CMU Campus
Center for                           Nonlinear Analysis
CNA Home People Seminars Publications Workshops and Conferences CNA Working Groups CNA Comments Form Summer Schools Summer Undergraduate Institute PIRE Cooperation Graduate Topics Courses SIAM Chapter Seminar Positions Contact
Publication 18-CNA-020

A design principle for actuation of nematic glass sheets

Amit Acharya
Dept. of Civil & Environmental Engineering
Center for Nonlinear Analysis
Carnegie Mellon University
Pittsburgh, PA 15215

Abstract: A continuum mechanical framework is developed for determining a) the class of stress-free deformed shapes and corresponding director distributions on the undeformed configuration of a nematic glass membrane that has a prescribed spontaneous stretch field and b) the class of undeformed configurations and corresponding director distributions on it resulting in a stress-free given deformed shape of a nematic glass sheet with a prescribed spontaneous stretch field. The proposed solution rests on an understanding of how the Lagrangian dyad of a deformation of a membrane maps into the Eulerian dyad in three dimensional ambient space. Interesting connections between these practical questions of design and the mathematical theory of isometric embeddings of manifolds, deformations between two prescribed Riemannian manifolds, and the slip-line theory of plasticity are pointed out.

Get the paper in its entirety as  18-CNA-020.pdf

«   Back to CNA Publications