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THE REGULARIZING EFFECTS OF RESETTING IN A PARTICLE
SYSTEM FOR THE BURGERS EQUATION

BY GAUTAM IYER1 AND ALEXEI NOVIKOV2

Carnegie Mellon University and Pennsylvania State University

We study the dissipation mechanism of a stochastic particle system for
the Burgers equation. The velocity field of the viscous Burgers and Navier–
Stokes equations can be expressed as an expected value of a stochastic
process based on noisy particle trajectories [Constantin and Iyer Comm. Pure
Appl. Math. 3 (2008) 330–345]. In this paper we study a particle system for
the viscous Burgers equations using a Monte–Carlo version of the above;
we consider N copies of the above stochastic flow, each driven by indepen-
dent Wiener processes, and replace the expected value with 1

N
times the sum

over these copies. A similar construction for the Navier–Stokes equations was
studied by Mattingly and the first author of this paper [Iyer and Mattingly
Nonlinearity 21 (2008) 2537–2553].

Surprisingly, for any finite N , the particle system for the Burgers equa-
tions shocks almost surely in finite time. In contrast to the full expected value,
the empirical mean 1

N

∑N
1 does not regularize the system enough to ensure

a time global solution. To avoid these shocks, we consider a resetting proce-
dure, which at first sight should have no regularizing effect at all. However,
we prove that this procedure prevents the formation of shocks for any N ≥ 2,
and consequently as N → ∞ we get convergence to the solution of the vis-
cous Burgers equation on long time intervals.

1. Introduction. The viscous Burgers equation,

∂tu + u∂xu − ν ∂2
xu = 0,(1.1)

has been studied extensively from several different points of view. Here ν > 0
represents the viscosity, making the equation dissipative in nature. The inviscid
Burgers equation [equation (1.1) with ν = 0] is studied as the basic example of a
scalar conservation law (see, e.g., [4, 5]). The Burgers equation is also linked to the
KAM and Aubry–Mather theories [6, 10]. It is the simplest PDE that models the
Euler and the Navier–Stokes nonlinearity. As such, it has been extensively studied
as the first step in understanding the two key unresolved issues in fluid mechanics:
turbulence and regularity of the Navier–Stokes equations in three dimensions. In
the first category the objective is to characterize the statistical properties of turbu-
lence [21]. In the second category the objective is to understand the regularizing
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mechanism of dissipation [1, 12]. This paper falls into the latter category: we study
the regularizing mechanism of a particle system for the Burgers equations, analo-
gous to the particle system for the Navier–Stokes equations developed in [3, 9].

In [3], a class of second-order nonlinear transport equations (the Navier–Stokes
and viscous Burgers in particular) were formulated as the average of a stochastic
process along noisy particle trajectories. The formulation for the Navier–Stokes
equations developed in [3] involves recovering the velocity u via the average of a
nonlocal functional of the initial data. For the viscous Burgers’ equation, however,
the formulation is simpler. Explicitly, consider the stochastic flow

dXt = ut(Xt) + √
2ν dWt(1.2)

with initial data X0(a) = a for all a ∈ R. Here W denotes a standard 1D Wiener
process. If we require that the velocity u satisfies

ut = E[u0 ◦ (X−1
t )],(1.3)

where E denotes the expected value with respect to the Wiener measure, then u

satisfies3 the viscous Burgers equation (1.1) and initial data u0. We clarify that in
(1.3) and subsequently, for any given time t ≥ 0, X−1

t denotes the spatial inverse
of the diffeomorphism Xt . Namely, we know [16], Theorems 4.5.1, 4.6.5, that for
regular drifts u, the stochastic flow X has a modification which is a stochastic flow
of diffeomorphisms of R. Replacing X with this modification if necessary, for any
t ≥ 0, we define X−1

t to be the inverse of the diffeomorphism Xt . That is, for any
t ≥ 0, we have Xt(X

−1
t (x)) = x surely for all x ∈ R, and X−1

t (Xt (a)) = a surely
for all a ∈ R.

Observe that when ν = 0, the system (1.2) and (1.3) is exactly the method of
characteristics for the inviscid Burgers equation. Indeed trajectories of the flow X

are now characteristics, and equation (1.3) states that the velocity is transported
along characteristics. Thus, the ν > 0 case could be viewed as a stochastic gener-
alization of the method of characteristics: we transport the initial data along noisy
characteristics, and then average with respect to the Wiener measure.

The usual Monte–Carlo method of solving (1.2) and (1.3) numerically [18, 19]
is to replace the flow Xt with N different copies X

i,N
t , each driven by an indepen-

dent Wiener process Wi
t , and replace the expected value in (1.3) by the empirical

mean, 1
N

∑N
i=1. Explicitly, the system in question becomes

dX
i,N
t = uN

t (X
i,N
t ) dt + √

2ν dWi
t ,(1.4)

X
i,N
0 (a) = a,(1.5)

A
i,N
t = (X

i,N
t )−1,(1.6)

uN
t = 1

N

N∑
i=1

u0 ◦ A
i,N
t ,(1.7)

3This is only valid for spatially periodic or decay at infinity boundary conditions.
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where u0 is the given initial data, Wi a sequence of independent Wiener processes
and ν > 0 the viscosity. As before, for any t ≥ 0, (X

i,N
t )−1 denotes the spatial

inverse of X
i,N
t . Throughout this paper, with the exception of Section 3, we impose

periodic boundary conditions on the above, and assume the initial data is periodic
with period 1.

For the Navier–Stokes equations, the particle system in [9] involves using a
higher-dimensional Wiener process, and replacing (1.7) with the average of vor-
ticity transport and the Biot–Savart law,

ωN
t = E[((∇X

i,N
t )ω0) ◦ A

i,N
t ],(1.8)

uN
t = (−	)−1∇ × ωN

t ,(1.9)

where ω0 = ∇ × u0 is the initial vorticity. In [9], the authors considered the sys-
tem (1.4)–(1.6) and (1.8), (1.9), with spatially periodic boundary conditions, and
proved global existence in two dimensions, local existence in three dimensions,
convergence to the correct limit as N → ∞ and described the asymptotic behavior
for fixed N as t → ∞.

Surprisingly, the techniques of [9] fail for the particle system for the Burgers
equation [the system (1.4)–(1.7)]. Indeed, preliminary numerical simulations indi-
cate that the system (1.4)–(1.7) shocks almost surely, in time independent of N .
We provide a class of initial data for which we can prove (1.4)–(1.7) shocks al-
most surely. We, however, we are unable to analytically prove that the shock time
is independent of N .

One heuristic explanation for the shock is as follows: this particle system (1.4)–
(1.7) is dissipative only for short time ([9], Theorem 5.2). Once the system (1.4)–
(1.7) stops dissipating energy, the growth from the nonlinear term should force the
system to inherit properties of the inviscid Burgers equation, which shocks if the
initial data is not monotonically nondecreasing.

We remark that the particle system for the Navier–Stokes equations [the system
(1.4)–(1.6) and (1.8)–(1.9)] also dissipates energy only for short time ([9], Figure 1
and Theorem 5.2). However, no dissipation is required to prove 2D global exis-
tence for this system ([9], Theorem 3.5). This is because (1.8) and (1.9) are struc-
turally similar to Euler equations, for which 2D global existence is well known
[22] (see also [2, 17]). In contrast, however, the particle system (1.4)–(1.7) is struc-
turally similar to the inviscid Burgers equation which is known to shock in finite
time.

The natural approach one would expect to use “overcoming” the shocks in
(1.4)–(1.7), would be to continue the system past shocks as weak solutions us-
ing an analogue of the Rankine–Hugoniot condition ([5], Section 3.4.1), and then
prove that as N → ∞, these weak solutions converge to the smooth solutions of
the Burgers equation. This approach, however, is impossible to use as the sto-
chastic PDE satisfied by uN involves second-order terms, for which the classical
techniques ([5], Section 3.4.1) will not work.
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While the system (1.4)–(1.7) cannot be continued past shocks, the shocks can
(surprisingly!) be “avoided with large probability” by resetting the Lagrangian
maps. This is the main content of this paper. Namely, suppose we solve (1.4)–(1.7)
for short time δt , and then replace the initial data with uN

δt
, and restart the system

(1.4)–(1.7) with this new initial data. Our main theorem shows that, if we repeat
this procedure often enough, then we can avoid shocks on an arbitrarily large time
interval, with probability arbitrarily close to 1.

Explicitly, consider the system

dX
i,N
kδt ,t

= uN
t (X

i,N
kδt ,t

) dt + √
2ν dWi

t ,(1.10)

X
i,N
kδt ,kδt

(a) = a,(1.11)

A
i,N
kδt ,t

= (X
i,N
kδt ,t

)−1,(1.12)

uN
t = 1

N

N∑
i=1

uN
kδt

◦ A
i,N
kδt ,t

,(1.13)

where k ∈ N, and t is always assumed to be in the interval (kδt , (k + 1)δt ].
If δt is small enough, we show that solutions to this system exist on arbitrarily

large time intervals, with probability arbitrarily close to one. Once existence with
large probability is established, it is easy to show that as N → ∞ these solutions
converge to the smooth solutions of the viscous Burgers equation.

Before proceeding further, we remark that the fact that the shocks can be
avoided by resetting is doubly unexpected! First, we know that the inviscid Burgers
equations need to be regularized in order for them to have smooth solutions. The
resetting procedure above should morally provide no regularization, as explained
in Section 2! Second, the system (1.2) and (1.3) is Markovian; if we reset it at reg-
ular intervals (as above), then the new solution obtained will be no different from
the original solution without resetting.

Fortunately, the system (1.4)–(1.7) is not Markovian, and if we reset often
enough, the generic short time dissipative effect is strong enough to overcome
the nonlinear growth, and with large probability prevents the formation of shocks.
We observed numerically that even large resetting time δt (i.e., comparable to half
the shock time of the inviscid Burgers system) is enough to ensure that the system
(1.10)–(1.13) is globally well posed. With the techniques in this paper, however,
we are only able to prove a global existence result for (1.10)–(1.13) when δt is
small. The question for large δt remains open, and cannot be addressed using tech-
niques in this paper.

Finally, we mention that our technique can be used to show global existence of
the analogue of (1.10)–(1.13) for the Navier–Stokes equations in two dimensions.
As this is already known [9], without resetting, we do not carry out the details here.

One interesting application would be to the three-dimensional Navier–Stokes
equations. There are numerous results showing global existence of solutions to
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the Navier–Stokes equations with small initial data. One new, interesting ques-
tion that can be asked in this framework is the existence of solutions for arbi-
trary initial data, which are time global for some small (nonzero) probability. The
McKean–Vlasov-type nonlinearity prevents us from asking this question for the
stochastic Lagrangian formulation for the Navier–Stokes equations ([3], equations
(2.3)–(2.6)). For the system (1.4)–(1.6) and (1.8), (1.9), the empirical mean 1

N

∑N
1

provides no regularization, so it is unlikely to expect small probability time global
solutions. However, the repeatedly reset version of (1.4)–(1.6) and (1.8), (1.9) is
free of the McKean–Vlasov nonlinearity, and is dissipative, making it a better
candidate for small probability time global solutions. Unfortunately, there are ob-
structions in proving this result directly with the techniques used here, and we are
working on addressing this issue.

The plan of this paper is as follows: in Section 2 we establish our notational
convention, and prove our main theorem. This proof relies on a few lemmas, the
proofs of which we postpone to Sections 4, 5 and 6. In Section 3, we provide
an example showing that without resetting, the system (1.4)–(1.7) shocks almost
surely. As mentioned earlier, once global existence is established the question of
convergence as N → ∞ is easily handled. We conclude the paper by studying this
in Section 7.

2. The main theorem and its proof. Throughout this paper, we assume
(�,�,P ) is a probability space and use E to denote the expected value with re-
spect to the probability measure P . Let N ≥ 2 be a natural number (which will
be fixed throughout this paper), {Ft }t≥0 be a filtration satisfying the usual condi-
tions4 on � and W 1, . . . ,WN be N independent Wiener processes adapted to the
filtration {Ft }t≥0. We assume subsequently, without loss of generality, that ν = 1

2 .
We use Ck(T), to denote the space of all periodic functions on R (with period 1)

which have k continuous derivatives. We use Lp(T), Hs(T) to be the Lebesgue p-
space, and the Sobolev space of order s, respectively, consisting of periodic func-
tions. When writing norms of functions in these spaces, we drop T. For instance,
we use the notation ‖u‖Hs to denote the Hs(T) norm of u.

We use a calligraphic script to denote the analogous spaces for processes, on
random time intervals. Namely, given t0 ≥ 0, and a stopping time τ such that τ ≥ t0
almost surely, we define

Ck([t0, τ ];T) = {u | u ∈ C0([t0, τ ];Ck(T)) a.s., and uτ∧t is Ft adapted},
Lp([t0, τ ];T) = {u | u ∈ C0([t0, τ ];Lp(T)) a.s., and uτ∧t is Ft adapted},

Hs([t0, τ ];T) = {u | u ∈ C0([t0, τ ];Hs(T)) a.s., and uτ∧t is Ft adapted},

4By “usual conditions” ([11], Definition 2.25) we mean that the filtration {Ft }t≥0 is right contin-
uous, and F0 contains all P -null sets in F∞.
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where we use the abbreviation “a.s.” for almost surely. For convenience, if τ is any
stopping time, not necessarily greater than or equal to t0, we define Ck([t0, τ ];T) =
Ck([t0, τ ∨ t0];T), and similarly for Hs, Lp . To avoid confusion with the Ck(T)

norms, we explicitly use

sup
ω∈�

sup
t0≤t≤τ

‖ut (ω)‖Ck

to denote the Ck([t0, τ ];T) norm of u.
We clarify, u ∈ Ck([t0, τ ];T) means that there exists an event �′ ⊂ � with

P(�′) = 1 such that ∀ω ∈ �′, t ∈ [t0, τ (ω)], ut (ω) ∈ Ck(T) and ut(ω) is con-
tinuous in t . Further, ∀t ≥ t0, uτ∧t is Ft -measurable. In words, Ck([t0, τ ];T) is the
set of all processes which have a Ck(T) valued, continuous paths modification and
are defined on the random interval [t0, τ ].

Note that our spaces involve processes which are continuous in time almost
surely, and we are not interested in quantifying any further regularity with respect
to time. When the regularity in time needs to be quantified, the definition the anal-
ogous spaces is not as elementary (see, e.g., [13]).

Our main theorem shows, given any arbitrarily large T , we can make our re-
setting time δt small enough so that a regular solution to (1.10)–(1.13) exists up
to time T with probability arbitrarily close to 1. In order to formulate our theo-
rem precisely, we will need to define the notion of solutions to the reset system
(1.10)–(1.13) with respect to a stopping time. This is our next definition.

DEFINITION 2.1. Let t0 ≥ 0, τ be a spatially independent stopping time such
that τ ≥ t0 almost surely, and ut0 be a C1(T) valued Ft0 -measurable random ran-
dom variable. Suppose u ∈ C 1([t0, τ ];T) is a unique fixed point of the system

X
i,N
t0,t

(a) = a +
∫ τ∧t

t0

us(X
i,N
t0,s

) ds +
∫ τ∧t

t0

dWi
s ,(2.1)

A
i,N
t0,t

= (X
i,N
t0,t

)−1,(2.2)

ut = 1

N

N∑
i=1

ut0
◦ A

i,N
t0,t

.(2.3)

Then we define

S
N,τ
t0,t

ut0 = ut .

For convenience, we adopt the convention that if τ is any stopping time (not nec-
essarily satisfying τ ≥ t0), we define S

N,τ
t0,t

ut0 = S
N,τ∨t0
t0,t

ut0 .

REMARK. Note that it is essential to assume τ does not depend on the spatial
variable, as in this case if the drift u is spatially regular, then the process X

i,N
t0,t

admits a modification which is a stochastic flow of diffeomorphisms. Hence the
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spatial inverse A
i,N
t0,t

= (X
i,N
t0,t

)−1 is well defined. We will subsequently always as-
sume our stopping times are spatially independent.

REMARK. In Lemma 2.7, we will show that S
N,τ
t0,· is well defined. Namely, if

k ≥ 1, and ut0 ∈ Ck(T) is Ft0 -measurable, then Lemma 2.7 shows that there exists
a (deterministic) time t1 > t0 such that the process u defined by ut = S

N,t1
t0,t

ut0

belongs to Ck([t0, t1];T).

REMARK 2.2. Note that we can view the dependence of the operator S
N,τ
t0,· on

the stopping time τ as a dependence only through the time interval of definition.
Indeed, for any fixed δt and stopping time τ , C 1([0, τ ];T) solutions of (2.1)–(2.3)
are unique up to indistinguishability. This follows immediately from a standard
argument using Gronwall’s Lemma, and we omit the proof. Strong uniqueness
implies that the operator S

N,τ
t0,· satisfies a compatibility condition: for t0 ≥ 0, con-

sider two stopping times τ1, τ2 ≥ t0 such that u1
t := S

N,τ1
t0,t

ut0 ∈ C 1([0, τ1];T) and

u2 := S
N,τ2
t0,t

ut0 ∈ C 1([0, τ2];T), then u2 = u1 before τ1 ∧ τ2. That is, u2 has a mod-
ification such that for all t ≥ t0, u2

t∧τ1∧τ2
= u1

t∧τ1∧τ2
. Thus, when the time interval

of definition is clear, we sometimes omit the stopping time τ as a superscript of
our operator S.

For notational convenience, we omit the first superscript N for the remainder
of this section. Given a (spatially independent) stopping time τ , a deterministic
starting time t0 ≥ 0, a C1(T) valued Ft0 -measurable initial data ut0 , and a resetting
time δt > 0 small enough, we can define a C 1([t0, τ ];T) solution of the (stopped)
system (1.10)–(1.13) iteratively by⎧⎨

⎩
ut = ut0, when t = t0,
u

δt
t = Sτ

t0+kδt ,t
u

δt

t0+kδt
, whenever t ∈ (

t0 + kδt , t0 + (k + 1)δt

]
for some k ∈ N ∪ {0}.

(2.4)

We are now ready to state our main theorem.

THEOREM 2.3. Let N > 1, T > 0, ε > 0, s > 6 + 1
2 , and suppose5 u0 ∈

Hs(T). Then there exists δT = δT (T , ε, s,‖u0‖Hs ), independent of N , such that
for all δt < δT , there exists a spatially independent stopping time τ such that
P(τ > T ) > 1 − ε and the process u defined by (2.4) (with t0 = 0) is in the space
C 6([0, τ ];T).

REMARK 2.4. The compatibility condition in Remark 2.2 allows us to dis-
cuss the notion of a maximal stopping time τmax for which the iterative procedure

5The theorem and proof remain unchanged if we instead assume that u0 is a Hs(T) valued, F0-
measurable bounded random variable.
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in (2.4) is well defined. Consequently, Theorem 2.3 will show that this maximal
stopping time τmax is in fact at least T with probability at least 1 − ε.

We emphasize that the operator St0,t is not a smoothing operator, which, as men-
tioned earlier, is part of the reason why Theorem 2.3 is surprising. We can see St0,t

is not smoothing from the fact that (4.3), the stochastic partial differential equa-
tion (SPDE) satisfied by ut = S0,tu0 is not dissipative [13]. One can immediately
verify this as the diffusive term in (4.3) does not necessarily dominate the noise.

Another (perhaps more intuitive) way of understanding the regularity properties
of St0,t is via time splitting. The St0 can be time split into two parts: S̄1

t0
, the non-

linear solution operator associated with the inviscid Burgers equations, and S̄2
t0

the
operator corresponding to resetting. By considering time split version of (1.10),
one can see that S̄2

t0
corresponds exactly to the operator

S̄2
t0,t0+δt

f (x) = 1

N

N∑
j=1

f
(
x − (W

j
t0+δt

− W
j
t0
)
)
.(2.5)

The operator S̄1
t0

causes growth on the Fourier modes. It is well known that the
damping provided by ν∂2

x , for any ν > 0, is enough to overcome this growth, and
this gives us global existence for the viscous Burgers equations for any strictly
positive viscosity. Thus if the operator S̄2

t0
provides damping comparable to ν∂2

x ,
then the usual methods can be used to prove Theorem 2.3. However, the operator
S̄2

t0
provides no damping, as can immediately be checked from (2.5): the operator

norm of S̄2
t0

is exactly 1 (surely) in all Sobolev and Hölder spaces. This is the main
difficulty in proving Theorem 2.3.

We overcome this difficulty by considering the limit v := limδt→0 uδt . It turns
out that v satisfies a dissipative SPDE, and if the initial data is regular enough we
obtain convergence in a strong norm of uδt to v. This is the key to the proof of
Theorem 2.3, and is formulated below.

LEMMA 2.5 (Key lemma). Let6 N > 1, β ∈ N ∪ {0}, T0 > t0 ≥ 0, and τ

be a (spatially independent) stopping time. Let ut0 be a C4+β(T) valued Ft0-
measurable random variable, and uδt ∈ C 4+β([t0, τ ];T) be defined by (2.4). Let
v ∈ C 4+β([t0, τ ];T) be the solution of the SPDE

dvt + vt ∂xvt dt − 1

2
∂2
xvt dt + ∂xvt

N

N∑
j=1

dW
j
t = 0,(2.6)

6The proof of this lemma never uses the assumption N > 1, and is valid even for N = 1. However,
for N = 1, Lemma 2.5 is vacuously true as assumptions (2.7) and (2.8) will never be satisfied for
nonconstant initial data.
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with initial data v|t=t0 = ut0 , and spatially periodic boundary conditions. Let τ0 =
(τ ∨ t0) ∧ T0, and U be a constant such that7

sup
t0≤t≤τ0

‖uδt
t ‖C4+β ≤ U a.s.,(2.7)

sup
t0≤t≤τ0

‖vt‖C4+β ≤ U a.s.,(2.8)

and let w
δt
t = u

δt
τ∧t − vτ∧t . Then there exists a constant C = C(β,U,T0), indepen-

dent of N , δt and τ , such that

sup
t0≤t≤T0

E‖wδt
t ‖2

Hβ ≤ Cδ
1/2
t .(2.9)

Our main interest in this lemma will be for β = 2, as it will enable us to obtain
a C 1([t0, T0];T) bound on u from a C 1([t0, T0];T) bound on v. A C1(T) bound is
all that is needed to continue a solution locally, thus controlling the C1(T) norm
of u with large probability, independent of δt , will prove our theorem. Since (2.6)
is dissipative, uniform in time bounds of strong norms of v are readily obtained.

LEMMA 2.6. Let N > 1, s ∈ N, u0 ∈ Hs(T). There exists a process v ∈
Hs([0,∞);T) which is a solution to the SPDE (2.6) with initial data u0 and pe-
riodic boundary conditions. Further, there exists a constant Vs = Vs(s,‖u0‖Hs )

such that

sup
t≥0

‖vt‖Hs ≤ Vs(2.10)

almost surely.

We remark that (2.10) is an almost sure bound on a strong norm of v. The reason
we are able to obtain almost sure bounds is because if we “multiply by v and
integrate by parts” (or more precisely, apply Itô’s formula to ‖vt‖2

L2 ), we obtain an
equation with no martingale part! This is carried out in detail in Section 5.

Lemmas 2.5 and 2.6 will now allow uniform in time control of a strong norm
of uδt . The only remaining ingredient is to obtain a C1(T) local existence result,
and guarantee that inequality (2.7) is satisfied uniformly in δt .

7Assumptions (2.7) and (2.8) can be weakened slightly at the expense of a lengthier, more technical
proof. The weakened assumptions, however, still require more than β derivatives. While replacing
(2.7) and (2.8) with a condition involving only β derivatives would be of sufficient interest to warrant
a more technical proof, reducing 4 + β to 4 + β − ε only obscures the heart of the matter. Since
sufficient regularity on our initial data will guarantee (2.7) and (2.8) anyway, we assume they hold
and avoid unnecessary technicalities.
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LEMMA 2.7. Suppose ut0 is a C1(T) valued Ft0-measurable random variable
such that there exists a constant U0

1 ≥ 0 such that ‖ut0‖C1 ≤ U0
1 almost surely.

There exists T0 = T0(U
0
1 ) > t0 and a process uδt ∈ C 1([t0, T0];T) such that uδt is

a solution to (2.4) with τ = T0.
If further for some n ∈ N, ut0 is a Cn(T) valued Ft0-measurable random vari-

able, and there exists a constant U0
n ≥ 0 such that ‖ut0‖Cn ≤ U0

n almost surely,
then uδt is Cn([0, T ];T), and further there exists a constant Un = Un(U

0
n , n), in-

dependent of N and δt , such that

sup
t0≤t≤T0

‖uδt
t ‖Cn ≤ Un a.s.(2.11)

for all δt < T0.

REMARK. The existence time T0 above only depends on a the C1(T) norm of
the initial data. However, on the existence interval, any additional regularity of the
initial data is preserved.

We are now ready to prove the main theorem. (Lemmas 2.5, 2.6 and 2.7 will be
proved in Sections 4, 5 and 6, resp.)

PROOF OF THEOREM 2.3. Let δT > 0 be a small time, to be specified later,
and let δt ∈ (0, δT ) be arbitrary. Given a stopping time τ , we define the operator
S δt ,τ

mδt ,t
by

S δt ,τ
mδt ,t

= Sτ
kδt ,t

◦ Sτ
(k−1)δt ,kδt

◦ · · · ◦ Sτ
(m+1)δt ,(m+2)δt

◦ Sτ
mδt ,(m+1)δt

,

where k ∈ N is such that kδt < t ≤ (k + 1)δt .
Let vt be the solution of (2.6). By Lemma 2.6 and the Sobolev embedding the-

orem there is a constant V1, such that

sup
t≥0

‖vt‖C1 ≤ V1

almost surely. Let T0 = T0(2V1) be the local existence time in Lemma 2.7; namely,
for any initial data u0 with ‖u0‖C1 ≤ 2V1, and for any δt < T0, the process
S δt ,T0

0,· u0 is C 1([0, T0];T). Without loss of generality we can assume that T0 is
an integer multiple of δt .

Note that our assumption u0 ∈ H 13/2+, Lemma 2.6 and the Sobolev embedding
theorem imply that assumption (2.8) is valid for β = 2 (in this case, the supremum
can in fact be taken over all t ∈ R). Similarly, Lemma 2.7 guarantees that assump-
tion (2.7) is valid for β = 2 and all δt < T0. Thus Lemma 2.5 can be applied.
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Let �1 be the event {‖uδt

T0
‖C1 ≤ 2V1}. Then

P(�1) ≥ P(‖uδt

T0
− vT0‖C1 ≤ V1)

≥ P

(
‖uδt

T0
− vT0‖H 2 ≤ V1

c1

)
(Sobolev embedding)

≥ 1 − c2
1

V 2
1

E(‖uδt

T0
− vT0‖2

H 2) (Chebyshev’s inequality)

≥ 1 − Cδ
1/2
t

V 2
1

(Lemma 2.5)

≥ 1 − Cδ
1/2
T

V 2
1

,

where the constant c1 above is the constant arising in the Sobolev embedding the-
orem. An appropriate choice of δT will make P(�1) arbitrarily close to 1. We
clarify that while our bound on P(�1) depends only on δT , the event �1 depends
on δt .

We define a stopping time τ1 by

τ1(ω) =
{

T0, if ω /∈ �1,
2T0, if ω ∈ �1.

Note that by Remark 2.2, we have S δt ,τ1
0,t u0 = S δt ,T0

0,t u0 for all t ∈ [0, T0]. Thus,
by the semi-group property, and the fact that T0 is an integer multiple of δt ,

S δt ,τ1
0,t u0 =

{
S δt ,T0

0,t u0, for t ∈ [0, T0],
S δt ,τ1

T0,t
◦ S δt ,T0

0,T0
u0, for t ∈ (T0,2T0],

as long as either side is defined. We claim that the right-hand side above is well
defined and in C 6([0, τ1];T). We see this as follows: first for t ∈ [0, T0], this is true
by Lemma 2.7 and Remark 2.2. Now, for ω /∈ �1 and any t ∈ [T0,2T0], S δt ,τ1

T0,t
is

just the identity operator. Further for almost every ω ∈ �1 we have S δt ,T0
0,T0

u0(ω) =
u

δt

T0
(ω) ∈ C6(T) and ‖uδt

T0
(ω)‖C1 ≤ 2V1. Thus for almost any ω ∈ �1, and for every

t ∈ [T0,2T0], S δt ,τ1
T0,t

u
δt

T0
(ω) ∈ C6(T) by Lemma 2.7.

Using Sobolev embedding, Chebyshev’s inequality and Lemma 2.5 as above,
we can find an event �2 ⊂ �1 such that P(�2) is arbitrarily close to P(�1). As
before we define a stopping time τ2 by

τ2(ω) =
{

τ1(ω), if ω /∈ �2,
3T0, if ω ∈ �2,

and the solution uδt· = S δt ,τ2
0,· u0 ∈ C 6([0, τ3];T). A finite iteration will complete

the proof. �
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Finally we address the question of N → ∞. For this purpose, we re-introduce
the superscript of N to indicate the dependence on N of the process considered.
Using techniques similar to [9], we show that the solution vN of (2.6) converges
to the solution of the viscous Burgers equation as N → ∞.

PROPOSITION 2.8. Let vN be the solution of (2.6) with initial data u0, and ub
t

be the solution of the viscous Burgers equation (1.1) with the same initial data. If
u0 ∈ Hs , s > 3

2 , then for any T > 0, there exists a constant C = C(T , s,‖u0‖Hs )

such that

sup
t∈[0,T ]

E‖ub
t − vN

t ‖2
L2 ≤ C

N
.

We prove Proposition 2.8 in Section 7. We conclude by remarking that Propo-
sition 2.8, Lemma 2.5 and an argument similar to the proof of Theorem 2.3 will
show that for small enough δt , as N → ∞, uN,δt converges to the same limit on
an event of almost full probability.

3. Almost sure existence of shocks without resetting. In this section we
show that the system (1.4)–(1.7) develops shocks almost surely, for any N . The
existence of shocks is simpler to prove if we work with monotone functions on R,
instead of periodic functions, and thus for this section only, we will work with
(1.4)–(1.7) on R instead of on T.

Let τ be a (spatially-independent) stopping time, and we interpret C 1([0, τ ];R)

solutions to (1.4)–(1.7), in the natural way [analogous to (2.1)–(2.3)]. The main
result of this section shows that even if we stop “bad” realizations of (1.4)–(1.7),
we can never continue solutions past the time N

‖∂xu0‖L∞ , unless we introduce a
regularizing mechanism.

PROPOSITION 3.1. Suppose u0 ∈ C1(R) is a decreasing function, and let u be
a C 1([0, τ ′];R) a solution of (1.4)–(1.7) with initial data u0. Then, almost surely,

τ ′ < N

‖∂xu0‖L∞
.(3.1)

REMARK 3.2. The numerically observed shock time, in the periodic case,
is independent of N , and it is of the order 1

‖∂xu0‖L∞ with large probability. This
indicates our bound (3.1) is far from optimal.

REMARK 3.3. One can show8 that as N → ∞ the solution to (1.4)–(1.7) ap-
proaches the solution to (1.1) at a rate of 1√

N
. However, it is well known that the

8See, for instance, [9], Theorem 4.1, where the analogous result is proved for the Navier–Stokes
equations.
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solution to (1.1) is smooth for all time and no shock develops, provided the initial
data is, for instance, C1 and bounded [5].

The numerics mentioned in Remark 3.2, however, indicate that no matter how
large N is, the system (1.4)–(1.7) will only be a good approximation to the true
solution of (1.1) for short time, in the order of 1

‖∂xu0‖L∞ .

REMARK 3.4. Monotonicity of the initial data u0 is precisely the condition
that constrained us to work on the line instead of on the torus. Specifically, the as-
sumption ∂xu0(x) < 0 for arbitrary x ∈ R simplifies the proof of 3.1 considerably.
Numerics, however, indicate that this monotonicity assumption is redundant, and
(1.4)–(1.7) develops shocks for arbitrary (periodic) initial data.

PROOF OF PROPOSITION 3.1. Assume for simplicity, and without loss of gen-
erality, that ‖∂xu0‖L∞ = −∂xu0(0) = 1. Let the stopping time τ be the first time
t ≤ τ ′ such that ∂xX

1,N
t (0) = 0. Explicitly,

τ = τ ′ ∧ inf{t | ∂xX
1,N
t (0) = 0}.

We will first show that, τ ≤ N , almost surely.
Differentiating (1.4) in space gives

d(∂xX
1,N
t ) = ∂xu

N
t |

X
1,N
t

∂xX
1,N
t dt,(3.2)

for t < τ ′, almost surely. Here, our notation ∂xu
N
t |

X
1,N
t

means

∂xu
N
t |

X
1,N
t

(x) = ∂xu
N
t (X

1,N
t (x)).

Differentiating equation (1.7) in space, we obtain

∂xu
N
t |

X
1,N
t

= 1

N

N∑
i=1

∂x(u0 ◦ A
i,N
t )|

X
1,N
t

(3.3)

= 1

N

N∑
i=1

∂xu0|Ai,N
t ◦X1,N

t
∂xA

i,N
t |

X
1,N
t

,

for t < τ ′ almost surely. Since by the chain rule,

∂xA
1,N
t |

X
1,N
t

∂xX
1,N
t = ∂x(A

1,N
t ◦ X

1,N
t ) = 1,(3.4)

multiplying (3.3) by ∂xX
1,N
t gives

∂xu
N
t |

X
1,N
t

∂xX
1,N
t

(3.5)

= 1

N

[
∂xu0 +

N∑
i=2

∂xu0|Ai,N
t ◦X1,N

t
· ∂xA

i,N
t |

X
1,N
t

∂xX
1,N
t

]
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for t < τ ′ almost surely.
Note that for a C1 solution of the system (1.4)–(1.7), for all i, the flow

X
i,N
t : R → R is homotopic to the identity map via C1 diffeomorphisms of R.

The same is true for the inverse inverse A
i,N
t , and thus ∂xA

i,N
t |

X
1,N
t

∂xX
1,N
t > 0.

Finally, since u0 is assumed to be decreasing, we know that ∂xu0 < 0, and thus
equations (3.2) and (3.5) yield

∂t∂xX
1,N
t (0) <

−1

N

for t < τ ′ almost surely. This (ordinary) differential inequality, along with the fact
that ∂xX

1,N
0 = 1, necessitates τ < N almost surely.

Now, by definition of τ , and continuity (in time) of ∂xX
1,N
t ,

lim
t→τ− ∂xX

1,N
t (0) = 0(3.6)

on the event {τ < τ ′}. From (3.5) and the chain rule we have

∂xu
N
t |

X
1,N
t

= 1

N

[
∂xu0

∂xX
1,N
t

+
N∑

i=2

∂xu0|Ai,N
t ◦X1,N

t
· ∂xA

i,N
t |

X
1,N
t

]

for t < τ ′ almost surely. Note that all the terms on the right-hand side (3.5) have the
same sign. Thus if one of these terms approaches −∞, then necessarily the entire
right-hand side approaches −∞. Equation (3.6) immediately implies the first term
approaches −∞ at x = 0 on the event {τ < τ ′}. Hence, on this event we have

lim
t→τ− ‖∂xut‖L∞ ≥ − lim

t→τ− ∂xu
N
t (X

1,N
t (0)) = ∞,

almost surely. Consequently, if u ∈ C 1([0, τ ′];R), we must have P(τ < τ ′) = 0.
Hence τ ′ = τ < N almost surely. �

4. Proof of the key lemma (Lemma 2.5). In this section we prove conver-
gence of uδt to v as δt → 0. The basic idea is to show that the velocity in our reset
system (1.10)–(1.13) satisfies the limiting SPDE (2.6) with a small error which is
controlled as δt → 0.

By shifting time, we may assume without loss of generality that t0 = 0. Further
replacing τ with τ ∧T0 if necessary, we may assume τ = τ0 ≤ T0. Throughout this
section, we adopt the convention that t0 = 0, and N , β , T0, τ , τ0, u0, uδt , v and U

are as in the statement of Lemma 2.5. We also assume the processes Xi
kδt ,·, Ai

kδt ,·
are all as in (1.10)–(1.13), and for notational convenience, we will omit the N and
δt as superscripts throughout this section.

We need a few lemmas before we can prove Lemma 2.5. In our first lemma we
determine an SPDE satisfied by u on the interval (kδt , (k + 1)δt ].
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LEMMA 4.1. We define the process ui to be the ith summand in (1.13). Ex-
plicitly,

ui
t =

{
u0, for t = 0,
ukδt ◦ Ai

kδt ,t
, for t ∈ (

τ ∧ kδt , τ ∧ (k + 1)δt

]
.(4.1)

Then for all i ∈ {1, . . . ,N}, the process ui ∈ C 4+β([0, τ ];T), and satisfies the
SPDE

χ{τ≥kδt }(u
i
τ∧t − ukδt ) +

∫ τ∧t

τ∧kδt

(
us ∂xu

i
s − 1

2
∂2
xui

s

)
ds

(4.2)

+
∫ τ∧t

τ∧kδt

∂xu
i
s dWi

s = 0

on the interval t ∈ [kδt , (k + 1)δt ]. Similarly, the process u ∈ C 4+β([0, τ ];T), and
satisfies the SPDE

uτ∧t − uτ∧kδt +
∫ τ∧t

τ∧kδt

(
us∂xus − 1

2
∂2
xus

)
ds

(4.3)

+
∫ τ∧t

τ∧kδt

1

N

N∑
j=1

∂xu
j
s dWj

s = 0

on the interval t ∈ [kδt , (k + 1)δt ].

REMARK 4.2. A more intuitive, though less precise, way of phrasing the
SPDEs (4.2) and (4.3) would be to say for t ∈ (τ ∧ kδt , τ ∧ (k + 1)δt ], u, ui satisfy
the SPDEs

dui
t + ut ∂xu

i
t dt − 1

2 ∂2
xui

t dt + ∂xu
i
t dWi

t = 0 for all i ∈ {1, . . . ,N},

dut + ut ∂xut dt − 1

2
∂2
xut dt + 1

N

N∑
j=1

∂xu
j
t dW

j
t = 0

with initial data ui |t=kδt = ukδt and u|t=kδt = ukδt .

PROOF OF LEMMA 4.1. From [3, 9] (see also [14, 20]) we know that when
τ ≡ ∞, the process Ai

kδt ,· satisfies the SPDE

dAi
kδt ,t

+ ut ∂xA
i
kδt ,t

dt − 1
2 ∂2

xAi
kδt ,t

dt + ∂xA
i
kδt ,t

dWi
t = 0

on the time interval (kδt , (k + 1)δt ]. Writing down an integral version of this in the
presence of a stopping time, equations (4.2) and (4.3) follow immediately from
(2.3) and (4.1) by a direct application of Itô’s formula.
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To check9 u,u1, . . . , uN ∈ C 4+β([0, τ ];T), note that continuity in time is imme-
diate. Further, the spatial regularity of u has already been assumed in the statement
of Lemma 2.5. For u1, . . . , uN , note that the τ and the noise are spatially indepen-
dent in (1.10), and it immediately shows that each Xi

kδt ,· (and hence each Ai
kδt ,·) is

as spatially regular as u, which in turn shows that each ui ∈ C([0, τ ];T). �

Now we show that with a small error u satisfies the SPDE (2.6) stopped at τ ,
and obtain bounds on this error. Let EFkδt

Y denote the conditional expectation of
Y given Fkδt . Given any process f , and a stopping time τ , we define the stopped
increment �τ

kf by

�τ
kf = fτ∧(k+1)δt − fτ∧kδt .

For the (deterministic) process ft = t , we define �τ
k t by

�τ
k t = (

τ ∧ (k + 1)δt

) − (τ ∧ kδt ) =
⎧⎨
⎩

δt , if τ ≥ (k + 1)δt ,
τ − kδt , if kδt ≤ τ < (k + 1)δt ,
0, if τ < kδt .

Finally, let L be the (nonlinear) operator defined by

Lu = u∂xu − 1
2∂2

xu.

LEMMA 4.3. Suppose (2.7) holds for some β ∈ N ∪ {0}, and let ε′
k be defined

by10

ε′
k = �τ

ku + Lukδt �
τ
k t + ∂xukδt

(
1

N

N∑
j=1

�τ
kW

j

)
.(4.4)

Then there exists a constant C = C(β,U,T0) (independent of N,k, δt and τ ) such
that for all δt ≤ T0 and k ≤ T0

δt
we have

sup
x∈T

E|∂β
x ε′

k(x)|2 ≤ Cδ2
t ,(4.5)

sup
x∈T

E|EFkδt
∂β
x ε′

k(x)|2 ≤ Cδ3
t .(4.6)

REMARK. Since u and all derivatives of u are a priori uniformly bounded al-
most surely, the proof of this lemma is straightforward. Without this a priori bound,
we would only obtain similar bounds on E‖∂β

x ε′
kδt

‖2
L2 and E‖EFkδt

∂
β
x ε′

kδt
‖2
L2 ,

which are still sufficient for Lemma 2.5.

9The spatial regularity of u,u1, . . . , un follows directly from an assumption only on the initial
data, and a standard iteration argument. This is contained in Section 6. However, for Lemma 4.1, an
iteration argument is unnecessary because of assumption (2.7).

10In equation (4.4), technically, Lukδt
is not defined when τ < kδt . However, in this case, �τ

k t = 0,
so the value of Lukδt

does not matter. We use this convention subsequently without further mention.
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PROOF OF LEMMA 4.3. We assume throughout this section that C is a con-
stant only depending on U and T0 which could change from line to line. Note
first that assumption (2.7) and equation (2.1) immediately imply that for any
i ∈ {1, . . . ,N},

sup
0≤t≤τ0

‖∂xX
i
t‖C3+β ≤ C and sup

0≤t≤τ0

‖∂xA
i
t‖C3+β ≤ C

almost surely. Now equation (2.3) immediately yields the same bound for u, inde-
pendent of N . Thus, making U larger if necessary, we may assume without loss of
generality that (2.7) holds for all the processes u, u1, u2, . . . , un.

For any k ∈ N∪{0}, t ∈ (kδt , (k + 1)δt ], n ≤ β + 2, differentiating (4.3) n times
gives

∂n
x uτ∧t − ∂n

x uτ∧kδt = −
∫ τ∧t

τ∧kδt

∂n
x Lus ds − 1

N

N∑
j=1

∫ τ∧t

τ∧kδt

∂n+1
x uj

s dWj
s ,

and hence

E|∂n
x uτ∧t − ∂n

x uτ∧kδt |2

≤ 2E
(∫ τ∧t

τ∧kδt

∂n
x Lus ds

)2

+ 2E

(
1

N

N∑
j=1

∫ τ∧t

τ∧kδt

∂n+1
x uj

s dWj
s

)2

.

Note that ∫ τ∧t

τ∧kδt

∂n+1
x uj

s dWj
s =

∫ t

kδt

χ{kδt≤τ }χ{s≤τ }∂
n+1
x uj

s dWj
s .

Thus using (2.7) for both u and ui , for any t ∈ (kδt , (k + 1)δt ] we have

sup
x∈T

E|∂n
x uτ∧t (x) − ∂n

x uτ∧kδt (x)|2 ≤ C

(
δ2
t + 1

N2

N∑
j=1

δt

)
≤ Cδt ,(4.7)

where as usual the constant C may change from line to line, provided it only de-
pends on β , U and T0.

Similarly, using (4.2) and the above argument we have

sup
x∈T

Eχ{kδt≤τ } |∂n
x ui

τ∧t (x) − ∂n
x ukδt (x)|2 ≤ Cδt(4.8)

for any t ∈ (kδt , (k + 1)δt ] and n ≤ 2 + β .
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Now, from the definition of ε′ and equation (4.3) we have

ε′
k = −

∫ τ∧(k+1)δt

τ∧kδt

Lus ds − 1

N

N∑
j=1

∫ τ∧(k+1)δt

τ∧kδt

∂xu
j
s dWj

s

+ Luτ∧kδt �
τ
k t + ∂xuτ∧kδt

(
1

N

N∑
j=1

�τ
kW

j

)

(4.9)

=
∫ τ∧(k+1)δt

τ∧kδt

(Lukδt − Lus) ds

+ 1

N

N∑
j=1

∫ τ∧(k+1)δt

τ∧kδt

(∂xukδt − ∂xu
j
s ) dWj

s

almost surely. For the Itô integrals in the second term above,

EFkδt

(∫ τ∧(k+1)δt

τ∧kδt

(∂xukδt − ∂xu
j
s ) dWj

s

)

= EFkδt

(∫ (k+1)δt

kδt

χ{τ≥kδt }χ{s≤τ }(∂xukδt − ∂xu
j
τ∧s) dWj

s

)
= 0,

and hence

E|EFkδt
∂β
x ε′

k|2 = E
(
∂β
x

∫ τ∧(k+1)δt

τ∧kδt

(Lukδt − Lus) ds

)2

≤ δt

∫ (k+1)δt

kδt

E
[
χ{kδt≤τ }χ{s≤τ }∂

β
x (Lukδt − Luτ∧s)

]2
ds

= δt

∫ (k+1)δt

kδt

E
[
χ{s≤τ }∂

β
x (Luτ∧kδt − Luτ∧s)

]2
ds

≤ Cδ3
t ,

where the last inequality follows from (4.7) with n = 2 + β . This proves (4.6).
For (4.5), note that the expected value of the square of the first term in (4.9) has

already been bounded by Cδ3
t < Cδ2

t . For the second term, the Itô isometry gives

E

(
1

N

N∑
j=1

∫ τ∧(k+1)δt

τ∧kδt

∂β
x (∂xukδt − ∂xu

j
s ) dWj

s

)2

= 1

N

N∑
j=1

∫ (k+1)δt

kδt

E
[
χ{kδt ≤τ }χ{s≤τ }∂

β
x (∂xukδt − ∂xu

j
s )

]2
ds,

and using (4.8) with n = 1 + β the proof is complete. �
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We now prove that a time split version of the SPDE (2.6) satisfies the same error
estimates as in Lemma 4.3.

LEMMA 4.4. Suppose (2.8) holds for some β ∈ N ∪ {0}, and let ε′′
k be defined

by

ε′′
k = �τ

kv + Lvkδt �
τ
k + ∂xvkδt

(
1

N

N∑
j=1

�τ
kW

j

)
.(4.10)

Then bounds (4.5) and (4.6) hold for ε′′
k .

PROOF. First note that

vτ∧t − vτ∧kδt = −
∫ τ∧t

τ∧kδt

Lvs ds − 1

N

N∑
j=1

∫ τ∧t

τ∧kδt

∂xvs dWj
s

almost surely. Thus for any n ≤ 2 + β and t ∈ [kδt , (k + 1)δt ] using (2.8) gives

sup
x∈T

E|∂n
x vτ∧t (x) − ∂n

x vτ∧kδt (x)|2 ≤ Cδt .(4.11)

Similar to the derivation of (4.9) we obtain

ε′′
k =

∫ τ∧(k+1)δt

τ∧kδt

(Lvkδt − Lvs) ds + 1

N

N∑
j=1

∫ τ∧(k+1)δt

τ∧kδt

(∂xvkδt − ∂xvs) dWj
s

from definition (4.10). The remainder of the proof is now identical to the proof of
Lemma 4.3. �

We are now ready to prove Lemma 2.5. We remark that assumptions (2.7) and
(2.8) are stronger than necessary. We only need

sup
0≤t≤τ

(‖ut‖C1+β + ‖vt‖C1+β ) ≤ U a.s.,(4.12)

sup
x∈T

sup
0≤t≤τ

E
(|∂2+β

x ut (x)|2 + |∂2+β
x vt (x)|2) ≤ U,(4.13)

and the bounds on ε′, ε′′ provided by Lemmas 4.3 and 4.4 above. The proof we
provide below depends only on these weaker assumptions.

PROOF OF LEMMA 2.5. Let εk = ε′
k −ε′′

k , where ε′
k , ε′′

k are defined by Lemmas
4.3 and 4.4, respectively. Using (4.5), (4.6) and the corresponding estimates for ε′′

k ,
we have

sup
x∈T

E ∂β
x εk(x)2 ≤ Cδ2

t ,(4.14)

sup
x∈T

E|EFkδt
∂β
x εk(x)|2 ≤ Cδ3

t(4.15)
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for all k ≤ T0
δt

. As before, we assume C is a constant that only depends on β , U

and T0, which may change from line to line. Now, estimates (4.14) and (4.15)
imply

E‖εk‖2
Hβ ≤ Cδ2

t ,(4.16)

E‖EFkδt
εk‖2

Hβ ≤ Cδ3
t .(4.17)

For the remainder of the proof we will use the weaker estimates, (4.16) and (4.17).
Now, recall wt = wτ∧t = uτ∧t − vτ∧t , and we know w0 = 0. Thus

∂β
x �τ

kw = ∂β
x �τ

ku − ∂β
x �τ

kv

= −∂β
x (Luτ∧kδt − Lvτ∧kδt )�

τ
k t(4.18)

− ∂β+1
x wkδt

(
1

N

N∑
j=1

�τ
kW

j

)
+ ∂β

x εk.

We first estimate E(∂
β
x �τ

kw)2 where k is any integer such that kδt ≤ T0.
For this, independence of Wi , the mean square of the matringale term in (4.18)

is bounded by

E

[
∂β+1
x wkδt

(
1

N

N∑
j=1

�τ
kW

j

)]2

= E(∂β+1
x wkδt )

2E

(
1

N

N∑
j=1

�τ
kW

j

)2

(4.19)

≤ δt

N
E(∂β+1

x wkδt )
2.

Next, for the mean square of the first term in (4.18)

E
(
∂β
x

(
Luτ∧kδt (x) − Lvτ∧kδt (x)

))2

≤ CE[(∂β+2
x uτ∧kδt )

2 + (∂β+2
x vτ∧kδt )

2]
+ CE[(∂β

x (uτ∧kδt ∂xuτ∧kδt ))
2 + (∂β

x (vτ∧kδt ∂xvτ∧kδt ))
2]

≤ C sup
x∈T

max
0≤k≤T0/δt

E
(|∂2+β

x uτ∧kδt (x)|2 + |∂2+β
x vτ∧kδt (x)|2)

+ C max
0≤k≤T0/δt

(‖uτ∧kδt ‖4
C1+β + ‖vτ∧kδt ‖4

C1+β ).

Hence, using (4.12) and (4.13) we obtain

E
(
∂β
x (Luτ∧kδt − Lvτ∧kδt )�

τ
k t

)2 ≤ δ2
t C.(4.20)

By (4.16) the mean square of the last term in (4.18) is also bounded by Cδ2
t . Thus,

squaring (4.18), taking expected values and using Young’s inequality gives

E(∂β
x �τ

kw)2 ≤ 3δt

N
E(∂β+1

x wkδt )
2 + Cδ2

t + 3E(∂β
x εk)

2.(4.21)
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Now for any K ≤ T0
δt

,

(∂β
x wKδt )

2 = (∂β
x wτ∧Kδt )

2 = 2
K−1∑
k=0

∂β
x wkδt ∂

β
x �τ

kw +
K−1∑
k=0

(∂β
x �τ

kw)2

= 2
K−1∑
k=0

∂β
x wkδt

(
−∂β

x (Luτ∧kδt − Lvτ∧kδt )�
τ
k t

− ∂β+1
x �τ

kw

(
1

N

N∑
j=1

�τ
kW

j

)
+ ∂β

x εk

)

+
K−1∑
k=0

(∂β
x �τ

kw)2.

Taking expected values, integrating in space using (4.21) and (4.16) gives

E‖∂β
x wKδt ‖2

L2 ≤ −2δt

K−1∑
k=0

E
∫

T

∂β
x wkδt ∂

β
x (uτ∧kδt ∂xuτ∧kδt

− vτ∧kδt ∂xvτ∧kδt ) dx(4.22)

+ 2
K−1∑
k=0

E
∫

T

∂β
x wkδt ∂

β
x εk dx

−
(

1 − 1

N

)
δt

K−1∑
k=0

E
∫

T

(∂β+1
x wkδt )

2 dx + CKδ2
t .

For the first term on the right-hand side of inequality (4.22) note

∂β
x wkδt ∂

β
x (uτ∧kδt ∂xuτ∧kδt − vτ∧kδt ∂xvτ∧kδt )

(4.23)
= ∂β

x wkδt ∂
β
x (wkδt ∂xuτ∧kδt − vτ∧kδt ∂xwkδt ).

Observe that the mass (spatial mean) of solutions to (2.6) is constant in time. The
same is true for solutions to (4.3). Thus, for all t ≤ T0,

∫
T

uτ∧t dx = ∫
T

u0 dx =∫
T

vτ∧t dx, and hence
∫
T

wt dx = 0. Thus integrating (4.23) in space and using the
Poincaré inequality, the term involving u above is bounded by∣∣∣∣

∫
T

∂β
x wkδt ∂

β
x (wkδt ∂xuτ∧kδt ) dx

∣∣∣∣ ≤ C‖∂β
x wkδt ‖2

L2‖uτ∧kδt ‖Cβ+1 .

For the term involving v in (4.23), when all the derivatives fall on w we have

∂β
x wkδt vτ∧kδt ∂

β+1
x wkδt = 1

2vτ∧kδt ∂x(∂
β
x wkδt )

2,

and if we integrate by parts, we can avoid the extra derivative on w. Thus∣∣∣∣
∫

T

∂β
x wkδt ∂

β
x (vτ∧kδt ∂xwkδt ) dx

∣∣∣∣ ≤ C‖∂β
x wkδt ‖2

L2‖vτ∧kδt ‖Cβ .
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Thus using (4.12) and the above estimates, the first term on the right-hand side of
(4.22) is bounded by

−2δtE
∫

T

∂β
x wkδt ∂

β
x (uτ∧kδt ∂xuτ∧kδt − vτ∧kδt ∂xvτ∧kδt ) dx

(4.24)
≤ CδtE‖∂β

x wkδt ‖2
L2 .

For the second term in (4.22), we know wkδt is Fkδt -measurable. Thus using
(4.17) and the Cauchy–Schwarz inequality we obtain∫

T

|E∂β
x wkδt ∂

β
x εk|dx =

∫
T

|E(∂β
x wkδt EFkδt

∂β
x εk)|dx ≤ Cδ

3/2
t .(4.25)

The third term on the right-hand side of (4.22) is always nonpositive, and can
be ignored. Thus, recalling K ≤ T0

δt
, and using (4.24) and (4.25) in (4.22) we have

E‖∂β
x wKδt ‖2

L2 ≤ Cδ
1/2
t + C

K−1∑
k=0

E‖∂β
x wkδt ‖2

L2δt .

The remainder of the proof is an elementary discrete Gronwall argument. Let

yK = Cδ
1/2
t + C

K−1∑
k=0

E‖∂β
x wkδt ‖2

L2δt .

Then

yk+1 − yk = CδtE‖∂β
x wkδt ‖2

L2 ≤ Cδtyk

and hence

yk+1 ≤ (1 + Cδt )yk.

Iterating, and using y0 = Cδ
1/2
t gives

yk ≤ (1 + Cδt)
kCδ

1/2
t .

Since k ≤ T0
δt

this gives

max
k≤T0/δt

yk ≤ Cδ
1/2
t sup

δ′
t>0

(1 + Cδ′
t )

T0/δ
′
t ≤ Cδ

1/2
t eCT0 .(4.26)

This proves (2.9) for all times t which are an integer multiple of δt . Since for any
x ∈ T, and k ≤ T0

δt
we elementarily have

sup
kδt≤t≤(k+1)δt

E|∂β
x vτ∧t (x) − ∂β

x vτ∧kδt (x)|2 ≤ Cδt

and

sup
kδt≤t≤(k+1)δt

E|∂β
x uτ∧t (x) − ∂β

x uτ∧kδt (x)|2 ≤ Cδt

completing the proof. �
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5. Proof of Lemma 2.6. In this section we establish uniform in time bounds
for the solution of (2.6) and prove as in Lemma 2.6. We do this via the following
two lemmas:

LEMMA 5.1. Let u0 ∈ C∞(T), T > 0, and suppose v ∈ C∞([0, T ];T) is a
solution to (2.6) with initial data u0 and periodic boundary conditions. Then for
any s ∈ Z

+, there exists a constant Vs = Vs(s, T ,‖u0‖Hs ) such that

sup
0≤t≤T

‖vt‖Hs ≤ Vs

almost surely.

LEMMA 5.2. Let u0 ∈ C∞(T), and suppose v ∈ C∞([0,∞),T) is a solution
to (2.6) with initial data u0 and periodic boundary conditions. Then for any s ∈
Z

+, T > 0, there exists a constant Vs = Vs(s, T ,‖u0‖L2) such that

sup
t≥T

‖vt‖Hs ≤ Vs(5.1)

almost surely.

We draw attention to the fact that a priori bounds are almost sure! Indeed, ap-
plying Itô’s formula to ‖vt‖2

L2 immediately yields an equation with no martingale
part [see (5.2) below].

Given Lemmas 5.1 and 5.2, the proof of Lemma 2.6 is now immediate.

PROOF OF LEMMA 2.6. Given the almost sure a priori bounds in Lemmas 5.1
and 5.2, existence of solutions to (2.6) follows via standard methods. The time
global bound (2.10) is also an immediate consequence of Lemmas 5.1 and 5.2.

�

We devote the remainder of this section to proving Lemmas 5.1 and 5.2.

PROOF OF LEMMA 5.1. We prove Lemma 5.1 via energy estimates. First note
that Itô’s formula and (2.6) give

d(vt )
2 = 2vt dvt + 1

N2

N∑
j=1

(∂xvt )
2 dt

= −2v2
t ∂xvt dt + vt ∂

2
xvt dt − 2

vt ∂xvt

N

N∑
j=1

dW
j
t

+ 1

N
(∂xvt )

2 dt.
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Integrating in space, and using
∫
T

vt ∂xvt dx = 0 = ∫
T

v2
t ∂xvt dx gives

∂t‖vt‖2
L2 = −

(
1 − 1

N

)
‖∂xvt‖2

L2 �⇒ ‖vt‖L2 ≤ ‖u0‖L2(5.2)

almost surely.
A similar calculation shows ‖vt‖Lp ≤ ‖u0‖Lp for all p ≥ 2, and hence11

‖vt‖L∞ ≤ ‖u0‖L∞ . Recall s ≥ 1 by assumption, and so the Sobolev embedding
theorem shows ‖u0‖L∞ ≤ c‖u0‖Hs for some absolute constant c.

Now, differentiating (2.6) with respect to x and applying Itô’s formula to (∂xvt )
2

we obtain

d(∂xvt )
2 = 2 ∂xvt d(∂xvt ) + 1

N
|∂2

xvt |2 dt

= −2 ∂xvt

(
∂x(vt∂xvt ) dt − 1

2
∂3
xvt dt + ∂2

xvt

N

N∑
j=1

dW
j
t

)

+ 1

N
|∂2

xvt |2 dt.

Integrating with respect to x on [0,1], and noting that
∫
T

∂xvt ∂
2
x vt dx = 0, gives

d‖∂xvt‖2
L2 = −

(
1 − 1

N

)
‖∂2

xvt‖2
L2 dt +

(
2

∫ 1

0
∂2
xvt (vt ∂xvt ) dx

)
dt

�⇒ ∂t‖∂xvt‖2
L2 ≤ −1

4
‖∂2

xvt‖2
L2 + 8‖vt∂xvt‖2

L2

(5.3)

≤ −1

4
‖∂2

xvt‖2
L2 + 8‖vt‖2

L∞‖∂xvt‖2
L2

≤ −1

4
‖∂2

xvt‖2
L2 + 8‖u0‖2

L∞‖∂xvt‖2
L2,

almost surely. Thus, (5.2), (5.3) and Gronwall’s inequality gives

‖vt‖H 1 ≤ C1e
c0t and

∫ t

0
‖vt ′‖2

H 2 dt ′ ≤ C1e
c0t ,(5.4)

almost surely, for some constants C1 = C1(‖u0‖H 1) and c0 = c0(‖u0‖L∞).
For the remainder of this proof we adopt the convention that c, C denote ab-

solute constants, Cs = Cs(s,‖u0‖Hs ) denotes a constant depending only on s,
‖u0‖Hs and c0 denotes a constant depending only on ‖u0‖L∞ . The exact value
of these constants are immaterial, and we will allow them to change from line to
line.

11This can alternately be shown using a version of the maximum principle [15].
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Similar to (5.3), differentiating (2.6) twice with respect to x, applying Itô’s
formula to (∂2

xvt )
2, integrating in space, noting

∫
T

∂2
xvt ∂

3
xvt dx = 0 and using

Hölder’s inequality gives

∂t‖∂2
xvt‖2

L2 ≤ −
(

1 − 1

N

)
‖∂3

xvt‖2
L2 + 2‖∂3

xvt‖L2‖∂x(vt∂xvt )‖L2

≤ −c‖∂3
xvt‖2

L2 + C(‖∂xvt‖2
L∞ + ‖vt‖2

L∞)‖∂2
xvt‖2

L2

≤ −c‖∂3
xvt‖2

L2 + C‖vt‖2
H 2‖∂2

xvt‖2
L2,

almost surely, where the last inequality is obtained by the Sobolev embedding
theorem. Using (5.4), this gives

‖vt‖H 2 ≤ C2e
∫ t

0 ‖vt‖2
H2 dt ≤ C2e

C1e
c0t

and
∫ t

0
‖vt ′‖2

H 3 dt ′ ≤ C2e
C1e

c0t

,

almost surely. Proceeding inductively, suppose we know⎧⎨
⎩

‖vt‖Hs ≤ Cs exp
(
Cs−1 exp

(
Cs−2 · · · exp(c0t) · · ·)),∫ t

0
‖vt ′‖2

Hs+1 dt ′ ≤ Cs exp
(
Cs−1 exp

(
Cs−2 · · · exp(c0t) · · ·)),(5.5)

holds almost surely for some s ∈ Z
+. Differentiating (2.6) s +1 times with respect

to x, applying Itô’s formula for (∂s+1
x vt )

2 and integrating in space we obtain

d‖∂s+1
x vt‖2

L2 = −
(

1 − 1

N

)
‖∂s+2

x vt‖2
L2 dt + 2‖∂s+2

x vt‖L2‖∂s
x(vt∂xvt )‖L2 dt

since
∫
T

∂s+1
x vt ∂

s+2
x vt dx = 0. Thus

∂t‖∂s+1
x vt‖2

L2 ≤ −c‖∂s+2
x vt‖2

L2

+ C(‖∂s
xvt‖2

L∞‖∂xvt‖2
L2 + · · ·

+ ‖∂xvt‖2
L∞‖∂s

xvt‖2
L2 + ‖vt‖2

L∞‖∂s+1
x vt‖2

L2)

≤ −c‖∂s+2
x vt‖2

L2

+ C(‖∂s
xvt‖2

L∞ + · · ·
+ ‖∂xvt‖2

L∞ + ‖vt‖2
L∞)‖∂s+1

x vt‖2
L2

≤ −c‖∂s+2
x vt‖2

L2 + C‖vt‖2
Hs+1‖∂s+1

x vt‖2
L2,

almost surely. Thus by Gronwall’s lemma

‖vt‖Hs+1 ≤ Cs+1 exp
(∫ t

0
‖vt ′‖2

Hs+1 dt ′
)

≤ Cs+1 exp
(
Cs exp(Cs−1 · · · exp(c0t) · · ·))
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almost surely. Further∫ t

0
‖vt ′‖2

Hs+2 dt ′ ≤ Cs+1 exp
(
Cs exp(Cs−1 · · · exp(c0t) · · ·)),

almost surely, completing the inductive step. By induction, (5.5) holds for all s ∈
Z

+ completing the proof. �

PROOF OF LEMMA 5.2. We prove Lemma 5.2 via a bootstrapping argument
in Fourier space. To fix notation, for n ∈ Z, we use f̂ (n) = ∫

T
e−2πinxf (x) dx to

denote the nth Fourier coefficient of f .
On Fourier coefficients, using u∂xu = 1

2 ∂xu
2, equation (2.6) reduces to

dv̂t (n) + 2πin

N
v̂t (n)

N∑
j=1

dW
j
t

(5.6)
+ 2π2n2v̂t (n) dt + πin

∑
m∈Z

v̂t (n − m)v̂t (m)dt = 0

for every n ∈ Z.
By Itô’s formula applied to (5.6)

d|v̂t (n)|2 = v̂t (n) dv̂t (n) dt + v̂t (n)d v̂t (n) + 4π2n2

N
|v̂t (n)|2 dt

= −4π2n2
(

1 − 1

N

)
|v̂t (n)|2 dt(5.7)

+ πin
(
v̂t (n)Bt (n) − v̂t (n)Bt (n)

)
dt,

where v̂t (n) denotes the complex conjugate of v̂t (n), and

Bt(n) = ∑
m∈Z

v̂t (n − m)v̂t (m),

is the nonlinear Fourier coupling in (5.6). Using N > 1 and Young’s inequality in
(5.7) gives

∂t |v̂t (n)|2 ≤ −2π2n2|v̂t (n)|2 + 2πn|v̂t (n)||Bt(n)|
(5.8)

≤ −cn2|v̂t (n)|2 + C|Bt(n)|2
almost surely, where, as before c,C are absolute constants (independent of u0, T ),
which may change from line to line. Thus, for any t ′0 ≥ 0 we have

|v̂t (n)|2 ≤ |v̂t ′0(n)|2e−n2ct + C

∫ t

t ′0
e−cn2(t−t ′)|Bt ′(n)|2 dt ′(5.9)

almost surely, by Gronwall’s inequality.
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By Parseval’s identity we know |Bt(n)| ≤ ‖vt‖2
L2 , and by conservation of energy

[equation (5.2)] this gives |Bt(n)| ≤ ‖u0‖2
L2 almost surely. Thus the second term

in the previous inequality is bounded from above by C
cn2 ‖u0‖4

L2 . Since |ût ′0 |2 ≤
‖ut ′0‖2

L2 ≤ ‖u0‖2
L2 , given a lower bound on t − t ′0, we can certainly arrange the

same inequality for the first term. Thus choosing t1 = T
2 , for instance, and applying

(5.9) with t ′0 = 0, we obtain

sup
t≥t1

|v̂t (n)|2 ≤ C0

n2(5.10)

almost surely, where C0 = C0(‖u0‖L2, T ) is some constant.
Now we bootstrap, and use (5.10) to obtain a better estimate on Bt . Assume

inductively that for some α ∈ Z
+, and tα = α

α+1T , we have

sup
t≥tα

|v̂t (n)|2 ≤ Cα

|n|α+1(5.11)

almost surely. Here Cα = Cα(‖u0‖L2, T ,α) is a constant which we allow to change
from line to line if necessary. We will now establish (5.11) for α + 1. Note that
almost surely, for any t > tα , we have

|Bt(n)| ≤ ∑
m∈Z

|v̂t (n − m)||v̂t (m)| ≤ 2
∑

|m|≥|n|/2

|v̂t (n − m)||v̂t (m)|

≤ 2‖vt‖L2

( ∑
|m|≥|n|/2

|v̂t (m)|2
)1/2

≤ 2‖u0‖L2

( ∑
|m|≥|n|/2

Cα

mα

)1/2

(5.12)

≤ Cα

|n|(α−1)/2 .

Now returning to (5.9) and choosing t ′0 = tα , we see that the second term is
bounded by C

cn2
C0

nα−1 = CC0
cnα+1 . For any t ≥ tα+1, we can certainly arrange the same

inequality for the first term, and hence this establishes (5.11) for α + 1.
Finally note that if (5.11) holds for α, then (5.1) holds for any s < α

2 − 1, com-
pleting the proof. �

6. Proof of Lemma 2.7. In this section, we prove the almost sure Cn(T)

bounds on u stated in Lemma 2.7. We need a few preliminary results first.

PROPOSITION 6.1 (Local existence without resetting). Let ut0 be a C1(T)

valued Ft0-measurable random variable such that

‖ut0‖C1 ≤ U0
1
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almost surely. There exists T0 = T0(U
0
1 ), independent of N , such that the solution

to (2.1)–(2.3) exists on the interval [t0, t0 + T0]. Further if for some n ≥ 1, ut0 is a
Cn(T) valued, Ft0-measurable random variable with

‖ut0‖Cn ≤ U0
n

almost surely, then there exists Un = Un(U
0
n , n) such that

sup
t0≤t≤t0+T0

‖ut‖Cn ≤ Un(6.1)

almost surely.

Proposition 6.1 can be proved using a standard Picard iteration. A proof of the
analogous result for the Navier–Stokes equations appeared in the Appendix of [9]
(see also [7, 8]). The proof of 6.1 is very similar, and we do not provide it here.

LEMMA 6.2. Let I : R → R denote the identity function, d ∈ [0,1) and let
λ ∈ Cn(T) be a periodic function such that ‖∂xλ‖L∞ ≤ d . Then there exists a
constant cn−1 = cn−1(‖∂n−1

x λ‖L∞, d, n) such that for any f ∈ Cn(R),

‖∂n
x [f ◦ (I + λ)]‖L∞ ≤ ‖∂n

x f ‖L∞(1 + ‖∂xλ‖L∞)n + cn−1‖∂n
x λ‖L∞,(6.2)

‖∂n
x (I + λ)−1‖L∞ ≤ cn−1‖∂n

x λ‖L∞,(6.3)

for n > 1.

REMARK. Note that since ‖∂xλ‖L∞ < 1, the function I +λ is a C1(R) diffeo-
morphism of R. The notation (I + λ)−1 in (6.3) refers to the inverse of the C1(R)

diffeomorphism I + λ.

PROOF OF LEMMA 6.2. First note that we can view λ as a periodic function
(with period 1) in Cn(R). Further, by the mean value theorem, for any k ≥ 1 there
exists x ∈ T such that ∂k

xλ(x) = 0. Thus for any k ∈ {1, . . . , n}, we have |∂k
xλ| ≤

c(n)‖∂n
x λ‖L∞ , for some constant c(n) depending only on n. (For k = 0, we need

to subtract the mean of λ for this bound to be valid.)
Now for any two f,g ∈ Cn(R), we have

∂n
x (f ◦ g) =

n∑
m=1

(∂m
x f ) ◦ g

∑
k1+···+km=n

ki≥1

m∏
i=1

∂ki
x g.(6.4)

To prove (6.2), we set g = I + λ. The term in (6.4) corresponding to m = n gives
the first term of 6.2. When m < n, we notice that ki > 1 for at least one i, and
kj ≤ n − 1 for all other j . Thus ‖∂ki

x (I + λ)‖L∞ = ‖∂ki
x λ‖L∞ ≤ c(n)‖∂n

x λ‖L∞ .

The remaining terms ∂
kj
x (I + λ), j �= i in the product can be bounded by cn−1.

This proves (6.2).
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For (6.3), set X = I + λ and A = X−1. Since n > 1, ∂n
x (A ◦ X) ≡ 0, and using

(6.4) we obtain

∂n
x A|X = −1

(∂xX)n

n−1∑
m=1

∂m
x A|X

∑
k1+···+km=n

ki≥1

m∏
i=1

∂ki
x A.

By induction, one can assume that ‖∂m
x A‖L∞ ≤ cn−1 for all m ≤ n − 1. Since

d < 1, 1
‖∂xX‖L∞ ≤ 1

1−d
, and remaining terms can be bounded by the same argument

as before. This proves (6.3). �

LEMMA 6.3. Let n ∈ N, ut0 be a bounded, Cn(T) valued, Ft0-measurable
random variable. For k ∈ {0, . . . , k}, let U0

k be a constant such that ‖ut0‖Ck ≤ U0
k

almost surely. Let u be the solution of (2.1)–(2.3) with initial data ut = ut0 when
t = t0. If n > 1, there exists �′ ∈ Ft0 with P(�′) = 1, T0 = T0(U

0
1 ) > t0 and a

constant cn−1 = cn−1(U
0
n−1, n) such that

‖∂n
x ut (ω

′)‖L∞ ≤ U0
n

(
1 + cn−1(t − t0)

)
(6.5)

for all ω′ ∈ �′, t ∈ [t0, t0 + T0]. For n = 1, (6.5) holds with c0 to be an absolute
constant.

PROOF. For simplicity, we assume t0 = 0. One can check that this assumption
does not affect our proof below. Our first step is to obtain almost sure C1(T) esti-
mates on the Eulerian and Lagrangian displacements. Throughout this section, we
use the convention that cn−1 = cn−1(U

0
n−1, n) is a constant depending only on n

and U0
n−1 (or an absolute constant for n = 1), which can change from line to line.

Let T0 = T0(U
0
1 ) be the local existence time given by Proposition 6.1, and c1 =

c1(U
0
1 ) the almost sure bound on ‖ut‖C1 from (6.1). Let I : R → R be the identity

map, Xi , Ai , respectively, be as in (2.1), (2.2), with τ = T0. Define λi
t = Xi

t − I ,
�i
t = Ai

t − I .
Differentiating (2.1) with respect to x we obtain

‖∂xλ
i
t‖L∞ ≤

∫ t

0
‖∂xus‖L∞(1 + ‖∂xλ

i
t‖L∞)

almost surely, for t ∈ [0, T0]. By Gronwall’s lemma,

‖∂xλ
i
t‖L∞ ≤ ec1t

∫ t

0
‖∂xus‖L∞ ds a.s.

for t ∈ [0, T0]. Recall t ≤ T0, c1 only depends on U1
0 , and for all s ≤ T0,

‖∂xus‖L∞ ≤ U0
1 almost surely. Thus, as T0 is allowed to depend on U0

1 , by making
T0 smaller if necessary we can arrange

‖∂xλ
i
t‖L∞ ≤ c0

∫ t

0
‖∂xus‖L∞ ds and sup

0≤t≤T0

‖∂xλ
i
t‖L∞ ≤ 1

2
(6.6)
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almost surely, for some absolute constant c0. Now

∂x�
i
t = ∂xA

i
t − 1 = 1

(∂xX
i
t ) ◦ Ai

t

− 1

= − (∂xλ
i
t ) ◦ Ai

t

1 + (∂xλ
i
t ) ◦ Ai

t

almost surely. Thus we must have

‖∂x�
i
t‖L∞ ≤ 2‖∂xλ

i
t‖L∞(6.7)

almost surely for t ∈ [0, T0]. Using (2.3) and (6.7) we have

‖∂xut‖L∞ ≤ 1

N

N∑
i=1

‖∂xu0‖L∞(1 + ‖∂x�
i
t‖L∞)

≤ 1

N

N∑
i=1

‖∂xu0‖L∞(1 + 2‖∂xλ
i
t‖L∞)

≤ ‖∂xu0‖L∞ + 2c0

∫ t

0
‖∂xus‖L∞ ds

almost surely for t ∈ [0, T0]. This proves (6.5) for n = 1.
For n > 1, local existence (Proposition 6.1) guarantees that ‖ut‖Cn−1 ≤ cn−1 al-

most surely for t ∈ [0, T0], where cn−1 = cn−1(U
0
n−1, n). Assume by induction that

the bound (6.5) holds for some integer n − 1. This bound and equation (2.1) im-
mediately imply that ‖∂xλ

i
t‖Cn−2 ≤ cn−1 almost surely12 for t ∈ [0, T0]. Equations

(6.6) and (6.3) will imply ‖∂x�
i
t‖Cn−2 ≤ cn−1 almost surely for t ∈ [0, T0].

Thus using equations (2.1) and (6.2) we obtain

‖∂n
x λi

t‖L∞ ≤
∫ t

0
‖∂n

x [us ◦ (I + λi
s)]‖L∞ ds

≤ cn−1

∫ t

0
[‖∂n

x us‖L∞ + ‖∂n
x λi

s‖L∞]ds

almost surely. Using Gronwall’s lemma this implies

‖∂n
x λi

t‖L∞ ≤ cn−1

∫ t

0
‖∂n

x us‖L∞ ds(6.8)

12We remark that our somewhat unusual notation ‖∂xλi
t‖Cn−2 instead of ‖λi

t‖Cn−1 is necessary.

This is because it is impossible to obtain almost sure bounds on ‖λi
t‖L∞ . However, as our argument

shows, we can obtain almost sure bounds on ‖∂k
xλi

t‖L∞ for any k ≥ 1.
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almost surely. Here we absorbed the constant ecn−1t into cn−1, which is valid as
t ≤ T0 = T0(U

0
1 ). Now

‖∂n
x ut‖L∞ ≤ 1

N

N∑
i=1

(‖∂n
x u0‖L∞(1 + ‖∂x�

i
t‖L∞)n + cn−1‖∂n

x �i
t‖L∞

)

≤ 1

N

N∑
i=1

(‖∂n
x u0‖L∞(1 + 2‖∂xλ

i
t‖L∞)n + cn−1‖∂n

x λi
t‖L∞

)

≤ ‖∂n
x u0‖L∞(1 + cn−1t) + cn−1

∫ t

0
‖∂n

x us‖L∞ ds

almost surely, where we used (6.3) and (6.7) to obtain the second inequality, and
equations (6.6) and (6.8) to obtain the third inequality. Now Gronwall’s lemma
gives (6.5), where we again absorb the exponential factor ecn−1t into (1 + cn−1t),
by replacing cn−1 with a larger constant, which by our convention we still denote
by cn−1. �

PROOF OF LEMMA 2.7. By Proposition 6.1, existence will follow if we es-
tablish (2.11) for n = 1. We prove (2.11) by induction. Since the constant c0 in
Lemma 6.3 is absolute, the proof for n = 1 is identical to the proof of the inductive
step. Thus we only prove the inductive step.

Assume that (2.11) holds for n − 1, choose cn−1 = cn−1(Un−1) to be the con-
stant from Lemma 6.3. Thus whenever δt < T0,∥∥∂n

x u
δt

(k+1)δt

∥∥
L∞ ≤ (1 + cn−1δt )‖∂n

x u
δt

kδt
‖L∞ a.s.(6.9)

holds for all k ≤ T0
δt

. Iterating this we have

‖∂n
x u

δt
t ‖L∞ ≤ (1 + cn−1δt )

T0/δt ‖∂n
x u0‖L∞ a.s.

for all t ≤ T0. Thus we choose Un to be given by

Un = ‖∂n
x u0‖L∞ sup

δ>0
(1 + cn−1δ)

T0/δ.

From (4.3) we see that
∫
x u

δt
t is conserved almost surely. Since u

δt
t is periodic,

a bound on ‖∂n
x u

δt
t ‖L∞ will give us a bound on ‖uδt

t ‖Cn , completing the proof. �

7. Proof of Proposition 2.8. In this section we prove Proposition 2.8. We
reintroduce an N as a superscript to explicitly keep track of the dependence of our
processes on N , and prove convergence as N → ∞.

PROOF OF PROPOSITION 2.8. Let wN
t = vN

t − ub
t . Then (1.1) and (2.6) give

dwN
t + wN

t ∂xv
N
t dt + ub

t ∂xw
N
t dt − 1

2
∂2
xwN

t dt + ∂xv
N
t

N

N∑
j=1

dW
j
t = 0.(7.1)
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Thus, by Itô’s formula

1

2
d‖wN

t ‖2
L2 +

(∫
T

(wN
t )2 ∂xv

N
t dx

)
dt

+
(∫

T

ub
t w

N
t ∂xw

N
t dx

)
dt + 1

2
‖∂xw

N
t ‖2

L2 dt

+
(∫

T

wN
t ∂xv

N
t dx

)(
1

N

N∑
j=1

dW
j
t

)
dt

= 1

2N
‖∂xv

N
t ‖2

L2 dt.

Taking expectations and integrating by parts we obtain

∂tE‖wN
t ‖2

L2 + E
[∫

T

(wN
t )2(2 ∂xv

N
t − ∂xu

b
t ) dx

]
+ E‖∂xw

N
t ‖2

L2

= 1

N
E‖∂xv

N
t ‖2

L2 .

By Lemma 2.6 and the Sobolev embedding theorem, there exists a constant C =
C(s,‖u0‖Hs ), independent of N , such that

sup
t≥0

‖∂xvt‖L∞ ≤ C

almost surely. It is well known that the same estimate holds for ∂xu
b
t . Further, since

E‖∂xvt‖2
L2 ≤ sup� ‖∂xv‖2

L∞ , making C larger if necessary we have

sup
t≥0

E‖∂xvt‖2
L2 ≤ C.

Thus

∂tE‖wN
t ‖2

L2 ≤ V

(
E‖wN

t ‖2
L2 + 1

N

)
.

and, since w0 = 0, Gronwall’s lemma gives

E‖wN
t ‖2

L2 ≤ 1

CN
(eCt − 1)

finishing the proof. �
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