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Abstract. Consider a diffusion-free passive scalar θ being mixed by an in-
compressible flow u on the torus Td. Our aim is to study how well this scalar

can be mixed under an enstrophy constraint on the advecting velocity field.

Our main result shows that the mix-norm (‖θ(t)‖H−1 ) is bounded below by
an exponential function of time. The exponential decay rate we obtain is not

universal and depends on the size of the support of the initial data. We also

perform numerical simulations and confirm that the numerically observed de-
cay rate scales similarly to the rigorous lower bound, at least for a significant

initial period of time. The main idea behind our proof is to use recent work of

Crippa and DeLellis (’08) making progress towards the resolution of Bressan’s
rearrangement cost conjecture.

1. Introduction

The mixing of tracer particles by fluid flows is ubiquitous in nature, and have
applications ranging from weather forecasting to food processing. An important
question that has attracted attention recently is to study “how well” tracers can be
mixed under a constraint on the advecting velocity field, and what is the optimal
choice of the “best mixing” velocity field (see [24] for a recent review).

Our aim in this paper is to study how well passive tracers can be mixed under
an enstrophy constraint on the advecting fluid. By passive, we mean that the
tracers provide no feedback to the advecting velocity field. Further, we assume
that diffusion of the tracer particles is weak and can be neglected on the relevant
time scales. Mathematically, the density of such tracers (known as passive scalars)
is modeled by the transport equation

(1.1) ∂tθ(x, t) + u · ∇θ = 0, θ(x, 0) = θ0(x).

To model stirring, the advecting velocity field u is assumed to be incompressible.
For simplicity we study (1.1) with periodic boundary conditions (with period 1),
mean zero initial data, and assume that all functions in question are smooth.

The first step is to quantify “how well” a passive scalar is mixed in our context.
For diffusive passive scalars, the decay of the variance is a commonly used measure
of mixing (see for instance [10,14,22,25] and references there in). But for diffusion
free scalars the variance is a conserved and does not change with time. Thus,
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following [18] we quantify mixing using the H−1-Sobolev norm: the smaller ‖θ‖H−1 ,
the better mixed the scalar θ is.

The reason for using a negative Sobolev norm in this context has its roots in [14,
18,20,22]. The motivation is that if the flow generated by the velocity field is mixing
in the ergodic theory sense, then any advected quantity (in particular θ) converges
to 0 weakly in L2 as t → ∞. This can be shown to imply that ‖θ(·, t)‖Hs → 0 for
all s < 0, and conversely, if ‖θ(·, t)‖Hs → 0 for some s < 0 then θ(x, t) converges
weakly to zero. Thus any negative Sobolev norm of θ can in principle be used to
quantify its mixing properties. In two dimensions the choice of using the H−1 norm
in particular was suggested by Lin et. al. [18] as it scales like the area dominant
unmixed regions; a natural length scale associated with the system. We will work
with the same Sobolev norm in any dimension d; the ratio of H−1 norm to L2 norm
has a dimension of length, and since L2 norm of θ(x, t) is conserved, the H−1 norm
provides a natural length scale associated with the mixing process.

The questions we study in this paper are motivated by recent work of Lin et.
al. [18]. In [18], the authors address two questions on the two dimensional torus:

• The time decay of ‖θ‖H−1 , given the fixed energy constraint ‖u(t)‖L2 = U .
• The time decay of ‖θ(t)‖H−1 given a fixed enstrophy constraint of the form
‖∇u(t)‖L2 = F .

In the first case the authors prove a lower bound for ‖θ(·, t)‖H−1(T2) that is

linear with negative slope. This suggests that it may be possible to “mix perfectly
in finite time”; namely choose u in a manner that drives ‖θ(·, t)‖H−1 to zero in finite
time. This was followed by an explicit example in [19] exhibiting finite time perfect
mixing, under a finite energy constraint. This example uses an elegant “slice and
dice” construction, which requires the advecting velocity field to develop finer and
finer scales. Thus, while their example maintains a fixed energy constraint, the
enstrophy (‖∇u‖L2) explodes. Together with the numerical analysis in [18,19] this
suggests that finite time perfect mixing by an enstrophy constrained incompressible
flow might be impossible. Our main theorem settles this affirmatively.

Theorem 1.1. Let u be a smooth (time dependent) incompressible periodic vector
field on the d-dimensional torus, and let θ solve (1.1) with periodic boundary con-
ditions and L∞ initial data θ0. For any p > 1 and λ ∈ (0, 1) there exists a length
scale r0 = r0(θ0, λ), an explicit constant ε0 = ε0(λ, d), and a constant c = c(d, p)
such that

(1.2) ‖θ(t)‖H−1 > ε0r
d/2+1
0 ‖θ0‖L∞ exp

( −c
m(Aλ)

1/p

∫ t

0

‖∇u(s)‖Lp ds
)
.

Here Aλ is the super level set {θ0 > λ‖θ0‖L∞}.
In particular, if the instantaneous enstrophy constraint ‖∇u‖L2 6 F is enforced,

then ‖θ(t)‖H−1 decays at most exponentially with time.

Before commenting on the r0 and m(Aλ) dependence, we briefly mention some

applications. There are many physical situations where
∫ t
0
‖∇u(s)‖L2 ds is well

controlled. Some examples are when u satisfies the incompressible Navier-Stokes
equations with L2 forcing [9, 13], the 2D incompressible Euler equations [3] or a
variety of active scalar equations including the critical surface quasi-geostrophic
equation [7, 8, 11, 17]. In each of these situations the passive scalars can not be
mixed perfectly in finite time. More precisely, a lower bound for the H−1-norm
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of the scalar density can be read off using (1.2) and the appropriate control on
‖∇u‖L2 .

We also mention that the proof of this theorem is not based on energy methods.
Instead, the main idea is to relate the notion of “mixed to scale δ” to the H−1

norm, and use recent progress by Crippa and DeLellis [12] towards Bressan’s re-
arrangement cost conjecture [5]. Some of these ideas were already suggested in [19].

We defer the proof of Theorem 1.1 to Section 2, and pause to analyze the de-
pendence of the bound in (1.2) on r0 and m(Aλ).

The length scale r0 is morally scale at which the super level set Aλ is “unmixed”;
a notion that is made precise later. Our proof, however, imposes a slightly stronger
condition: namely, our proof will show that r0 can be any length scale such that
“most” of the super level set Aλ occupies “most” of the union of disjoint balls
of radius at least r0. While we are presently unable to estimate r0 in terms of a
tangible norm of θ0, we remark that we at least expect a connection between r0
and the ratio of the measure of Aλ to the perimeter of Aλ (see [23] for a related
notion).

On the other hand, we point out that the pre-factor in (1.2) can be improved at
the expense of the decay rate. To see this, suppose for some κ ∈ [0, 1/2) there exists
N disjoint balls of radius at least r1 such that the fraction of each of these balls
occupied by Aλ is at least 1−κ. Then our proof will show that (1.2) in Theorem 1.1
can be replaced by

‖θ(t)‖H−1 > ε0r
d/2+1
1 ‖θ0‖L∞ exp

( −c
(Nrd1)

1/p

∫ t

0

‖∇u(s)‖Lp ds
)
.(1.2′)

In this case, if θ0 ∈ C1, the mean value theorem will guarantee that we can choose

N = 1 and r1 >
‖θ0‖L∞

C‖∇θ0‖L∞
for a purely dimensional constant C.

Next we turn to the exponential decay rate. The dependence of this on m(Aλ)
is natural. To see this, suppose momentarily that θ0 only takes on the values ±1
or 0 representing two insoluble, immiscible fluids which are injected into a large
fluid container. Physical intuition suggests that the less the amount of fluid that is
injected, the faster one can mix it. Indeed, this is reflected in (1.2) as in this case
m(Aλ) = 1

2m(supp(θ0)); so the smaller the support of the initial data, the worse
the lower bound (1.2) is. We mention that a bound similar to (1.2) was proved
in [21] using optimal transport and ideas from [4]. In [21], however, the author
only considers bounded variation “binary phase” initial data, where the two phases
occupy the entire region; consequently the result does not capture the dependence
of the decay rate on the initial data.

We do not know if the estimate of the exponential decay provided by bound (1.2)
is optimal, however, numerical simulations suggest that it may be not far off. A
good candidate for the velocity field that might achieve the optimal lower bound
was presented in [18] using a steepest descent method (equation (4.1), below). Due
to the nonlinear nature of this formula, it is hard to rigorously prove upper bounds;
but all our numerical simulations in Section 4 seem to indicate an exponential
lower bound bound with a rate constant that is in a good qualitative agreement
with (1.2).
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However, our numerical simulations show that even if we start with initial data
that is localized to a small region, it gradually spreads during mixing. The in-
compressibility constraint will of course guarantee that the measure of the support
of the solution is conserved in time. But since the enstrophy constraint forbids
abrupt changes in the velocity field, the “region occupied” by the initial data tends
to spread and is likely to eventually “fill” the entire torus (see Figure 1).

A very interesting question is whether there will eventually be a transition in
dynamics where the factor in the exponential decay of the mix norm depends only
on the volume of the entire domain, and not the size of the region occupied by
the initial data. Our attempts to get insight into this question numerically were
inconclusive, as we ran out of resolution before observing such a regime change.
What we address here, however, is an interesting link between universality of the
exponential lower bound and mixing in domains with boundaries.

It has been observed formally [15,16] that presence of walls with no slip conditions
inhibits mixing; hyperbolic flows which usually lead to exponential decay of various
mixing measures lead to only algebraic mixing rates in presence of walls. Here,
we provide an elementary and rigorous argument showing that universality of the
exponential lower bound in mixing with an enstrophy constraint would lead to an
algebraic in time lower bound if the initial data is compactly supported away from
the boundary and the advecting velocity field vanishes at the boundary. Agreement
with earlier heuristic arguments is intriguing; but it is not clear to us if one can
expect such result to be true in full generality. It would be very interesting to
know whether the efficient mixing by an incompressible enstrophy constrained flow
spreads the initial data over the entire ambient volume and results in the slowdown
of the exponential decay. We plan to further investigate this issue in the future.

Notational convention, and plan of this paper. We will assume throughout
the paper that d > 2 is the dimension, and Td is the d-dimensional torus, with side
length 1. All periodic functions are assumed to be 1-periodic, and we use m to
denote the Lebesgue measure on Td. We will use ‖f‖Hs to denote the homogeneous
Sobolev norms.

This paper is organized as follows: In Section 2 we describe the notion of δ-
mixed data, and prove Theorem 1.1, modulo a few Lemmas. In Section 3 we prove
the required lemmas. In Section 4 we present numerics suggesting that the bound
stated in Theorem 1.1 is not far from optimal, at least for an initial period of time.
Finally, we conclude this paper with a scaling argument showing that an exponential
lower bound on ‖θ‖H−1 with rate independent of θ0 will imply a stronger algebraic
lower bound for mixing with flows satisfying no-slip boundary condition.

2. Rearrangement Costs and the Proof of the Main Theorem.

We devote this section to the proof of Theorem 1.1. The idea behind the proof
is as follows. First, if ‖θ‖H−1 is small enough, then its super-level sets are mixed to
certain scales (Lemma 2.3 below). Second, any flow that starts with an “unmixed”
set and mixes it to scale δ has to do a minimum amount of work [5, 12]. Putting
these together yields Theorem 1.1.

We begin by describing the notion of “mixed to scale δ”, and relate this to the
H−1 Sobolev norm.
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Definition 2.1. Let κ ∈ (0, 12 ) be fixed. For δ > 0, we say a set A ⊆ Td is
δ-semi-mixed if

m
(
A ∩B(x, δ)

)
m(B(x, δ))

6 1− κ for every x ∈ Td.

If additionally Ac is also δ-semi-mixed, then we say A is δ-mixed (or mixed to scale
δ).

Remark 2.2. The parameters δ and κ measures the scale and “accuracy” respec-
tively. The key parameter here is the scale δ, and the accuracy parameter κ ∈
(0, 1/2) only plays an auxiliary role. Given a specific initial distribution to mix, κ
can be chosen to optimize the bound.

Note that the notion of a set being mixed here is the same as that of Bressan [5].
A set being semi-mixed is of course a weaker notion.

One relation between δ-semi-mixed and negative Sobolev norms is as follows.

Lemma 2.3. Let λ ∈ (0, 1] and θ ∈ L∞(Td). Then for any integer n > 0, κ ∈
(0, λ

1+λ ) there exists an explicit constant c0 = c0(d, κ, λ, n) such that

‖θ‖H−n 6
‖θ‖L∞δn+d/2

c0
=⇒ Aλ is δ-semi-mixed.

Here Aλ is the super level set defined by Aλ
def
= {θ > λ‖θ‖L∞}.

Our interest in this Lemma is mainly when n = 1. Note that while Lemma 2.3
guarantees the super level sets Aλ are δ-semi-mixed, they need not be δ-mixed.
Indeed if Aλ is very small, its complement won’t be δ-semi-mixed. Also, we remark
that the converse of Lemma 2.3 need not be true. For example the function

f(x) = sin(2πx) + 10 sin(2πnx)

has ‖f‖H−1(T1) = O(1), and the super level set {f > 5} is certainly semi-mixed to

scale 1/n (see also [18]).
The proof of Lemma 2.3 follows from a duality and scaling argument. For clarity

of presentation we postpone the proof to Section 3. Returning to Theorem 1.1, the
main ingredient in its proof is a lower bound on the “amount of work” required to
mix a set to fine scales. This notion goes back to a conjecture of Bressan for which
a $500 prize was announced [6].

Conjecture 2.4 (Bressan ’03 [5]). Let H to be the left half of the torus, and Ψ be
the flow generated by an incompressible vector field u. If after time T the image of
H under the flow Ψ is δ-mixed, then there exists a constant C such that

(2.1)

∫ T

0

‖∇u(·, t)‖L1 dt >
|ln δ|
C

.

We refer the reader to [5] for the motivation of the lower bound (2.1) and further
discussion. To the best of our knowledge, this conjecture is still open. However,
Crippa and De Lellis [12] made significant progress towards the resolution of this
conjecture.

Theorem 2.5 (Crippa, De Lellis ’08 [12]). Using the same notation as in Conjec-
ture 2.4, for any p > 1 there exists a constant Cp such that

(2.2)

∫ T

0

‖∇u(·, t)‖Lp dt >
|ln δ|
Cp

.
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For our purposes we will need two extensions of Theorem 2.5. First, we will need
to start with sets other than the half torus. Second, we will need lower bounds for
the work done to semi -mix sets to small scales. Note that in order for a flow to
δ-mix a set A, it has to both δ-semi-mix A and δ-semi-mix Ac. Generically each
of these steps should cost comparable amounts, and hence a semi-mixed version
of Theorem 2.5 should follow using techniques in [12]. We state this as our next
lemma.

Lemma 2.6. Let Ψ be the flow map of an incompressible vector field u. Let A ⊂
Td be any measurable set and let p > 1. There exist constants r0 = r0(A) and
a = a(d, κ, p) > 0, such that if for some δ < r0/2 and T > 0 the set ΨT (A) is
δ-semi-mixed, then

(2.3)

∫ T

0

‖∇u(·, t)‖Lp dt >
m(A)1/p

a

∣∣∣ln 2δ

r0

∣∣∣.
Morally the constant r0 above should be a length scale at which set A is not

semi-mixed. Our proof, however, uses a condition on r0 which is slightly stronger
than only requiring that A is not semi-mixed to scale r0. Namely, we will require
“most” of A to occupy “most” of the union of disjoint balls of radius at least r0.
Deferring the proof of Lemma 2.6 to Section 3, we prove Theorem 1.1.

Proof of Theorem 1.1. Replacing θ with θ/‖θ‖L∞ , we may without loss of general-

ity assume ‖θ0‖L∞ = 1. Fix 0 < λ 6 1, and κ ∈ (0, λ
1+λ ). Let a be the constant

from Lemma 2.6, and c0 the constant from Lemma 2.3 with n = 1. Choose

δ =
(
c0‖θ(t)‖H−1

) 2
d+2

.

Then certainly ‖θ(t)‖H−1 6 δd/2+1/c0 and by Lemma 2.3 the super level set {θ(t) >
λ} is δ-semi-mixed.

Now, since θ satisfies the transport equation (1.1), we know {θ(t) > λ} = Ψt(Aλ),
where Ψ is the flow of the vector field u. Thus, Lemma 2.6 now implies

δ >
r0
2

exp
( −a
m(Aλ)1/p

∫ t

0

‖∇u‖Lp

)
.

Consequently

‖θ(t)‖H−1 =
δd/2+1

c0
>

r
d/2+1
0

c02d/2+1
exp
( −da
m(Aλ)1/p

∫ t

0

‖∇u‖Lp

)
,

finishing the proof. �

3. Proofs of Lemmas.

We devote this section to the proofs of Lemmas 2.3 and 2.6.

Proof of Lemma 2.3. Suppose for the sake of contradiction that Aλ is not δ-semi-
mixed. Then by definition, there exists x ∈ Td such that

(3.1) m(Aλ ∩B(x, δ)) > (1− κ)m(B(x, δ)) = (1− κ)π(d)δd.

Here π(d) is the volume of d-dimensional unit ball.
By duality

(3.2) ‖θ‖H−n = sup
f∈Hn

1

‖f‖Hn

∣∣∣∫
Td

θ(x)f(x) dx
∣∣∣.
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We choose f ∈ Hn to be a function which is identically equal to 1 in B(x, δ), and
which vanishes outside B(x, (1 + ε)δ) for some small ε > 0. A direct calculation
shows that we can arrange

‖f‖Hn 6 c1(d) · ε−n+ 1
2 · δ−n+ d

2 ,

for some (explicit) constant c1 depending only on the dimension.
On the other hand using (3.1) gives

(3.3)

∫
Td

θ(x)f(x)dx > π(d)‖θ‖L∞δ
d
(
(1− κ)λ− κ− c2(d)ε

)
,

for some (explicit) dimensional constant c2(d). Choosing ε = λ−(1+λ)κ
2c2(d)

and us-

ing (3.2) we obtain

‖θ‖H−n >
‖θ‖L∞δ−n+

d
2

c0(d, κ, λ, n)

as desired. �

Remark. Observe c0 = c′0(d, n)(λ− (1 + λ)κ)n−
1
2 .

Now we turn to Lemma 2.6. For this, we need a result from [12] which controls
the Lipshitz constant of the Lagrangian map except on a set of small measure.

Proposition 3.1 (Crippa DeLellis ’08 [12]). Let Ψ(t, x) be the flow map of the
(incompressible) vector field u. For every p > 1, η > 0, there exists a set E ⊂ Td
and a constant c = c(d, p) such that m(Ec) 6 η and for any t > 0 we have

(3.4) Lip(Ψ−1(t, ·)|Ec) 6 exp
( c

η
1
p

∫ t

0

‖∇u(s)‖Lp ds
)
.

Here

Lip(Ψ−1(t, ·)|Ec)
def
= sup
x,y∈Ec

x6=y

|Ψ−1(t, x)−Ψ−1(t, y)|
|x− y|

is the Lipshitz constant of Ψ−1 on Ec.

The proof of Proposition 3.1 is built upon the simple observation [2] that for a
passive scalar θ(x, t) and smooth advecting velocity u one has the inequality

(3.5)

∫
log+

∣∣∇θ(t,Ψ(t, x)
)∣∣ dx 6 ∫ t

0

∫ ∣∣∇u(t,Ψ(t, x)
)∣∣ dx.

This can be proved by an elementary calculation. In fact, even the point wise bound

D log |∇θ| 6 |∇u|
is true, where D = ∂t + u · ∇ is the material derivative. In the form (3.5), this
inequality is not very useful. But it turns out that the more sophisticated maximal
form of this inequality [2,12] can be much more useful and is essentially what leads
to Proposition 3.1. We refer the reader to [12] for the details of the proof.

We use Proposition 3.1 to prove Lemma 2.6 below.

Proof of Lemma 2.6. The main idea behind the proof is as follows: Suppose first r0
is some large scale at which the set A is “not semi-mixed”. Let T > 0 be fixed and
suppose ΨT (A) is δ-semi-mixed for some δ < r0/2. Since ΨT (A) is δ-semi-mixed,
there should be many points x̃ ∈ ΨT (A) and ỹ ∈ ΨT (A)c such that |x̃ − ỹ| < δ.
Since A is “not semi-mixed” to scale r0, there should be many points x̃ and ỹ so
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that we additionally have |Ψ−1T (x̃) − Ψ−1T (ỹ)| > r0/2. This will force the Lipshitz

constant of Ψ−1T to be at least r0/(2δ) on a set of large measure. Combined with

Proposition 3.1 this will give the desired lower bound on
∫ t
0
‖∇u‖Lp .

We now carry out the details of the above outline. The first step in the proof
is to choose the length scale r0. Let ε = ε(κ, d) be a small constant to be chosen
later. We claim that there exists a natural number l and finitely many disjoint balls
B(x1, r1), . . . , B(xl, rl) such that

(3.6) m
( l⋃
i=1

B(xi, ri)
)
>
m(A)

2 · 3d
and

m(A ∩B(xj , rj))

m(B(xj , rj))
> 1− ε

for every j ∈ {1, . . . l}.
To see this, note that the metric density of A is 1 almost surely in A. Thus,

removing a set of measure 0 from A if necessary, we know that for every x ∈ A
there exists an r ∈ (0, 1] such that

m(A ∩B(x, r))

m(B(x, r))
> 1− ε.

Now choose K ⊂ A compact with m(K) > m(A)/2. Since the above collection
of balls is certainly a cover of K, we pass to a finite sub-cover. Applying Vitali’s
lemma to this sub-cover we obtain a disjoint sub-family {B(xi, ri) | i = 1, . . . , l}
with m(∪B(xi, ri)) > m(K)/3d. This immediately implies (3.6). For convenience
let Bi = B(xi, ri), and choose r0 = min{r1, . . . , rl}.

Now let η > 0 be another small parameter that will be chosen later. By Propo-
sition 3.1 we know that there exists a set E with m(E) 6 η such that the inequal-
ity (3.4) holds. Define the set

(3.7) F =
{
x ∈ Td

∣∣ m(B(x, δ) ∩ E)

m(B(x, δ))
>
κ

2

}
Clearly F ⊂ {Mχ

E
> κ/2}, where Mχ

E
is the maximal function of χ

E
. Conse-

quently,

m(F ) 6 m
(
{Mχ

E
>
κ

2
}
)
6

2c1
κ
m(E)

for some explicit constant c1 = c1(d). (It is well known that c1 = 3d will suffice.)
Since ΨT is measure preserving we know m(Ψ−1T (E ∪ F )) 6 (1 + 2c1/κ)η. Thus

choosing

η =
κ

κ+ 2c1

( 1

4d
− ε
) l∑
i=1

m
(
Bi
)

will guarantee

m(Ψ−1T (E ∪ F )) 6
( 1

4d
− ε
) l∑
i=1

m
(
Bi
)
.

This implies that for some i0 6 l we must have

(3.8) m((Bi0 ∩A)−Ψ−1T (E ∪ F )) >
(

1− 1

4d

)
m
(
Bi0
)
.

By reordering, we may without loss of generality assume that i0 = 1. Consequently,
for

C1 =
{
x ∈ (B1 ∩A)−Ψ−1T (E ∪ F )

∣∣∣ d(x,Bc1) >
r1
2

}
.
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equation (3.8) implies

m(C1) >
( 1

2d
− 1

4d

)
m(B1).

Now, from the collection of open balls {B(x̃, δ) | x̃ ∈ ΨT (C1)} the Vitali covering
lemma allows us to extract a finite disjoint collection B(x̃1, δ), . . . , B(x̃n, δ) such
that

m
( n⋃

1

B(x̃i, δ)
)
>
m(C1)

5d
.

Our goal is to find ỹ such that ỹ ∈ B(x̃i, δ)−E for some i, and |Ψ−1T ỹ−Ψ−1T x| > r1/2.

For convenience set B̃i = B(x̃i, δ). Since ΨT (A) is δ-semi-mixed and x̃i 6∈ F we
have

(3.9) m(ΨT (A) ∩ B̃i) 6 (1− κ)m(B̃i) and m(E ∩ B̃i) 6
κ

2
m(B̃i).

Also, since ΨT is measure preserving and by the definition of B1 we see

(3.10) m
( n⋃
i=1

B̃i ∩ΨT

(
B1 −A

))
6 m(B1 −A) < εm(B1)

Using the fact that {B̃i} are all disjoint, summing (3.9) and using (3.10) gives

m(

n⋃
i=1

B̃i ∩ E ∩ΨT (B1)) <
(
1− κ

2

) n∑
i=1

m(B̃i) + εm(B1)

6
(

1− κ

2
+ ε5d

( 1

2d
− 1

4d

)−1) n∑
i=1

m(B̃i).

Thus choosing

ε <
κ

2 · 5d
( 1

2d
− 1

4d

)
will guarantee

m
( n⋃
i=1

B̃i ∩ E ∩ΨT (B1)
)
< m

( n⋃
i=1

B̃i
)

This in turn will guarantee that for some i we can find ỹ ∈ B̃i − E −ΨT (B1).
Now observe that

ỹ, x̃i 6∈ E, |ỹ − x̃i| < δ, and |Ψ−1T (ỹ)−Ψ−1T (x̃i)| >
r1
2
.

The last inequality above follows because Ψ−1T (x̃i) ∈ C1 and Ψ−1T (ỹ) 6∈ B1. This
forces

Lip(Ψ−1T |Ec) >
|Ψ−1T (ỹ)−Ψ−1T (x̃i)|

|ỹ − x̃i|
>
r1
2δ
>
r0
2δ
.

Now using (3.4), and letting a = a(d, κ, p) denote a constant that changes from line
to line we obtain

(3.11)

∫ T

0

‖∇u(t)‖Lp dt >
η

1
p

a

∣∣log
( r0

2δ

)∣∣.
Observe finally that

η = c2m
( l⋃
i=1

Bi
)
>
c2m(A)

2 · 3d
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for some explicit constant c2 = c2(d, κ). Consequently (3.11) reduces to∫ T

0

‖∇u(t)‖Lp dt >
m(A)

1
p

a

∣∣log
( r0

2δ

)∣∣,
as desired. �

4. Numerical results

In this section we present numerical results illustrating how the exponential decay
rate varies with the initial data. For numerical purposes we work on the 1-periodic
torus. Given a parameter a, we define the initial data θ0 = θ′0/‖θ′0‖L2 where

θ′0(x, y) =


sin
(2πx

a

)
sin
(2π(y + a

8 )

a

)
for 0 < x <

a

2
and

−a
8
< y <

a

2
− a

8

sin
(2πx

a

)
sin
(2π(y − a

8 )

a

)
for

a

2
< x < a and

a

8
< y <

a

2
+
a

8
0 otherwise.

A figure of this is shown in 1(a).
We do not know which velocity field achieves the lower bound (1.2). However the

steepest descent method introduced in [18] provides us with a reasonable candidate.
Explicitly, their formula gives

(4.1) u =
−∆−1P (θ∇−1θ)
‖∇−1P (θ∇−1θ)‖L2

,

where P is the Leray-Hodge projection onto divergence free vector fields. This can
be derived by multiplying both sides of (1.1) by ∆−1θ and integrating by parts.

Using a pseudo-spectral method1 retaining 768 Fourier modes in each variable we
perform a numerical simulation of (1.1) with the initial data obtained by varying
the parameter a over the set {6/12, 7/12, . . . , 11/12}, and the velocity obtained
dynamically using (4.1). Plots of our solutions at various times (for a = 11/12) are
shown in Figure 1.

Figure 2(a) shows graphs of ‖θ(t)‖H−1 vs t as the parameter a varies over the set
{6/12, . . . , 11/12}. Figure 2(b) shows graphs of ln‖θ(t)‖H−1 vs t for the same values
of a. Following a short initial “settling down” period, the log plots in Figure 2(b)
are essentially linear indicating a exponential in time decay of ‖θ0‖H−1 .

We fit each of the log plots in Figure 2(b) to a straight line, and plot the negative
reciprocal of the slope vs a in Figure 2(c). Since m(supp(θ0)) = O(a2), Theorem 1.1
predicts this graph to be linear as a function of a. This is in good agreement with
the observed numerics.

5. A Scaling Argument and Universal Decay Rates.

Physical intuition suggests that the exponential decay rate in (1.2) should have
some dependence on the size of support of θ0. As we discussed in the introduc-
tion, the mixing process can spread around the compactly supported initial data.
Whether this has to happen in the mixing process, and whether this leads to slow-
down in the mixing rate are very interesting open questions. In this section we
show that exponential in time lower bound on the decay of the mix norm with

1The code and more figures can be downloaded from [1].



LOWER BOUNDS ON THE MIX NORM OF PASSIVE SCALARS 11

(a) t = 0 (b) t = 1 (c) t = 2.05

(d) t = 3.1 (e) t = 4.15 (f) t = 5.19

Figure 1. Solution plots at various times for a = 11/12.

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) ‖θ(t)‖H−1 vs t

0 1 2 3 4 5 6
−2.5

−2

−1.5

−1

−0.5

0

(b) ln‖θ(t)‖H−1 vs t

0.5 0.6 0.7 0.8 0.9 1
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(c) Exponential decay rate.

Figure 2. The mix norm of the scalar density (Figures (a) & (b)),
and the negative reciprocal of the exponential decay rate vs a as a
varies over {6/12, . . . , 11/12} (Figure (c)).

the rate in the exponential independent of the initial data would have interesting
consequences for mixing in domains with no slip boundaries.

Proposition 5.1. Let I = (0, `)d be a cube in Rd. Suppose that there exist k ∈ R,
q ∈ [1,∞] and c0 > 0 such that

(5.1) ‖θ(t)‖H−1 > B(θ0) exp
(−c0
`d/p

∫ t

0

‖∇u‖Lp

)
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for some p ∈ [1, d], all incompressible u which vanish on ∂I, and all initial data
θ0 ∈ C∞c (I). Assume that there exists γ ∈ R such that the pre-factor B(θ0) satisfies

B(Aθ0) = AB(θ0) and B(θ0,a) = a−γB(θ0),

where θ0,a(x) = θ0(x/a) for x ∈ (0, a)d and θ0,a(x) = 0 otherwise.
Then, for any mean zero θ0 ∈ C∞c (I) and any smooth velocity field u such that

lim sup
t→∞

1

t

∫ t

0

‖∇u‖Lp <∞, ∇ · u = 0, and u = 0 on ∂I,

the decay of ‖θ(t)‖H−1 as t→∞ is bounded below by an algebraic function of time.

Proof. We prove this using an elementary scaling argument. Without loss of gen-
erality, assume ` = 1. Let θ0 ∈ C∞c have zero mean and let f(t) = ‖θ(t)‖H−1 . Our
aim is to show that for t large, f decays algebraically with respect to t. Let a > 0,
and define

Ia = (0, a)d, η(x, t) = χ
Ia
θ
(
x/a, t/a

)
, v(x, t) = χ

Ia
u
(
x/a, t/a

)
.

Then (η, v) is a solution of (1.1) on the unscaled cube I. Since θ0 is compactly
supported in I and u = 0 on ∂I, we see θ(t) remains compactly supported in Ia for
all t > 0. By our assumption,

B(η0) = a−γB(θ0) and ‖∇v(t)‖Lp = a
d
p−1‖∇u

(
t/a
)
‖Lp .

Thus the assumed lower bound (5.1) gives

ad/2+1f
(
t/a
)

= ‖η(t)‖H−1 > B(η0) exp
(
−c0

∫ t

0

‖∇v‖Lp

)
= a−γB(θ0) exp

(
−c0a

d
p−1

∫ t

0

‖∇u
(
s/a
)
‖Lp ds

)
.

The first equality above follows by duality and scaling.
Hence, taking t′ = t/a gives

f(t′) > a−NB(θ0) exp

(
−c0ad/p

∫ t′

0

‖∇u(s)‖Lp ds

)
,

where N = d/2 + 1 + γ. This bound has to be true for every a > 0. Maximizing the
right hand side in a (and changing t′ to t), we arrive at an algebraic lower bound

f(t) > C

(
N∫ t

0
‖∇u‖Lp ds

)−pN/d
. �
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