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A STOCHASTIC-LAGRANGIAN APPROACH TO THE
NAVIER–STOKES EQUATIONS IN DOMAINS WITH BOUNDARY

BY PETER CONSTANTIN1 AND GAUTAM IYER2

University of Chicago and Carnegie Mellon University

In this paper we derive a probabilistic representation of the deterministic
3-dimensional Navier–Stokes equations in the presence of spatial boundaries.
The formulation in the absence of spatial boundaries was done by the authors
in [Comm. Pure Appl. Math. 61 (2008) 330–345]. While the formulation in
the presence of boundaries is similar in spirit, the proof is somewhat different.
One aspect highlighted by the formulation in the presence of boundaries is
the nonlocal, implicit influence of the boundary vorticity on the interior fluid
velocity.

1. Introduction. The (unforced) incompressible Navier–Stokes equations

∂tu + (u · ∇)u − ν�u + ∇p = 0,(1.1)

∇ · u = 0(1.2)

describe the evolution of the velocity field u of an incompressible fluid with kine-
matic viscosity ν > 0 in the absence of external forcing. Here u = u(x, t) with
t ≥ 0, x ∈ R

d , d ≥ 2. Equation (1.2) is the incompressibility constraint. Unlike
compressible fluids, the pressure p in (1.1) does not have a physical meaning and
is only a Lagrange multiplier that ensures incompressibility is preserved. While
equations (1.1) and (1.2) can be formulated in any dimension d ≥ 2, they are usu-
ally only studied in the physically relevant dimensions 2 or 3. The presentation of
the Navier–Stokes equations above is in the absence of spatial boundaries; an issue
that will be discussed in detail later.

When ν = 0, (1.1) and (1.2) are known as the Euler equations. These describe
the evolution of the velocity field of an (ideal) inviscid and incompressible fluid.
Formally the difference between the Euler and Navier–Stokes equations is only the
dissipative Laplacian term. Since the Laplacian is exactly the generator a Brownian
motion, one would expect to have an exact stochastic representation of (1.1) and
(1.2) which is physically meaningful, that is, can be thought of as an appropriate
average of the inviscid dynamics and Brownian motion.
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The difficulty, however, in obtaining such a representation is because of both
the nonlinearity and the nonlocality of equations (1.1) and (1.2). In 2D, an exact
stochastic representation of (1.1) and (1.2) dates back to Chorin [14] in 1973 and
was obtained using vorticity transport and the Kolmogorov equations. In three di-
mensions, however, this method fails to provide an exact representation because of
the vortex stretching term.

In 3D, a variety of techniques has been used to provide exact stochastic repre-
sentations of (1.1) and (1.2). One such technique (Le Jan and Sznitman [26]) uses a
backward branching process in Fourier space. This approach has been extensively
studied and generalized [3, 4, 32, 35, 36] by many authors (see also [37]). A dif-
ferent and more recent technique due to Busnello, Flandoli and Romito [6] (see
also [5]) uses noisy flow paths and a Girsanov transformation. A related approach
in [11] is the stochastic-Lagrangian formulation, exact stochastic representation
of solutions to (1.1) and (1.2) which is essentially the averaging of noisy particle
trajectories and the inviscid dynamics. Stochastic variational approaches (gener-
alizing Arnold’s [1] deterministic variational formulation for the Euler equations)
have been used by [13, 16] and a related approach using stochastic differential
geometry can be found in [19].

One common setback in all the above methods is the inability to deal with
boundary conditions. The main contribution of this paper adapts the stochastic-
Lagrangian formulation in [11] (where the authors only considered periodic
boundary conditions or decay at infinity) to the situation with boundaries. The
usual probabilistic techniques used to transition to domains with boundary involve
stopping the processes at the boundary. This introduces two major problems with
the techniques in [11]. First, stopping introduces spatial discontinuities making
the proof used in [11] fail and a different approach is required. Second and more
interesting is the fact that merely stopping does not give the no-slip (0-Dirichlet)
boundary condition as one would expect. One needs to also create trajectories
at the boundary which essentially propagate the influence of the vorticity at the
boundary to the interior fluid velocity.

1.1. Plan of the paper. This paper is organized as follows. In Section 2 a brief
introduction to the stochastic-Lagrangian formulation without boundaries is given.
In Section 3 we motivate and state the stochastic-Lagrangian formulation in the
presence of boundaries (Theorem 3.1). In Section 4 we recall certain standard
facts about backward Itô integrals which will be used in the proof of Theorem 3.1.
In Section 5 we prove Theorem 3.1. Finally, in Section 6 we discuss stochastic
analogues of vorticity transport and inviscid conservation laws.

2. The stochastic-Lagrangian formulation without boundaries. In this
section, we provide a brief description of the stochastic-Lagrangian formulation
in the absence of boundaries. For motivation, let us first study a Lagrangian de-
scription of the Euler equations [equations (1.1) and (1.2) with ν = 0; we will
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usually use a superscript of 0 to denote quantities relating to the Euler equations].
Let d = 2,3 denote the spatial dimension and X0

t be the flow defined by

Ẋ0
t = u0

t (X
0
t ),(2.1)

with initial data X0
0(a) = a, for all a ∈ R

d . To clarify our notation, X0 is a function
of the initial data a ∈ R

d and time t ∈ [0,∞). We usually omit the spatial variable
and use X0

t to denote X0(·, t), the slice of X0 at time t . Time derivatives will
always be denoted by a dot or ∂t instead of a t subscript.

One can immediately check (see, e.g., [7]) that u satisfies the incompressible
Euler equations if and only if Ẍ0 is a gradient composed with X. By Newton’s
second law, this admits the physical interpretation that the Euler equations are
equivalent to assuming that the force on individual particles is a gradient.

One would naturally expect that solutions to the Navier–Stokes equations can be
obtained similarly by adding noise to particle trajectories and averaging. However,
for noisy trajectories, an assumption on Ẍ0 will be problematic. In the incom-
pressible case, we can circumvent this difficultly using the Weber formula [38]
[equation (2.2) below]. Indeed, a direct computation (see, e.g., [7]) shows that for
divergence free u, the assumption that Ẍ0 is a gradient is equivalent to

u0
t = P[(∇∗A0

t )(u
0
0 ◦ A0

t )],(2.2)

where P denotes the Leray–Hodge projection [10, 15, 28] onto divergence free
vector fields, the notation ∇∗ denotes the transpose of the Jacobian and for any
t ≥ 0, A0

t = (X0
t )

−1 is the spatial inverse of the map X0
t [i.e., A0

t (X
0
t (a)) = a for

all a ∈ R
d and X0

t (A
0
t (x)) = x for all x ∈ R

d ].
From this we see that the Euler equations are formally equivalent to equations

(2.1) and (2.2). Since these equations no longer involve second (time) derivatives
of the flow X0, one can consider noisy particle trajectories without any analytical
difficulties. In fact, adding noise to (2.1) and averaging out the noise in (2.2) gives
the equivalent formulation of the Navier–Stokes equations stated below.

THEOREM 2.1 (Constantin, Iyer [11]). Let d ∈ {2,3} be the spatial dimen-
sion, ν > 0 represent the kinematic viscosity and u0 be a divergence free, periodic,
Hölder 2 + α function and W be a d-dimensional Wiener process. Consider the
system

dXt = ut (Xt) dt + √
2ν dWt,(2.3)

X0(a) = a ∀a ∈ R
d,(2.4)

ut = EP[(∇∗At)(u0 ◦ At)],(2.5)

where, as before, for any t ≥ 0, At = X−1
t denotes the spatial inverse3 of Xt . Then

u is a classical solution of the Navier–Stokes equations (1.1) and (1.2) with initial

3It is well known (see, e.g., Kunita [25]) that the solution to (2.3) and (2.4) gives a stochastic flow
of diffeomorphisms and, in particular, guarantees the existence of the spatial inverse of X.



STOCHASTIC-LAGRANGIAN NAVIER–STOKES WITH BOUNDARY 1469

data u0 and periodic boundary conditions if and only if u is a fixed point of the
system (2.3)–(2.5).

REMARK. The flows X,A above are now a function of the initial data a ∈
R

d , time t ∈ [0,∞) and the probability variable � ∈ �. We always suppress the
probability variable, use Xt to denote X(·, t) and omit the spatial variable when
unnecessary. The function u is a deterministic function of space and time and, as
above, we use ut to denote the function u(·, t).

We now briefly explain the idea behind the proof of Theorem 2.1 given in [11]
and explain why this method can not be used in the presence of spatial boundaries.
Consider first the solution of the SDE (2.3) with initial data (2.4). Using the Itô–
Wentzel formula [25], Theorem 4.4.5, one can show that any (spatially regular)
process θ which is constant along trajectories of X satisfies the SPDE

dθt + (ut · ∇)θt dt − ν�θt dt + √
2ν∇θt dWt = 0.(2.6)

Since the process A (which, as before, is defined to be the spatial inverse of X) is
constant along trajectories of X, the process θ defined by

θt = θ0 ◦ At(2.7)

is constant along trajectories of X. Thus, if θ0 is regular enough (C2), then θ satis-
fies SPDE (2.6). Now, if u is deterministic, taking expected values of (2.6) we see
that θ̄t = Eθ0 ◦ At satisfies

∂t θ̄t + (ut · ∇)θ̄t − ν�θ̄t = 0(2.8)

with initial condition θ̄ |t=0 = θ0.

REMARK. Note that when ν = 0, A is deterministic so θ̄ = Eθ = θ . Further,
equation (2.6) reduces to the transport equation for which writing the solution as
θt = θ0 ◦At is exactly the method of characteristics. When ν > 0, the above proce-
dure is an elegant generalization, termed as the “method of random characteristics”
(see [11, 20, 33] for further information).

Once explicit equations for A and u0 ◦A have been established, a direct compu-
tation using Itô’s formula shows that u given by (2.5) satisfies the Navier–Stokes
equations (1.1) and (1.2). This was the proof used in [11].

REMARK. This point of view also yields a natural understanding of gener-
alized relative entropies [8, 12, 29, 30]. Eyink’s recent work [17] adapted this
framework to magnetohydrodynamics and related equations by using the analo-
gous Weber formula [24, 34]. We also mention that Zhang [39] considered a back-
ward analogue and provided short elegant proofs to classical existence results to
(1.1) and (1.2).
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3. The formulation for domains with boundary. In this section we describe
how (2.3)–(2.5) can be reformulated in the presence of boundaries. We begin by
describing the difficulty in using the techniques from [11] described in Section 2.

Let D ⊂ R
d be a domain with Lipschitz boundary. Even if we insist u = 0 on

the boundary of D, we note that the noise in (2.3) is independent of space and
thus, insensitive to the presence of the boundary. Consequently, some trajectories
of the stochastic flow X will leave the domain D and for any t > 0, the map Xt

will (surely) not be spatially invertible. This renders (2.7) meaningless.
In the absence of spatial boundaries, equation (2.7) dictates that θ̄ (x, t) is de-

termined by averaging the initial data over all trajectories of X which reach x at
time t . In the presence of boundaries, one must additionally average the boundary
value of all trajectories reaching (x, t), starting on ∂D at any intermediate time
(Figure 1). As we will see later, this means the analogue of (2.7) in the presence
of spatial boundaries is a spatially discontinuous process. This renders (2.6) mean-
ingless, giving a second obstruction to using the methods of [11] in the presence
of boundaries.

While the method of random characteristics has the above inherent difficulties in
the presence of spatial boundaries, equation (2.8) is exactly the Kolmogorov Back-
ward equation ([31], Section 8.1). In this case, an expected value representation in
the presence of boundaries is well known. More generally, the Feynman–Kac ([31],
Section 8.2) formula, at least for linear equations with a potential term, has been
successfully used in this situation. A certain version of this method (Section 3.1),
without making the usual time reversal substitution, is essentially the same as the
method of random characteristics. It is this version that will yield the natural gen-
eralization of (2.3)–(2.5) in domains with boundary (Theorem 3.1). Before turning
to the Navier–Stokes equations, we provide a brief discussion on the relation be-
tween the Feynman–Kac formula and the method of random characteristics.

3.1. The Feynman–Kac formula and the method of random characteristics.
Both the Feynman–Kac formula and the method of random characteristics have

FIG. 1. Three sample realizations of A without boundaries (left) and with boundaries (right).
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their own advantages and disadvantages: The method of random characteristics
only involves forward SDE’s and obtains the solution of (2.8) at time t with only
the knowledge of the initial data and “X at time t” (or more precisely, the solu-
tion at time t of the equation (2.3) with initial data specified at time 0). However,
this method involves computing the spatial inverse of X, which analytically and
numerically involves an additional step.

On the other hand, to compute the solution of (2.8) at time t via the probabilis-
tic representation using the Kolmogorov backward equation (or equivalently, the
Feynman–Kac formula with a 0 potential term) when u is time dependent involves
backward SDE’s and further requires the knowledge of the solution to (2.3) with
initial conditions specified at all times s ≤ t . However, this does not require com-
putation of spatial inverses and, more importantly, yields the correct formulation
in the presence of spatial boundaries.

Now, to see the relation between the method of random characteristics and the
Feynman–Kac formula, we rewrite (2.3) in integral form and keep track of solu-
tions starting at all times s ≥ 0. For any s ≥ 0, we define the process {Xs,t }t≥s to
be the flow defined by

Xs,t (x) = x +
∫ t

s
ur ◦ Xs,r(x) dr + √

2ν(Wt − Ws).(3.1)

Now, as always, we let As,t = X−1
s,t . Then formally composing (3.1) with As,t

and using the semigroup property Xs,t ◦Xr,s = Xr,t gives the self-contained back-
ward equation for As,t

As,t (x) = x −
∫ t

s
ur ◦ Ar,t (x) dr − √

2ν(Wt − Ws).(3.2)

Now (2.7) can be written as

θt = θ0 ◦ A0,t(3.3)

and using the semigroup property Ar,s ◦ As,t = Ar,t we see that

θt = θs ◦ As,t .(3.4)

This formal calculation leads to a natural generalization of (2.7) in the presence
of boundaries. As before, let D ⊂ R

d be a domain with Lipschitz boundary and
assume, for now, that u is a Lipschitz function defined on all of R

d . Let As,t be
the flow defined by (3.2) and for x ∈ D, we define the backward exit time σt (x) by

σt (x) = inf{s|s ∈ [0, t] and ∀r ∈ (s, t],Ar,t (x) ∈ D}.(3.5)

Let g : ∂D ×[0,∞) → R and θ0 :D → R be two given (regular enough) functions
and define the process θt by

θt (x) =
{

gσt (x) ◦ Aσt (x),t (x), if σt (x) > 0,
θ0 ◦ A0,t (x), if σt (x) = 0.(3.6)
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Note that when σt (x) > 0, equation (3.6) is consistent with (3.4). Thus, (3.6) is the
natural generalization of (2.7) in the presence of spatial boundaries and we expect
θ̄t = Eθt satisfies the PDE (2.8) with initial data θ̄0 = θ0 and boundary conditions
θ = g on ∂D ×[0,∞). Indeed, this is essentially the expected value representation
obtained via the Kolmogorov backward equations.

If an extra term ct (x)θ̄t (x) is desired on the left-hand side of (2.8), then we only
need to replace (3.6) by

θt (x) =

⎧⎪⎪⎨
⎪⎪⎩

exp
(
−

∫ t

σt (x)
cs(As,t ) ds

)
gσt (x) ◦ Aσt (x),t (x), if σt (x) > 0,

exp
(
−

∫ t

0
cs(As,t ) ds

)
θ0 ◦ A0,t (x), if σt (x) = 0

provided c is bounded below. This is essentially the Feynman–Kac formula and its
application to the Navier–Stokes equations is developed in the next section.

Note that the backward exit time σ is usually discontinuous in the spatial vari-
able. Thus, even with smooth g, θ0, the process θ need not be spatially continuous.
As mentioned earlier, equation (2.6) will now become meaningless and we will
not be able to obtain a SPDE for θ . However, equation (2.8), which describes the
evolution of the expected value θ̄ = Eθ , can be directly derived using the back-
ward Markov property and Itô’s formula (see, e.g., [18]). We will not provide this
proof here but will instead provide a proof for the more complicated analogue for
the Navier–Stokes equations described subsequently.

3.2. Application to the Navier–Stokes equations in domains with boundary.
First note that if g = 0 in (3.6), then the solution to (2.8) with initial data θ0 and
0-Dirichlet boundary conditions will be given by

θ̄t = Eχ{σt=0}θ0 ◦ A0,t

[
i.e., θ̄t (x) = Eχ{σt (x)=0}θ0 ◦ A0,t (x)

]
.(3.7)

Recall the no-slip boundary condition for the Navier–Stokes equations is exactly
a 0-Dirichlet boundary condition on the velocity field. Let u be a solution to the
Navier–Stokes equations in D with initial data u0 and no-slip boundary conditions.
Now, following (3.7), we would expect that analogous to (2.5), the velocity field
u can be recovered from the flow As,t [equation (3.2)], the backward exit time σt

[equation (3.5)] and the initial data u0 by

ut = PEχ{σt=0}(∇∗A0,t )u0 ◦ A0,t .(3.8)

This, however, is false. In fact, there are two elementary reasons one should ex-
pect (3.8) to be false. First, absorbing Brownian motion at the boundaries will cer-
tainly violate incompressibility. The second and more fundamental reason is that
experiments and physical considerations lead us to expect production of vorticity
at the boundary. This is exactly what is missing from (3.8). The correct represen-
tation is provided in the following result.
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THEOREM 3.1. Let u ∈ C1([0, T );C2(D)) ∩ C([0, T ];C1(D̄)) be a solution
of the Navier–Stokes equations (1.1) and (1.2) with initial data u0 and no-slip
boundary conditions. Let A be the solution to the backward SDE (3.2) and σ be the
backward exit time defined by (3.5). There exists a function w̃ : ∂D × [0, T ] → R

3

such that for

wt(x) =
{

(∇∗A0,t (x))u0 ◦ A0,t (x), when σt = 0,(∇∗Aσt (x),t (x)
)
w̃σt (x) ◦ Aσt (x),t (x), when σt > 0,(3.9)

we have

ut = PEwt .(3.10)

Conversely, given a function w̃ : ∂D ×[0, T ] → R
d , suppose there exists a solu-

tion to the stochastic system (3.2), (3.9), (3.10). If further u ∈ C1([0, T );C2(D))∩
C([0, T ];C1(D̄)), then u satisfies the Navier–Stokes equations (1.1)–(1.2) with
initial data u0 and vorticity boundary conditions

∇ × u = ∇ × Ew on ∂D × [0, T ].(3.11)

The proof of Theorem 3.1 is presented in Section 5. We conclude this section
with a few remarks.

REMARK 3.2. By ∇∗Aσt (x),t (x) in equation (3.9) we mean [∇∗As,t (x)]s=σt (x).
That is, ∇∗Aσt (x),t (x) refers to the transpose of the Jacobian of A, evaluated at ini-
tial time σt (x), final time t and position x (see [22, 23, 25] for existence). This is
different from the transpose of the Jacobian of the function Aσt (·),t (·) which does
not exist as the function is certainly not differentiable in space.

REMARK 3.3 (Regularity assumptions). In order to simplify the presenta-
tion, our regularity assumptions on u are somewhat generous. Our assumptions
on u will immediately guarantee that u has a Lipschitz extension to R

d . Now the
process A, defined to be a solution to (3.2) with this Lipschitz extension of u, can
be chosen to be a (backward) stochastic flow of diffeomorphisms [25]. Thus, ∇A

is well defined and further defining σ by (3.5) is valid. Finally, since the statement
of Theorem 3.1 only uses values of As,t for s ≥ σt , the choice of the Lipschitz
extension of u will not matter. See also Remark 5.3.

REMARK 3.4. Note that our statement of the converse above does not explic-
itly give any information on the Dirichlet boundary values of u. Of course, the nor-
mal component of u must vanish at the boundary of D since u is the Leray–Hodge
projection of a function. But an explicit local relation between w̃ and the boundary
values of the tangential component of u cannot be established. We remark, how-
ever, that while the vorticity boundary condition (3.11) is somewhat artificial, it is
enough to guarantee uniqueness of solutions to the initial value problem for the
Navier–Stokes equations.
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REMARK 3.5 (Choice of w̃). We explain how w̃ can be chosen to obtain the
no-slip boundary conditions. We will show (Lemma 5.1) that for w defined by

(3.9), the expected value w̄
def= Ew solves the PDE

∂t w̄t + (ut · ∇)w̄t − ν�w̄t + (∇∗ut)w̄t = 0(3.12)

with initial data

w̄|t=0 = u0.(3.13)

As shown before, ∇∗ut in (3.12) denotes the transpose of the Jacobian of ut . Now,
if u = Pw̄, then we will have ∇ × u = ∇ × w̄ in D and by continuity, on the
boundary of D. Thus, to prove existence of the function w̃, we solve the PDE
(3.12) with initial conditions (3.13) and vorticity boundary conditions

∇ × w̄t = ∇ × ut on ∂D.(3.14)

We chose w̃ to be the Dirichlet boundary values of this solution.

To elaborate on Remark 3.5, we trace through the influence of the vorticity
on the boundary on the velocity in the interior. First, the vorticity at the bound-
ary influences w̄ by entering as a boundary condition on the first derivatives for
the PDE (3.12). Now, to obtain u we need to find w̃, the (Dirichlet) boundary
values of (3.12) and use this to weight trajectories that start on the boundary
of D. The process of finding w̃ is essentially passing from Neumann boundary
values of a PDE to the Dirichlet boundary values which is usually a nonlocal
pseudo-differential operator. Thus, while the procedure above is explicit enough,
the boundary vorticity influences the interior velocity in a highly implicit, nonlocal
manner.

REMARK 3.6 (Uniqueness of w̃). Our choice of w̃ is not unique. Indeed, if
w̄1 and w̄2 are two solutions of (3.12)–(3.14), then we must have w̄1 − w̄2 = ∇q ,
where q satisfies the equation

∇(
∂tq + (u · ∇)q − ν�q

) = 0(3.15)

with initial data ∇q0 = 0. Since we do not have boundary conditions on q , we can
certainly have nontrivial solutions to this equation. Thus, our choice of w̃ is only
unique up to addition by the gradient of a solution to (3.15).

4. Backward Itô integrals. While the formulation of Theorem 3.1 involves
only regular (forward) Itô integrals, the proof requires backward Itô integrals and
processes adapted to a two parameter filtration. The need for backward Itô inte-
grals stems from equation (3.2) which, as mentioned earlier, is the evolution of A,
backward in time. This is, however, obscured because our diffusion coefficient is
constant making the martingale term exactly the increment of the Wiener process
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and can be explicitly computed without any backward (or even forward) Itô inte-
grals.

To elucidate matters, consider the flow X′ given by

X′
s,t (a) = a +

∫ t

s
ur ◦ X′

s,r (a) dr +
∫ t

s
σr ◦ X′

s,r (a) dWr.(4.1)

If, as usual, A′
s,t = (X′

s,t )
−1, then substituting formally4 a = A′

s,t (x) and assuming
the semigroup property gives the equation

A′
s,t (x) = x −

∫ t

s
ur ◦ A′

r,t (x) dr −
∫ t

s
σr ◦ A′

r,t (x) dWr(4.2)

for the process A′
s,t . The need for backward Itô integrals is now evident; the last

term above does not make sense as a forward Itô integral since A′
r,t is not Fr mea-

surable. This term, however, is well defined as a backward Itô integral; an integral
with respect to a decreasing filtration where processes are sampled at the right
endpoint. Since forward Itô integrals are more predominant in the literature, we
recollect a few standard facts about backward Itô integrals in this section. A more
detailed account, with proofs, can be found in [18, 25], for instance.

Let (�, F ,P ) be a probability space, {Wt }t≥0 be a d-dimensional Wiener
process on � and let Fs,t be the σ -algebra generated by the increments Wt ′ − Ws′
for all s ≤ s′ ≤ t ′ ≤ t , augmented so that the filtration {Fs,t }0≤s≤t satisfies the usual
conditions.5 Note that for s ≤ s′ ≤ t ′ ≤ t , we have Fs′,t ′ ⊂ Fs,t . Also Wt − Ws is
Fs,t -measurable and is independent of both the past F0,s , and the future Ft,∞.

We define a (two parameter) family of random variables {ξs,t }0≤s≤t to be a
(two parameter) process adapted to the (two parameter) filtration {Fs,t }0≤s≤t , if
for all 0 ≤ s ≤ t , the random variable ξs,t is Fs,t -measurable. For example, ξs,t =
Wt − Ws is an adapted process. More generally, if u and σ are regular enough
deterministic functions, then the solution {X′

s,t }0≤s≤t of the (forward) SDE (4.1)
is an adapted process.

Given an adapted (two parameter) process ξ and any t ≥ 0, we define the back-
ward Itô integral

∫ t
· ξr,t dWr by∫ t

s
ξr,t dWr = lim‖P‖→0

∑
i

ξti+1,t (Wti+1 − Wti ),

where P = (r = t0 < t1 · · · < tN = t) is a partition of [r, t] and ‖P‖ is the length
of the largest subinterval of P . The limit is taken in the L2 sense, exactly as with
forward Itô integrals (see, e.g., [21], page 148, [27], page 35, [25], page 111).

4The formal substitution does not give the correct answer when σ is not spatially constant. This is
explained subsequently and the correct equation is (4.3) below.

5By “usual conditions” in this context, we mean that for all s ≥ 0, Fs,s contains all F0,∞-null sets.
Further, Fs,t is right-continuous in t and left-continuous in s. See [21], Definition 2.25, for instance.
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The standard properties (existence, Itô isometry, martingale properties) of the
backward Itô integral are, of course, identical to those of the forward integral. The
only difference is in the sign of the Itô correction. Explicitly, consider the process
{A′

s,t }0≤s≤t satisfying the backward Itô differential equation (4.2). If {fs,t }0≤s≤t

is adapted, C2 in space and continuously differentiable with respect to s, then the
process Bs,t = fs,t ◦ As,t satisfies the backward Itô differential equation

Bt,t − Bs,t =
∫ t

s

[
∂rfr,t + (ur · ∇)fr,t − 1

2
aij
r ∂ijfr,t

]
◦ Ar,t dr

+
∫ t

s
[∇fr,tσr ] ◦ Ar,t dWr,

where a
ij
r = σ ik

r σ
jk
r with the Einstein sum convention.

Though we only consider solutions to (4.1) for constant diffusion coefficient, we
briefly address one issue when σ is not constant. Our motivation for the equation
(4.2) was to make the substitution x = A′

s,t (x) and formally use the semigroup
property. This, however, does not yield the correct equation when σ is not constant
and the equation for A′

s,t = (X′
s,t )

−1 involves an additional correction term. To see
this, we discretize the forward integral in (4.1) (in time) and substitute a = A′

s,t (x).
This yields a sum sampled at the left endpoint of each time step. While this causes
no difficulty for the bounded variation terms, the martingale term is a discrete
approximation to a backward integral and hence, must be sampled at the right
endpoint of each time step. Converting this to sum sampled at the right endpoint
via a Taylor expansion of σ is what gives this extra correction. Carrying through
this computation (see, e.g., [25], Section 4.2) yields the equation

A′
s,t (x) = x −

∫ t

s
ur ◦ A′

r,t (x) dr −
∫ t

s
σr ◦ A′

r,t (x) dWr

(4.3)

+
∫ t

s

(
∂jσ

i,k
r ◦ A′

r,t (x)
)(

σ j,k
r ◦ A′

r,t (x)
)
ei dr,

where {ei}1≤i≤d are the elementary basis vectors and σ i,j denotes the i, j th entry
in the d × d matrix σ .

We recall that the proof of the (forward) Itô formula involves approximating f

by its Taylor polynomial about the left endpoint of the partition intervals. Analo-
gously, the backward Itô formula involves approximating f by Taylor polynomial
about the right endpoint of partition intervals, which accounts for the reversed sign
in the Itô correction.

Finally, we remark that for any fixed t ≥ 0, the solution {As,t }0≤s≤t of the back-
ward SDE (3.2) is a backward strong Markov process [the same is true for solutions
to (4.3)]. The backward Markov property states that r < s < t then

EFs,t f ◦ Ar,t (x) = EAs,t (x)f ◦ Ar,t (x) = [Ef ◦ Ar,s(y)]y=As,t (x),
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where EFs,t denotes the conditional expectation with respect to the σ -algebra Fs,t

and EAs,t (x) the conditional expectation with respect to the σ -algebra generated by
the process As,t (x).

For the strong Markov property (we define σ to be a backward t-stopping time6

if almost surely σ ≤ t) and for all s ≤ t , the event {σ ≥ s} is Fs,t -measurable. Now
if σ is any backward t-stopping time with r ≤ σ ≤ t almost surely, the backward
strong Markov property states

EFσ,t f ◦ Ar,t (x) = EAσ,t f ◦ Ar,t (x) = [Ef ◦ Ar,s(y)] s=σ,
y=Aσ,t (x).

The proofs of the backward Markov properties is analogous to the proof of the
forward Markov properties and we refer the reader to [18], for instance.

5. The no-slip boundary condition. In this section we prove Theorem 3.1.
First, we know from [22, 23] that spatial derivatives of A can be interpreted as the
limit (in probability) of the usual difference quotient. In fact, for regular enough
velocity fields u (extended to all of R

d ), the process A can, in fact, be chosen to
be a flow of diffeomorphisms of R

d (see, e.g., [25]) in which case A is surely
differentiable in space. Interpreting the Jacobian of A as either the limit (in proba-
bility) of the usual difference quotient or as the Jacobian of the stochastic flow of
diffeomorphism, we know [22, 23, 25] that ∇A satisfies the equation

∇As,t (x) = I −
∫ t

s
∇ur |Ar,t (x)∇Ar,t (x) dr,(5.1)

obtained by formally differentiating (3.2) in space. Here I denotes the d × d iden-
tity matrix. We reiterate that equation (5.1) is an ODE as the Wiener process is
independent of the spatial parameter.

LEMMA 5.1. Let D,u,T be as in Theorem 3.1, σ be the backward exit time
from D [equation (3.5)] and A be the solution to (3.2) with respect to the backward
stopping time σ .

(1) Let w̄ ∈ C1([0, T );C2(D)) ∩ C([0, T ];C1(D̄)) be the solution of (3.12) with
initial data (3.13) and boundary conditions

w̄ = w̃ on ∂D.(5.2)

Then, for w defined by (3.9), we have w̄ = Ew.
(2) Let w be defined by (3.9) and w̄ = Ew as above. If for all t ∈ (0, T ], w̄t ∈

D(A·,t ) and w̄ is C1 in time, then w̄ satisfies

∂t w̄ + Ltw̄ + (∇∗u)w̄ = 0,(5.3)

6Our use of the term backward t-stopping time is analogous to s-stopping time in [18], page 24.
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where Lt is defined by

Ltφ(x) = lim
s→t−

φ(x) − Eφ(As∨σt (x),t (x))

t − s
(5.4)

and D(A·,t ) is the set of all φ for which the limit on the right-hand side exists.
Further, w̄ has initial data u0 and boundary conditions (5.2).

Before proceeding any further, we first address the relationship between the
two assertions of the lemma. We claim that if w̄ ∈ C1((0, T );C2(D)), then equa-
tion (5.3) reduces to equation (3.12). This follows immediately from the next
proposition.

PROPOSITION 5.2. If φ ∈ C2(D), then for any t ∈ (0, T ], φ ∈ D(A·,t ) and
further, Ltφ = (ut · ∇)φ − ν�φ.

PROOF. Omitting the spatial variable for notational convenience, the back-
ward Itô formula gives

φ − φ ◦ As∨σt ,t = φ ◦ At,t − φ ◦ As∨σt ,t

=
∫ t

s∨σt

[(ur · ∇)φ|Ar,t − ν�φ|Ar,t ]dr + √
2ν

∫ t

s∨σt

∇φ|Ar,t dWr.

Since s ∨ σt is a backward t-stopping time, the second term above is a martingale.
Thus

Ltφ = lim
s→t−

E
1

t − s

∫ t

s
χ{r≥σt }[(ur · ∇)φ|Ar,t − ν�φ|Ar,t ]dr

= (ut · ∇)φ − ν�φ

since the process A has continuous paths and σt < t on the interior of D. �

REMARK 5.3. One can weaken the regularity assumptions on u in the state-
ment of Theorem 3.1 by instead assuming for all t ∈ (0, T ], ut ∈ D(A·,t ) and is
C1 in time, as with the second assertion of Lemma 5.1. However, while the formal
calculus remains essentially unchanged, there are a couple of technical points that
require attention. First, when assumptions on smoothness of u up to the boundary
is relaxed (or when ∂D is irregular), a Lipschitz extension of u need not exist.
In this case, we can no longer use (3.5) to define σ . Further, we can not regard
the process A as a stochastic flow of diffeomorphisms and some care has to be
taken when differentiating it. These issues can be addressed using relatively stan-
dard techniques and once they are sorted out, the proof of Theorem 3.1 remains
unchanged.
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Now we prove the first assertion of Lemma 5.1.

PROOF. Recall that ∇∗As,t is differentiable in s. Differentiating (5.1) in s and
transposing the matrices gives

∂s∇As,t (x) = ∇∗As,t (x)∇∗us |As,t (x).(5.5)

Let t ∈ (0, T ], x ∈ D and σ ′ be any backward t-stopping time with σ ′ ≥ σt (x)

almost surely. Omitting the spatial variable for convenience, the backward Itô for-
mula and equations (3.12) and (5.5) give

w̄t − ∇∗Aσ ′,t w̄σ ′ ◦ Aσ ′,t

= ∇∗At,t w̄t ◦ At,t − ∇∗Aσ ′,t w̄σ ′ ◦ Aσ ′,t

=
∫ t

σ ′
∂r∇∗Ar,t w̄r ◦ Ar,t

+
∫ t

σ ′
∇∗Ar,t

(
∂rw̄r + (ur · ∇)w̄r − ν�w̄r

) ◦ Ar,t dr

+ √
2ν

∫ t

σ ′
(∇∗Ar,t )(∇∗w̄r ) ◦ Ar,t dWr

=
∫ t

σ ′
∇∗Ar,t

(
(∇∗ur)w̄r + ∂rw̄r + (ur · ∇)w̄r − ν�w̄r

) ◦ Ar,t dr

+ √
2ν

∫ t

σ ′
(∇∗Ar,t )(∇∗w̄r ) ◦ Ar,t dWr

= √
2ν

∫ t

σ ′
(∇∗Ar,t )wr ◦ Ar,t dWr.

Thus, taking expected values gives

w̄t (x) = E∇∗Aσ ′,t (x)w̄σ ′ ◦ Aσ ′,t (x).(5.6)

Recall that when σt (x) > 0, Aσt (x),t (x) ∈ ∂D. Thus, choosing σ ′ = σt (x) and us-
ing the boundary conditions (5.2) and initial data (3.13), we have

w̄σt (x) ◦ Aσt (x),t =
{

w̃σt (x) ◦ Aσt (x),t , if σt (x) > 0,
u0 ◦ Aσt (x),t , if σt (x) = 0.(5.7)

Substituting this in (5.6) completes the proof. �

In order to prove the second assertion in Lemma 5.1, we will directly prove
(5.6) using the backward strong Markov property. Before beginning the proof, we
establish a few preliminaries.

Let D, u, T , σ , A, w, w̄ be as in the second assertion of Lemma 5.1. Given
x ∈ D and a d × d matrix M , define the process {Bs,t (x,M)}σt (x)≤s≤t≤T to be the
solution of the ODE

Bs,t (x,M) = M −
∫ t

s
∇ur |Ar,t (x)Br,t (x,M)dr.



1480 P. CONSTANTIN AND G. IYER

If I denotes the d ×d identity matrix, then by (5.1) we have Bs,t (x, I ) = ∇As,t (x)

for any σt (x) ≤ s ≤ t ≤ T . Further, since the evolution equation for B is linear, we
see

Bs,t (x,M) = Bs,t (x, I )M = ∇As,t (x)M.(5.8)

Note that for any fixed t ∈ (0, T ], the process {∇As,t }0≤s≤t is not a backward
Markov process. Indeed, the evolution of ∇As,t at any time s ≤ t depends on the
time s through the process As,t appearing on the right-hand side in (5.1). How-
ever, process (As,t ,∇As,t ) [or equivalently the process (As,t ,Bs,t )] is a backward
Markov process since the evolution of this system now only depends on the state.
This leads us to the following identity which is the essence of proof of the second
assertion in Lemma 5.1.

LEMMA 5.4. Choose any backward t-stopping time σ ′ with σ ′ ≥ σt (x) almost
surely. Then

EFσ ′,t B
∗
σt (x),t (x, I )w̄σt (x) ◦ Aσt (x),t (x)

(5.9)
= [

EB∗
σr (y),r (y,M)w̄σr (y) ◦ Aσr(y),r (y)

]
r=σ ′,y=Aσ ′,t (x),

M=Bσ ′,t (x,I )

holds almost surely.

This follows from an appropriate application of the backward strong Markov
property. While this is easily believed, checking that the strong Markov property
applies in this situation requires a little work and will distract from the heart of the
matter. Thus, we momentarily postpone the proof of Lemma 5.4 and proceed with
the proof of the second assertion of Lemma 5.1.

PROOF OF LEMMA 5.1. We recall w̄ = Ew where w is defined by (3.9). By
our assumption on u and ∂D, the boundary conditions (5.2) and initial data (3.13)
are satisfied. For convenience, when y ∈ ∂D, t > 0, we define wt(y) = w̃(y) and
when t = 0, y ∈ D̄, we define w0(y) = u0(y).

Let x ∈ D, t ∈ (0, T ] as used before. Let σ ′ be any backward t-stopping time
with σ ′ ≥ σt (x). First, if σ ′ = σt (x) almost surely, then, since the point (Aσt (x),t , t)

belongs to the parabolic boundary ∂p(D × [0, T ]) def= (∂D × [0, T ]) ∪ (D × {0}),
our boundary conditions and initial data will guarantee (5.6).

Now, for arbitrary σ ′ ≥ σt (x), we will use Lemma 5.4 to deduce (5.6) directly.
Indeed,

w̄t (x) = E∇∗Aσt (x),t (x)w̄σt (x) ◦ Aσt (x),t

= EEFσ ′,t B
∗
σt (x),t (x, I )w̄σt (x) ◦ Aσt (x),t (x)
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= E
([

EB∗
σr (y),r (y,M)w̄σr (y) ◦ Aσr(y),r (y)

]
r=σ ′,y=Aσ ′,t (x),

M=Bσ ′,t (x,I )

)

= E
([

M∗EB∗
σr (y),r (y, I )w̄σr (y) ◦ Aσr(y),r (y)

]
r=σ ′,y=Aσ ′,t (x),

M=Bσ ′,t (x,I )

)

= E∇∗Aσ ′,t (x)w̄σ ′ ◦ Aσ ′,t (x),

showing that (5.6) holds for any backward t stopping time σ ′ ≥ σt (x).
Now, choose σ ′ = s ∨ σt (x) for s < t . Note that for any x ∈ D, we must have

σt (x) < t almost surely. Thus, omitting the spatial coordinate for convenience, we
have

0 = lim
s→t−

w̄t − w̄t

t − s
= lim

s→t−
1

t − s
(w̄t − E∇∗As∨σt ,t w̄s∨σt ◦ As∨σt ,t )

= lim
s→t−

(
1

t − s
[w̄t − Ew̄t ◦ As∨σt ,t ]

+ 1

t − s
E(w̄t − w̄s∨σt ) ◦ As∨σt ,t

+ 1

t − s
E(I − ∇∗As∨σt ,t )w̄s∨σt ◦ As∨σt ,t

)

= Ltw̄t + ∂t w̄t + (∇∗ut)w̄t ,

on the interior of D. The proof is complete. �

It remains to prove Lemma 5.4.

PROOF OF LEMMA 5.4. Define the stopped processes A′
s,t (x) = Aσt (x)∨s,t (x)

and B ′
s,t (x,M) = Bσt (x)∨s,t (x,M). Define the process C by

Cs,t (x,M, τ) = (
A′

s,t (x),B ′
s,t (x,M), τ + t − σt (x) ∨ s

)
.

Note that for any given s ≤ t , we know that σt (x) need not be Fs,t measurable.
However, σt (x) ∨ s is an Fs,t measurable backward t-stopping time. Thus, A′

s,t ,
B ′

s,t and, consequently, Cs,t are all Fs,t measurable.
Now we claim that almost surely, for 0 ≤ r ≤ s ≤ t ≤ T , we have the backward

semigroup identity

Cr,s ◦ Cs,t = Cr,t .(5.10)

To prove this, consider first the third component of the left-hand side of (5.10):

C(3)
r,s ◦ Cs,t (x,M, τ) = (

τ + t − σt (x) ∨ s
) + s − σs(A

′
s,t (x)) ∨ s.(5.11)

Consider the event {s > σt (x)}. By the semigroup property for A and strong ex-
istence and uniqueness of solutions to (3.2), we have σs(As,t (x)) = σt (x) almost
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surely. Thus, almost surely on {s > σt (x)}, we have

C(3)
r,s ◦ Cs,t (x,M, τ) = (τ + t − s) + s − σt (x) ∨ s

= τ + t − σt (x) ∨ r = C
(3)
r,t (x,M, τ).

Now consider the event {s ≤ σt }. We know A′
s,t (x) ∈ ∂D and so σs(A

′
s,t (x)) = s.

This gives

C(3)
r,s ◦ Cs,t (x,M, τ) = (

τ + t − σt (x)
) + s − s = τ + t − σt (x) ∨ r = C

(3)
r,t (x)

almost surely on {s ≤ σt (x)}. Therefore, we have proved almost sure equality of
the third components in equation (5.10).

For the first component C
(1)
s,t = A′

s,t , consider as before the case s > σt (x). In
this case A′

s,t = As,t and the semigroup property of A gives equality of the first
components in (5.10) almost surely on {s > σt (x)}. When s ≤ σt (x), as before,
A′

s,t ∈ ∂D and σs(A
′
s,t (x)) = s. Thus,

A′
r,s ◦ A′

s,t (x) = As,s ◦ Aσt (x),t (x) = Aσt (x),t (x) = A′
r,t (x)

almost surely on s ≤ σt (x). This shows almost sure equality of the first compo-
nents in equation (5.10). Almost sure equality of the second components follows
similarly, completing the proof of (5.10).

Now, for 0 ≤ r ≤ s ≤ t ≤ T , the random variable Cs,t is Fs,t measurable and so
must be independent of Fr,s . This, along with (5.10), will immediately guarantee
the Markov property for C. Since the filtration F·,· satisfies the usual conditions
and for any fixed t the function s �→ Cs,t is continuous, C satisfies the strong
Markov property (see, e.g., [18], Theorem 2.4).

Thus, for any fixed t ∈ [0, T ] and any Borel function ϕ, the strong Markov
property gives

EFσ ′,t ϕ(C0,t (x, I,0)) = [Eϕ(Cr,t (y,M, τ))]r=σ ′,
(y,M,τ)=C0,σ ′ (x,I,0)

= [Eϕ(Cr,t (y,M, τ))]r=σ ′,y=Aσ ′,t (x),

M=Bσ ′,t (x,I ),τ=σr (x),

almost surely for any x ∈ R
d , M ∈ R

d2
, τ ≥ 0. Choosing ϕ(x,M, τ) = M∗w̄t−τ (x)

proves (5.9). �

Now a direct computation shows that if w̄ satisfies (3.12), then u = Pw̄ satis-
fies (1.1) regardless of our choice of w̃. Of course, we will only get the no-slip
boundary conditions with the correct choice of w̃. We first obtain the PDE for u.

LEMMA 5.5. If w̄ satisfies (3.12) and u = Pw̄, then u satisfies (1.1) and (1.2).
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PROOF. By definition of the Leray–Hodge projection, u = w + ∇q for some
function q and equation (1.2) is automatically satisfied. Thus, using equation
(3.12) we have

∂tut + (ut · ∇)ut − ν�ut + (∇∗ut )ut

(5.12)
+ ∂t∇qt + (ut · ∇)∇qt + (∇∗ut )∇qt − ν�∇qt = 0.

Defining p by

∇p = ∇(1
2 |u|2 + ∂tqt + (ut · ∇)qt − ν�qt

)
,

equation (5.12) becomes (1.1). �

Now to address the no-slip boundary condition. The curl of w̄ satisfies the vor-
ticity equation which is how the vorticity enters our boundary condition.

LEMMA 5.6. Let w̄ be a solution of (3.12). Then ξ = ∇ × w̄ satisfies the
vorticity equation

∂tξ + (u · ∇)ξ − ν�ξ =
{

0, if d = 2,
(ξ · ∇)u, if d = 3.

(5.13)

PROOF. We only provide the proof for d = 3. For this proof we will use sub-
scripts to indicate the component instead of time as we usually do. If i, j, k ∈
{1,2,3} are all distinct, let εijk denote the signature of the permutation (1,2,3) �→
(i, j, k). For convenience, we let εijk = 0 if i, j, k are not all distinct. Using the
Einstein summation convention, ξ = ∇ × w̄ translates to ξi = εijk∂j w̄k on compo-
nents. Thus, taking the curl of (3.12) gives

∂tξi + (u · ∇)ξi − ν�ξi + εijk ∂jum ∂mw̄k + εijk ∂kum ∂j w̄m = 0(5.14)

because εijk ∂j ∂kumw̄m = 0. Making the substitutions j �→ k and k �→ j in the last
sum above we have

εijk ∂jum ∂mw̄k + εijk ∂kum ∂j w̄m = εijk ∂jum(∂mw̄k − ∂kw̄m)

= εijk ∂jumεnmkξn

= (δinδjm − δimδjn) ∂jumξn

= −∂juiξj ,

where δij denotes the Kronecker delta function and the last equality follows be-
cause ∂juj = 0. Thus, (5.14) reduces to (5.13). �

Theorem 3.1 now follows from the above lemmas.
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PROOF OF THEOREM 3.1. First, suppose u is a solution of the Navier–Stokes
equations, as in the statement of the theorem. We choose w̃ as explained in Re-
mark 3.5. Notice that our assumptions on u and D will guarantee a classical solu-
tion to (3.12)–(3.14) exists on the interval [0, T ] and thus, such a choice is possible.

By Lemma 5.1 we see that for w defined by (3.9), the expected value w̄ = Ew

satisfies (3.12) with initial data (3.13) and boundary conditions (5.2). By our choice
of w̃ and uniqueness to the Dirichlet problem (3.12), (3.13) and (5.2), we must have
the vorticity boundary condition (3.14).

Now, let ξ = ∇ × w̄ and ω = ∇ × u. By Lemma 5.6, we see that ξ satisfies the
vorticity equation (5.13). Since u satisfies (1.1) and (1.2), it is well known (see,
e.g., [15, 28] or the proof of Lemma 5.6) that ω also satisfies

∂tωt + (ut · ∇)ωt − ν�ωt =
{

0, if d = 2,
(ωt · ∇)ut , if d = 3.

(5.15)

From (3.14) we know ξ = ω on ∂D ×[0, T ]. By (3.13), we see that ξ0 = ∇ ×u0 =
ω0 and hence, ξ = ω on the parabolic boundary ∂p(D × [0, T ]).

The above shows that ω and ξ both satisfy the same PDE [equations (5.13) or
(5.15)] with the same initial data and boundary conditions and so we must have
ξ = ω on D × [0, T ]. Thus, ∇ × w̄ = ∇ × u in D × [0, T ] showing u and w̄ differ
by a gradient. Since ∇ · u = 0 and u = 0 on ∂D × [0, T ], we must have u = Pw̄

proving (3.10).
Conversely, assume we have a solution to the system (3.2), (3.9) and (3.10). As

stated above, Lemma 5.1 shows w̄ = Ew satisfies (3.12) with initial data (3.13).
By Lemma 5.5 we know u satisfies the equation (1.1) and (1.2) with initial data
u0. Finally, since equation (3.10) shows ∇ × u = ∇ × w̄ in D × [0, T ] and by
continuity, we have the boundary condition (3.11). �

6. Vorticity transport and ideally conserved quantities. The vorticity is a
quantity which is of fundamental importance, both for the physical and theoretical
aspects of fluid dynamics. To single out one among the numerous applications of
vorticity, we refer the reader to two classical criterion which guarantee global and
existence and regularity of the Navier–Stokes equations provided the vorticity is
appropriately controlled: the first due to Beale, Kato and Majda [2] and the second
due to Constantin and Fefferman [9].

For the Euler equations, exact identities and conservation laws governing the
evolution of vorticity are well known. For instance, vorticity transport [equation
(6.1)] shows that the vorticity at time t followed along streamlines is exactly the
initial vorticity stretched by the Jacobian of the flow map. Similarly, the conser-
vation of circulation [equation (6.9)] shows that the line integral of the velocity
(which, by Stokes theorem, is a surface integral of the vorticity) computed along a
closed curve that is transported by the fluid flow is constant in time.

Prior to [11], these identities were unavailable for the Navier–Stokes equations.
In [11], the authors provide analogues of these identities for the Navier–Stokes
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equations in the absence of boundaries. These identities, however, do not always
prevail in the presence of boundaries.

In this section we illustrate the issues involved by considering three inviscid
identities. All three identities generalize perfectly to the viscous situations without
boundaries. In the presence of boundaries, the first identity (vorticity transport)
generalizes perfectly, the second identity (Ertel’s Theorem) generalizes somewhat
unsatisfactorily and the third identity (conservation of circulation) has no nontrivial
generalization in the presence of boundaries.

6.1. Vorticity transport. Let u0 be a solution to the Euler equations with initial
data u0. Let X0 the inviscid flow map defined by (2.1) and for any t ≥ 0, let A0

t =
(X0

t )
−1 be the spatial inverse of the diffeomorphism X0

t . The vorticity transport
(or Cauchy formula) states

ω0
t =

{
ω0

0 ◦ A0
t , if d = 2,

[(∇X0
t )ω

0
0] ◦ A0

t , if d = 3,
(6.1)

where we recall that the vorticity ω0 is defined by ω0 = ∇ × u0 and where ω0
0 =

∇ × u0 is the initial vorticity.
In [11], the authors obtained a natural generalization of (6.1) for the Navier–

Stokes equations in the absence of spatial boundaries. If u solves (1.1) and (1.2)
with initial data u0 and X is the noisy flow map defied by (2.3)–(2.4), then ω =
∇ × u is given by

ωt =
{

Eω0 ◦ At, if d = 2,
E((∇Xt)ω0) ◦ At, if d = 3.

(6.2)

We now provide the generalization of this in the presence of boundaries. Note
that for any t ≥ 0, (∇Xt) ◦ At = (∇At)

−1, so we can rewrite (6.2) completely in
terms of the process A. Now, as usual, we replace A = X−1 with the solution of
(3.2) with respect to the minimal existence time σ . We recall that in Theorem 3.1,
in addition to “starting trajectories at the boundary,” we had to correct the expres-
sion for the velocity by the boundary values of a related quantity (the vorticity). For
the vorticity, however, we need no additional correction and the interior vorticity
is completely determined given A, σ and the vorticity on the parabolic boundary7

∂p(D × [0, T ]).
PROPOSITION 6.1. Let u be a solution to (1.1) and (1.2) in D with initial data

u0 and suppose ω = ∇ × u ∈ C1([0, T );C2(D)) ∩ C([0, T ] × D̄). Let ω̃ denote
the values of ω on the parabolic boundary ∂p(D × [0, T ]). Explicitly, ω̃ is defined
by

ω̃(x, t) =
{

ω0(x), if x ∈ D and t = 0,
ωt(x), if x ∈ ∂D.

7Recall the parabolic boundary ∂p(D × [0, T ]) is defined to be (D × {0}) ∪ (∂D × [0, T )).
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Then,

ωt(x) =
{

E
[
ω̃σt (x)

(
Aσt (x),t (x)

)]
, if d = 2,

E
[(∇Aσt (x),t (x)

)−1
ω̃σt (x)

(
Aσt (x),t (x)

)]
, if d = 3.

(6.3)

PROPOSITION 6.2. More generally, suppose ω̃ is any function defined on the
parabolic boundary of D×[0, T ] and let ω be defined by (6.3). If for all t ∈ (0, T ],
ωt ∈ D(A·,t ) and ω is C1 in time, then ω satisfies

∂tωt + Ltωt =
{

0, if d = 2,
(ωt · ∇)ut , if d = 3,

with ω = ω̃ on the parabolic boundary. Here, Lt is the generator of A·,t ; D(A·,t )
is the domain of Lt . These are defined in the statement of Lemma 5.1.

Of course, Proposition 6.2, along with Proposition 5.2 and uniqueness of
(strong) solutions to (5.15), will prove Proposition 6.1. However, direct proofs of
both Proposition 6.2 and Proposition 6.1 are short and instructive and we provide
independent proofs of each.

PROOF OF PROPOSITION 6.1. We only provide the proof when d = 3. As
shown before, differentiating (5.1) in space and taking the matrix inverse of both
sides gives

∂r(∇Ar,t (x))−1 = −(∇Ar,t (x))−1∇ur |Ar,t (x),(6.4)

almost surely. Now choose any x ∈ D, t > 0 and any backward t-stopping time
σ ′ ≥ σt (x). Omitting the spatial parameter for notational convenience, the back-
ward Itô formula gives

ωt − (∇Aσ ′,t )
−1ωσ ′ ◦ Aσ ′,t

= (∇At,t )
−1ωt ◦ At,t − (∇Aσ ′,t )

−1ωσ ′ ◦ Aσ ′,t

=
∫ t

σ ′
∂r(∇Ar,t )

−1ωr ◦ Ar,t dr

+
∫ t

σ ′
(∇Ar,t )

−1(
∂rωr + (ur · ∇)ωr − ν�ωr

) ◦ Ar,t dr

+ √
2ν

∫ t

σ ′
(∇Ar,t )

−1(∇ωr) ◦ Ar,t dWr

=
∫ t

σ ′
−(∇Ar,t )

−1∇ur |Ar,t ωr ◦ Ar,t dr

+
∫ t

σ ′
(∇Ar,t )

−1((ωr · ∇)ur) ◦ Ar,t dr
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+ √
2ν

∫ t

σ ′
(∇Ar,t )

−1(∇ωr) ◦ Ar,t dWr

= √
2ν

∫ t

σ ′
(∇Ar,t )

−1(∇ωr) ◦ Ar,t dWr.

Thus, taking expected values gives

ωt = E[(∇Aσ ′,t )
−1ωσ ′ ◦ Aσ ′,t ].(6.5)

Choosing σ ′ = σt (x) and using the fact that Aσt (x),t (x) always belongs to the par-
abolic boundary finishes the proof. �

PROOF OF PROPOSITION 6.2. Again, we only consider the case d = 3. We
will prove equation (6.5) directly and then deduce (5.15). Let the process B be
as in the proof of the second assertion of Lemma 5.1 and use B−1 to denote the
process consisting of matrix inverses of the process B . Pick x ∈ D, t ∈ (0, T ] and
a backward t-stopping time σ ′ ≥ σt (x). Using (5.9) we have

ωt(x) = E
[(∇Aσt (x),t (x)

)−1
ω̃σt (x)

(
Aσt (x),t (x)

)]
= EEFσ ′,t

[
B−1

σt (x),t (x, I )ω̃σt (x) ◦ Aσt (x),t (x)
]

= E
([

EB−1
σr (y),r (y,M)ω̃σr(y) ◦ Aσr(y),r (y)

]
r=σ ′,y=Aσ ′,t (x),

M=Bσ ′,t (x,I )

)

= E
([

M−1EB−1
σr (y),r (y, I )ω̃σr (y) ◦ Aσr(y),r (y)

]
r=σ ′,y=Aσ ′,t (x),

M=Bσ ′,t (x,I )

)

= E[(∇Aσ ′,t (x))−1ωσ ′ ◦ Aσ ′,t (x)],
proving (6.5).

As stated before, choose s ≤ t and σ ′ = σt (x) ∨ s. Omitting the spatial parame-
ter for notational convenience gives

0 = lim
s→t−

ωt − ωt

t − s
= lim

s→t−
1

t − s
[ωt − E(∇Aσt∨s,t )

−1ωσt∨s ◦ Aσt∨s,t ]

= lim
s→t−

(
1

t − s
[ωt − Eωt ◦ Aσt∨s,t ]

+ 1

t − s
E[ωt − ωσt∨s] ◦ Aσt∨s,t

+ 1

t − s
E[I − (∇Aσt∨s,t )

−1]ωσt∨s ◦ Aσt∨s,t

)

= Ltωt + ∂tωt − (∇ut)ωt . �

We remark that the vorticity transport in Propositions 6.1 or 6.2 can be used to
provide a stochastic representation of the Navier–Stokes equations. To see this, first



1488 P. CONSTANTIN AND G. IYER

note that the proofs of Propositions 6.1 and 6.2 are independent of Theorem 3.1.
Next, since u is divergence free, taking the curl twice gives the negative laplacian.
Thus, provided boundary conditions on u are specified, we can obtain u from ω by

ut = (−�)−1∇ × ωt .(6.6)

Therefore, in Theorem 3.1 we can replace (3.10) by (6.3) and (6.6), where ω̃ is
the vorticity on the parabolic boundary and we impose 0-Dirichlet boundary con-
ditions on (6.6).

6.2. Ertel’s theorem. As shown above, we use a superscript of 0 to denote
the appropriate quantities related to the Euler equations. For this section we also
assume d = 3. Ertel’s theorem says that if θ0 is constant along trajectories of X0,
then so is (ω0 · ∇)θ0. Hence, φ0 = (ω0 · ∇)θ0 satisfies the PDE

∂tφ
0 + (u · ∇)φ0 = 0.

For the Navier–Stokes equations, we first consider the situation without bound-
aries. Let u solve (1.1) and (1.2), X be defined by (2.3), A be the spatial inverse of
X and define ξ by

ξt (x) = (∇At(x))−1ω0 ◦ At(x),

where ω0 = ∇ × u0 is the initial vorticity. From (6.2) we know that ω = ∇ × u =
Eξ . Now we can generalize Ertel’s theorem as follows:

PROPOSITION 6.3. Let θ be a C1(Rd) valued process. If θ is constant along
trajectories of the (stochastic) flow X, then so is (ξ · ∇)θ . Hence, φ = E(ξ · ∇)θ

satisfies the PDE

∂tφt + (ut · ∇)φt − ν�φt = 0,(6.7)

with initial data (ω0 · ∇)θ0.

PROOF. If θ is constant along trajectories of X, we must have θt = θ0 ◦ At

almost surely. Thus,

(ξt · ∇)θt = (∇θt )ξt = ∇θ0|At (∇At)(∇At)
−1ω0 ◦ At = (ξ0 · ∇θ0) ◦ At,

which is certainly constant along trajectories of X. The PDE for φ now follows
immediately. �

Now, in the presence of boundaries, this needs further modification. Let A be
a solution to (3.2) and σ be the backward exit time of A from D. The notion of
“constant along trajectories” now corresponds to processes θ defined by

θt (x) = θ̃σt (x)

(
Aσt (x),t

)
,(6.8)
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for some function θ̃ defined on the parabolic boundary of D.
Irrespective of the regularity of D and θ̃ , the process θ will not be continuous

in space, let alone differentiable. The problem arises because while A is regular
enough in the spatial variable, the existence time σt is not. Thus, we are forced
to avoid derivatives on σ in the statement of the theorem, leading to a somewhat
unsatisfactory generalization.

PROPOSITION 6.4. Let θ̃ be a C1 function defined on the parabolic boundary
of D ×[0, T ] and let θ̃ ′ be any C1 extension of θ̃ , defined in a neighborhood of the
parabolic boundary of D × [0, T ]. If θ is defined by (6.8), then

φt(x) = E[(ξt · ∇)(θ̃ ′
s ◦ As,t )(x)]s=σt (x)

satisfies the PDE (6.7) with initial data (ω0 · ∇)θ̃0 and boundary conditions
φt(x) = (ωt · ∇)θ̃ ′(x) for x ∈ ∂D.

REMARK. A satisfactory generalization in the scenario with boundaries
would be to make sense of E(ξt · ∇)θt (despite the spatial discontinuity of θ )
and reformulate Proposition 6.4 accordingly.

Note that when D = R
d , then σt ≡ 0 and hence, φt = E(ξt · ∇)θt . In this case

Proposition 6.4 reduces to Proposition 6.3. The proof of Proposition 6.4 is identical
to that of Proposition 6.3 and the same argument obtains

[(ξt · ∇)(θ̃ ′
s ◦ As,t )(x)]s=σt (x) = [(ξs · ∇)θ̃ ′

s(y)] s=σt (x),
y=Aσt (x),t (x)

,

which immediately implies (6.7).

6.3. Circulation. The circulation is the line integral of the velocity field along
a closed curve. For the Euler equations, the circulation along a closed curve that is
transported by the flow is constant in time. Explicitly, let u0, X0, A0, u0 be as in
the previous subsection. Let � be a rectifiable closed curve, then for any t ≥ 0,∮

X0
t (�)

u0
t · dl =

∮
�

u0
0 · dl.(6.9)

For the Navier–Stokes equations, without boundaries, a generalization of (6.9) was
considered in [11]. Let u solve (1.1) and (1.2), X be defined by (2.3) and (2.4) and
A be the spatial inverse of X. Then∮

�
ut · dl = E

∮
At (�)

u0 · dl.(6.10)

A proof of this (in the absence of boundaries) follows immediately from Theo-
rem 2.1. Indeed,

E

∮
At (�)

u0 · dl = E

∮
�
(∇∗At)u0 ◦ At · dl

(6.11)
= E

∮
�

P[(∇∗At)u0 ◦ At ] · dl =
∮
�

ut · dl,
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where the first equality follows by definition of line integrals, the second because
the line integral of gradients along closed curves is 0 and the last by Fubini and
(2.5).

Equation (6.10) does not make sense in the presence of boundaries, as the curves
one integrates over will no longer be rectifiable!
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