‖θs(t)− φs(t)‖2 6 4ν‖θs,0‖
∫ t

s
‖θs‖H2 dγ

6 2
√

2ν(t− s)‖θs,0‖
(

2ν
∫ t

s
‖θs(γ)‖2

H2 dγ
)1/2

.

Combining this with (4.1.10), we further get

‖θs(t)− φs(t)‖2 6 2
√

2ν(t− s)‖θs,0‖
(

2‖∇u‖L∞
∫ t

s
‖θs‖2

H1 dγ + ‖θs,0‖2
H1

)1/2
,

which ends the proof.

We can now prove Lemma 4.1.3.

Proof of Lemma 4.1.3. Integrating the energy equality (1.3.5) gives

‖θs(t0)‖2 = ‖θs,0‖2 − 2ν
∫ t0

s
‖θs(r)‖2

1 dr .(4.1.11)

We claim that our choice of λN and t0 will guarantee∫ t0

s
‖θs(r)‖2

1 dr >
λN(t0 − s)‖θs,0‖2

8 .(4.1.12)

This immediately yields (4.1.7) since when ν is small enough, we have

1
2H3(ν) 6 λN 6 H3(ν) .

Thus to finish the proof we only have to prove (4.1.12). We prove by assuming
the converse inequality holds

∫ t0
s ‖θs(r)‖2

1 dr <
λN (t0−s)‖θs,0‖2

8 .
Note first∫ t0

s
‖θs(r)‖2

1 dr > λN

∫ t0

t0+s
2

‖(I − PN)θs(r)‖2 dr
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>
λN
2

∫ t0

t0+s
2

‖(I − PN)φs(r)‖2 dr

− λN
∫ t0

t0+s
2

‖(I − PN)
(
θs(r)− φs(r)

)
‖2 dr

>
λN(t0 − s)

4 ‖θs,0‖2 − λN
2

∫ t0

t0+s
2

‖PNφs(r)‖2 dr(4.1.13)

− λN
∫ t0

s
‖θs(r)− φs(r)‖2 dr .

We will now bound the last two terms in (4.1.13). For the second term, note
the strong mixing assumption gives∫ t0

t0+s
2

‖PNφs(r)‖2 dr 6 λβN

∫ t0

t0+s
2

‖φs(r)‖2
−β dr 6 λβN

∫ t0

t0+s
2

h(r − s)2‖θs,0‖2
α dr

6
t0 − s

2 λβNh
(
t0 − s

2

)2
‖θs,0‖2

α 6
t0 − s

2 λβNh
(
t0 − s

2

)2
‖θs,0‖2−2α‖θs,0‖2α

1 .

(4.1.14)

Using the assumption (4.1.6), we obtain
∫ t0

t0+s
2

‖PNφs(r)‖2 dr 6
t0 − s

2 λα+β
N h

(
t0 − s

2

)2
‖θs,0‖2 .(4.1.15)

Now we bound the last term in (4.1.13). Using Lemma 4.1.4 we obtain∫ t0

s
‖θs(r)− φs(r)‖2 dr

6
∫ t0

s
2
√

2ν(t− s)‖θs,0‖
(

2‖∇u‖L∞
∫ r

s
‖θs(t)‖2

H1 dt+ ‖θs,0‖2
H1

)1/2
dr

6 2
√

2ν(t0 − s)3/2‖θs,0‖
(

2‖∇u‖L∞
∫ t0

s
‖θs(t)‖2

H1 dt+ ‖θs,0‖2
H1

)1/2

6 2
√

2ν(t0 − s)3/2‖θs,0‖2
(‖∇u‖L∞λN(t0 − s)

4 + λN

)1/2
.

(4.1.16)

Now going back to (4.1.13) we get

λN(t0 − s)‖θs,0‖2

8 >
λN(t0 − s)‖θs,0‖2

4 − t0 − s
4 λα+β+1

N h
(
t0 − s

2

)2
‖θs,0‖2
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− 2λN
√

2ν(t0 − s)3/2‖θs,0‖2
(‖∇u‖L∞λN(t0 − s)

4 + λN

)1/2
.

Plugging in the choice of t0 and canceling λN (t0− s)‖θs,0‖2 both sides, we get

1
8 >

1
4 −

1
16 − 2

√
2ν(t0 − s)1/2

(‖∇u‖L∞λN(t0 − s)
4 + λN

)1/2

>
1
4 −

1
16 − 2

√
2ν(t0 − s)1/2

(‖∇u‖L∞λN(t0 − s)
2

)1/2

= 1
4 −

1
16 − 2

√
‖∇u‖L∞νλN(t0 − s) .

According to the choice of λN , the right hand side is greater than 1
8 , which

ends at a contradiction.

4.2 The Weakly Mixing Case.
In this section, we bound the dissipation time for weakly mixing flows.

Theorem 4.2.1. Let α, β > 0, and h : [0,∞) → (0,∞) be a decreasing
function that vanishes at infinity. If u is strongly α, β mixing with rate
function h, then the dissipation time is bounded by

(4.2.1) τd 6
C

νH4(ν) .

Here C is a universal constant which can be chosen to be 18, and H4 : (0,∞)→
(0,∞) is defined by

H4(µ) = sup
{
λ
∣∣∣∣√λh−1

( 1
2
√
c̃
λ−(d+2α+2β)/4

)
6

1
64
√
ν‖∇u‖L∞

}
,(4.2.2)

where h−1 is the inverse function of h and c̃ = c̃(M) > 0 is the same constant
as in Theorem 2.2.1 and Remark 2.2.2.

As before, we compute the above dissipation time bound explicitly when
the mixing rate function decays polynomially.
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Corollary 4.2.2. Suppose u is weakly α, β mixing with rate function h,
where α, β > 0, and h is power law (2.1.3). Then the dissipation time is
bounded by

(4.2.3) τd 6 Cν−δ , where δ = d+ 2α + 2β
d+ 2p+ 2α + 2β ,

and C = C(c, c̃, α, β, ‖∇u‖L∞) is some finite constant.
We now turn our attention to Theorem 4.2.1. The proof is similar to the

proof of Theorem 4.1.1. The main difference is that the analog of Lemma 4.1.3
is weaker.
Lemma 4.2.3. Let λN to be the largest eigenvalue of −∆ such that λN 6
H4(ν), where we recall that the function H4 is defined in (4.2.2). If

‖θs,0‖2
1 < λN‖θs,0‖2 ,(4.2.4)

then we have

‖θs(t0)‖2 6 exp
(
−νH4(ν)(t0 − s)

8

)
‖θs,0‖2 ,(4.2.5)

at a time t0 given by

t0 = s+ 2h−1
( 1

2
√
c̃
λ
−(d+2α+2β)/4
N

)
.

Proof of Theorem 4.2.1. Given Lemma 4.2.3, the proof of Theorem 4.2.1 is
identical to that of Theorem 4.1.1.

As before, the proof of Corollary 4.2.2 only involves computingH4 explicitly
when the mixing rate function decays polynomially.

Proof of Corollary 4.2.2. When the mixing rate function h is given by the
power law (2.1.3), we compute h−1(t) = (c/t)1/p. By the definition of H4
(equation (4.2.2)), we have√

H4(ν)
(

2c
√
c̃H4(ν)(d+2α+2β)/4

)1/p
= 1

64
√
ν‖∇u‖L∞

,

which then yields
H4(ν) = O(ν−

2p
d+2α+2β+2p )

asymptotically as ν → 0. Substituting this in (4.2.1) yields (4.2.3) as desired.
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Proof of Lemma 4.2.3. Following the proof of Lemma 4.1.3, we claim that
the inequality (4.1.12) still holds in our case, provided λN and t0 are chosen
correctly. Here we also prove by contradiction. Indeed, note that (4.1.13)
and (4.1.16) still hold, and the only difference here is that we need to bound the
second term in (4.1.13) using the weak mixing assumption. Explicitly, (1.2.11)
gives

∫ t0

t0+s
2

‖PNφs(r)‖2 dr 6
∫ t0

t0+s
2

N∑
l=1
|〈φs(r), el〉|2 dr

6
N∑
l=1

t0 − s
2 h

(
t0 − s

2

)2
‖φs(0)‖2

αλ
β
l

6
N(t0 − s)

2 h
(
t0 − s

2

)2
λβN‖φs,0‖2

α

6
N(t0 − s)

2 h
(
t0 − s

2

)2
λα+β
N ‖θs,0‖2

6
c̃(t0 − s)

2 h
(
t0 − s

2

)2
λ

(d+2α+2β)/2
N ‖θs,0‖2 ,(4.2.6)

where last inequality followed from the fact that c̃
2λ

d/2
N 6 N 6 c̃λ

d/2
N holds

when N is sufficiently large. Substituting (4.1.16) and (4.2.6) into (4.1.13),
we obtain

λN(t0 − s)‖θs,0‖2

8 >
∫ t0

s
‖θs(r)‖2

1 dr

>
λN(t0 − s)‖θs,0‖2

4

(
1− c̃λ(d+2α+2β)/2

N h
(
t0 − s

2

)2

− 8
√

2ν(t0 − s)(‖∇u‖L∞λN(t0 − s)/4 + λN)1/2
)
.

By our choice of t0, we have

1
8 >

1
4

(
1− 1

4 − 8
√
ν‖∇u‖L∞λN(t0 − s)

)

By the choice of λN , we have 8
√
ν‖∇u‖L∞λN (t0 − s) 6 1/4, which ends at a

contradiction. This finishes the proof.
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4.3 Optimality
In the particular case of shear flows a stronger estimate on the dissipation

time can be obtained using Theorem 1.1 in [BCZ17]. Namely let u = u(y) be
a smooth shear flow on the 2-dimensional torus with non-degenerate critical
points, and let L2

0 denote the space of all functions whose horizontal average
is 0. Now Theorem 1.1 in [BCZ17] guarantees that the dissipation time is
bounded by

(4.3.1) τd 6 C
|ln ν|2
ν1/2 ,

for some constant C > 0.
To place this in the context of our results, we restrict our attention to

L2
0 functions on T2 whose horizontal averages are all 0. On this space, the

method of stationary phase one can show that the flow generated by u is
strongly 1, 1 mixing with rate function h(t) = Ct−1/2 (see equation (1.8)
in [BCZ17]). Consequently, by Corollary 4.1.2 guarantees that the dissipation
time is bounded by

τd 6
C

ν4/5 .

This, however, is weaker than (4.3.1).
In general, we recall that Poon [Poo96] showed the double exponential

lower bound

(4.3.2) ‖θs(t)‖ > exp
(
−Cνγt−s

)
‖θs,0‖ ,

for some constants C > 0 and γ > 1. To the best of our knowledge, there are
no incompressible smooth divergence free vector fields for which the lower
bound (4.3.2) is attained. Moreover, on the torus, recent work of Miles and
Doering [MD18] suggests that the Batchelor length scale may limit the long
term effectiveness of mixing forcing only a single-exponential energy decay.

4.4 The Principal Eigenvalue with Dirichlet
Boundary Conditions

Finally, we turn our attention to studying the principal eigenvalue of
the operator −ν∆ + u · ∇ in a bounded domain Ω with Dirichlet boundary
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conditions. In this case, in addition to u being smooth and divergence
free, we also assume u is time independent and tangential on the boundary
(i.e. u · n̂ = 0 on ∂Ω, where n̂ denotes the outward pointing unit normal). Let
µ0(ν, u) denote the principal eigenvalue of −ν∆ + u · ∇ with homogeneous
Dirichlet boundary conditions on ∂Ω.

By Rayleigh’s principle we note

µ0(ν, u) > µ0(ν, 0) = νµ0(1, 0)

where µ0(1, 0) is the principal eigenvalue of the Laplacian. Our interest
is in understanding the behaviour of µ0(ν, u)/ν as ν → 0. Berestycki et.
al. [BHN05] showed that µ0(ν, u)/ν → ∞ if and only if u · ∇ has no first
integrals in H1

0 . That is, µ0(ν, u)/ν →∞ if and only if there does not exist
w ∈ H1

0 (Ω) such that u · ∇w = 0.
In general it does not appear to be possible to obtain a rate at which

µ0(ν, u)/ν →∞. If, however, the flow generated by u is sufficiently mixing
then we obtain a rate at which µ0(ν, u)/ν →∞ in terms of the mixing rate
of u. This is our next result.

Proposition 4.4.1. If u is a smooth, time independent, incompressible vector
field which is tangential on ∂Ω, then

(4.4.1) µ0(ν, u)
ν

>
1
ντd

.

Proposition 4.4.1 follows immediately by solving the advection diffusion
equation with the principal eigenfunction as the initial data.

We now prove Proposition 4.4.1 estimating the principal eigenvalue of
−ν∆ + (u · ∇) in a bounded domain with Dirichlet boundary conditions.

Proof of Proposition 4.4.1. For notational convenience we will write µ0 to
denote µ0(ν, u). Let φ0 = φ0(ν, u) be the principal eigenfunction of the
operator −ν∆ + (u · ∇). Then we know

ψ(x, t) def= φ0(x)e−µ0t

satisfies the advection diffusion equation

∂tψ + u · ∇ψ − ν∆ψ = 0 ,

with initial data φ0. Consequently ‖ψ(t)‖ = e−µ0t‖ψ(0)‖. This forces τd >
1/µ0 proving (4.4.1) as claimed.
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We note that the proof of Theorems 4.1.1, 4.2.1 only use the spectral
decomposition of the Laplacian, and are unaffected by the presence of spa-
tial boundaries. Thus Theorems 4.1.1 and 4.2.1 still apply in this context.
Consequently, if u is known to be (strongly, or weakly) mixing at a particular
rate, then µ0(ν, u)/ν must diverge to infinity, and the growth rate can be
obtained by using (4.4.1) and Theorems 4.1.1, 4.2.1, or Corollaries 4.1.2, 4.2.2
as appropriate.

For example, if α, β > 0 and u is strongly α, β mixing with the exponen-
tially decaying rate function (2.1.5), then

µ0(ν, u)
ν

>
1

Cν|ln ν|2 .

We remark, however, that in view of (4.3.2) and (4.4.1), we expect that if u
that generates an exponentially mixing flow, then one should have

µ0(ν, u)
ν

>
1

Cν|ln ν| .

We are, however, presently unable to prove this stronger bound.
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Appendix A

A Characterization of
Relaxation Enhancing Maps on
the Torus

In continuous time, we call a flow is relaxation enhancing if ‖S( 1
ν
)‖ → 0 as

ν → 0, where S(t) is the solution operator of the advection diffusion equation.
In other words, a flow is relaxation enhancing if the dissipation time is o(1/ν).
Constantin et. al. [CKRZ08] (see also [KSZ08]) characterized flows for which
the dissipation time is o(1/ν). For our pulsed diffusion model, similar result
still holds, which we stated before as Proposition 2.3.1. It says that the
Koopman operator U has no eigenfunctions in Ḣ1 if and only if

lim
ν→0

ντd = 0 .

We devote this appendix to proving Proposition 2.3.1. The main idea
behind the proof is the same as that used in [CKRZ08,KSZ08]. The backward
implication is simpler, and we present the proof of it first.

Proof of the backward implication in Proposition 2.3.1. For the backward im-
plication, we need to assume ντd → 0, and show that the associated Koopman
operator U has no non-constant eigenfunctions in Ḣ1. Suppose, for sake of
contradiction, that f ∈ Ḣ1 is an eigenfunction, normalized so that ‖f‖ = 1,
and let λ be the corresponding eigenvalue. Choosing θ0 = f , and defining θn
by (1.3.1) we observe

|〈θn+1, f〉 − 〈Uθn, f〉| =
∣∣∣∣∑
k

(1− e−νλk)(Uθn)∧(k)f̂(k)
∣∣∣∣
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6 ν
(∑

k

1− e−νλk
ν

|(Uθn)∧(k)|2
)1/2(∑

k

1− e−νλk
ν

|f̂(k)|2
)1/2

6 ν
(∑

k

1− e−νλk
ν

|(Uθn)∧(k)|2
)1/2(∑

k

1− e−νλk
ν

|f̂(k)|2
)1/2

6 ν(Eνθn)1/2‖f‖1 6
ν

2Eνθn + ν

2‖f‖
2
1 .

Using equation (2.1.17), this gives

|〈θn+1, f〉 − 〈Uθn, f〉| 6
1
2(‖θn‖2 − ‖θn+1‖2) + ν

2‖f‖
2
1 ,

which implies

|〈θn+1, f〉| − |〈Uθn, f〉| > −
1
2(‖θn‖2 − ‖θn+1‖2)− ν

2‖f‖
2
1 .

Since 〈Uθn, f〉 = 〈θn, U∗f〉 = λ〈θn, f〉, and |λ| = 1, the above implies

|〈θn+1, f〉| − |〈θn, f〉| > −
1
2(‖θn‖2 − ‖θn+1‖2)− ν

2‖f‖
2
1 .

Iterating this gives

|〈θn, f〉| − |〈f, f〉| > −
1
2(‖f‖2 − ‖θn‖2)− nν

2 ‖f‖
2
1 ,

since θ0 = f . Thus

|〈θn, f〉| >
1
2‖f‖

2 + 1
2‖θn‖

2 − nν

2 ‖f‖
2
1 >

1
2 −

nν

2 ‖f‖
2
1 .

Now choosing n to be the dissipation time τd gives

1
e
> |〈θτd , f〉| >

1
2 −

τdν

2 ‖f‖
2
1 ,

and hence
ντd >

e− 2
e‖f‖2

1
.

This contradicts the assumption ντd → 0 as ν → 0, finishing the proof.

For the other direction, we need two lemmas. The first is an application
of the discrete RAGE theorem.
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Lemma A.0.1. Let K ⊂ S = {φ ∈ L2
0 | ‖φ‖ = 1} be a compact set. Let Pc

be the spectral projection on the continuous spectral subspace in the spectral
decomposition of U . For any N, δ > 0, there exists nc(N, δ,K) such that for
all n > nc and any φ ∈ K, we have

1
n− 1

n−1∑
i=1
‖PNU iPcφ‖2 6 δ .(A.0.1)

Proof. Define

f(n, φ) def= 1
n− 1

n−1∑
i=1
‖PNU iPcφ‖2 .

Recall that by the RAGE theorem [CFKS87] we have

lim
n→∞

1
n

n−1∑
i=0
‖AU iPcφ‖2 = 0 , for any compact operator A ,

and hence for all φ, f(φ, n) → 0 as n → ∞. Thus, to finish the proof, we
only need to show that this convergence is uniform on compact sets.

To prove this, it is enough to prove the functions f(·, n) are equicontinuous.
For this observe that for any φ1, φ2 ∈ S we have

|f(n, φ1)− f(n, φ2)|

6
1

n− 1

n−1∑
i=1

∣∣∣‖PNU iPcφ1‖ − ‖PNU iPcφ2‖
∣∣∣(‖PNU iPcφ1‖+ ‖PNU iPcφ2‖

)

6
1

n− 1

n−1∑
i=1
‖φ1 − φ2‖

(
‖φ1‖+ ‖φ2‖

)
6 2‖φ1 − φ2‖ .

This shows equicontinuity, finishing the proof.

Lemma A.0.2. Assume that the Koopman operator U has no eigenfunctions
in Ḣ1. Let Pp be the spectral projection on its point spectral subspace. Let
K be a compact subset of S. Define the set K1 = {φ ∈ K | ‖Ppφ‖ > 1

2}.
Then for any C > 0, there exist Np(C,K) and np(C,K) such that for any
N > Np(C,K), any n > np(C,K), and any φ ∈ K1,

1
n− 1

n−1∑
i=1
‖PNU iPpφ‖2

1 > C .(A.0.2)
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The proof of this is the same as Lemma 3.3 in [CKRZ08] and we do not
present it here. We can now finish the proof of Proposition 2.3.1.

Proof of the forward implication in Proposition 2.3.1. For this direction we
are given that U has no eigenfunctions in Ḣ1, and need to show ντd → 0 as
ν → 0. We will show that for any η > 0,∥∥∥∥θ(⌈ην

⌉)∥∥∥∥→ 0 as ν → 0 ,(A.0.3)

which immediately implies ντd → 0 as ν → 0. To prove (A.0.3), we need
to show for any given η, ε, there exists ν0, such that for any ν 6 ν0, we
have ‖θ(dη

ν
e)‖2 6 ε for any initial θ0 ∈ H with ‖θ0‖ = 1. We choose N

large enough satisfying e−λNη/80 6 ε. Denote K = {φ ∈ S | ‖φ‖2 6 λN}, and
K1 = {φ ∈ K | ‖Ppφ‖ > 1

2}. Let n1 be

n1 = max
{

2, np(5λN , K), nc
(
N,

1
20 , K

)}
,

and choose ν0 small enough so that

n1 6
η

2ν0
, ν0n

2
1 6

1
λN

and n2
1νλN‖∇ϕ‖

2n1+2
L∞

(n1 − 1)(‖∇ϕ‖2
L∞ − 1) 6

1
4 .

Note that if Eνθn > λN‖θn‖2 for all n ∈ [0, dη/νe], then we have∥∥∥∥θ(⌈ην
⌉)∥∥∥∥2

6 e−νλN dη/νe 6 e−λNη 6 ε .

If not, let n0 ∈ [0, dη/νe] be the first time satisfying Eνθn0 < λN‖θn0‖2.
Similar to (2.1.22) we have ‖θn0+1‖2

1 < λN‖θn0+1‖2. We claim that our choice
of n1 will guarantee

(A.0.4) ‖θn0+n1‖2 6 e−λNνn1/40‖θn0‖2 .

Given (A.0.4), we can find ñ ∈ [η/(2ν), η/ν] such that ‖θ(dη/νe)‖2 6 ‖θñ‖2 6
e−λNνñ/40 6 e−λNη/80 6 ε, proving (A.0.3) as desired.

Thus it only remains to prove (A.0.4). For this, define φm = Um−1θn0+1,
and observe
φ1

‖φ1‖
= θn0+1

‖θn0+1‖
∈ K , Pcφm = Um−1Pcθn0+1 , and Ppφm = Um−1Ppθn0+1 .
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We now consider two cases.
Case I: ‖Pcθn0+1‖2 > 3

4‖θn0+1‖2 (or equivalently ‖Ppθn0+1‖2 6 1
4‖θn0+1‖2). In

this case, we have

n1−1∑
m=1
Eνθn0+m > 2

n1−1∑
m=1
‖θn0+1+m‖2

1

> 2λN
n1−1∑
m=1
‖(I − PN)θn0+1+m‖2

> λN

n1−1∑
m=1
‖(I − PN)φm+1‖2 − 2λN

n1−1∑
m=1
‖(I − PN)(θn0+1+m − φm+1)‖ .

(A.0.5)

By direct calculation, we also have

‖(I − PN)φm+1‖2 >
1
2‖(I − PN)Pcφm+1‖2 − ‖(I − PN)Ppφm+1‖2

>
1
2‖U

mPcθn0+1‖2 − 1
2‖PNU

mPcθn0+1‖2 − ‖UmPpθn0+1‖2

= 1
2‖Pcθn0+1‖2 − 1

2‖PNU
mPcθn0+1‖2 − ‖Ppθn0+1‖2 .

By Lemmas A.0.1,A.0.2, and the choice of n1, we have

1
n1 − 1

n1−1∑
m=1
‖(I − PN)φm+1‖2 >

1
10‖θn0+1‖2 .(A.0.6)

Substituting (2.1.26) and (A.0.6) in (A.0.5) gives

n1−1∑
m=1
Eνθn0+m >

λN(n1 − 1)
20 ‖θn0+1‖2 .

Since ‖θn0+n1‖2 = ‖θn0+1‖2 − ν∑n1−1
m=1 Eνθn0+m, we further have

‖θn0+n1‖2 6
(

1− νλN(n1 − 1)
20

)
‖θn0+1‖2

6 (1− νλNn1

40 )‖θn0‖2 6 e−
νλNn1

40 ‖θn0‖2 .
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Case II: ‖Ppθn0+1‖2 > 1
4‖θn0+1‖2 (or equivalently ‖Pcθn0+1‖2 6 3

4‖θn0+1‖2).
By Lemma A.0.2, we have

1
n1 − 1

n1−1∑
m=1
‖PNUmPpθn0+1‖2

1 > 5λN‖θn0+1‖2 ,(A.0.7)

and Lemma A.0.1 yields

1
n1 − 1

n1−1∑
m=1
‖PNUmPcθn0+1‖2

1 6
λN
20 ‖θn0+1‖2 .(A.0.8)

Combining (A.0.7) and (A.0.7), we get

1
n1 − 1

n1−1∑
m=1
‖PNUmθn0+1‖2

1 > 2λN‖θn0+1‖2 .(A.0.9)

By (2.1.26) and (2.1.21), we have

1
n1 − 1

n1−1∑
m=1
‖θn0+1+m − φm+1‖2 6

n2
1ν

n1 − 1

n1−1∑
m=1
‖Uθn0+1+m‖2

1

6
n2

1ν

n1 − 1

n1−1∑
m=1
‖∇ϕ‖2m+2

L∞ ‖θn0+1‖2
1

6
n2

1ν‖∇ϕ‖
2n1+2
L∞

(n1 − 1)(‖∇ϕ‖2
L∞ − 1)‖θn0+1‖2

1

6
1
4‖θn0+1‖2 ,

which implies

1
n1 − 1

n1−1∑
m=1
‖PN(θn0+1+m − φm+1)‖2

1 6
λN
4 ‖θn0+1‖2 .(A.0.10)

Equation (A.0.9) together with (A.0.10) gives
n1−1∑
m=1
‖θn0+1+m‖2

1 >
n1−1∑
m=1
‖PNθn0+1+m‖2

1 >
λN
2 (n1 − 1)‖θn0+1‖2 .(A.0.11)

We now use (2.1.21) again to get
n1−1∑
m=1
Eνθn0+m > λN(n1 − 1)‖θn0+1‖2 ,
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which, as before, yields

‖θn0+n1‖2 6 e−
νλNn1

2 ‖θn0‖2 .

This proves (A.0.4) as desired, finishing the proof.
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