Center for Nonlinear Analysis
CNA Home
People
Seminars
Publications
Workshops and Conferences
CNA Working Groups
CNA Comments Form
Summer Schools
Summer Undergraduate Institute
PIRE
Cooperation
Graduate Topics Courses
SIAM Chapter Seminar
Positions
Contact |
Publication 18-CNA-013
Linan Zhang Hayden Schaeffer Abstract: One way to understand time-series data is to identify the underlying dynamical system which generates it. This task can be done by selecting an appropriate model and a set of parameters which best fits the dynamics while providing the simplest representation (i.e. the smallest amount of terms). One such approach
is the sparse identification of nonlinear dynamics framework [6] which uses a sparsity-promoting algorithm that iterates between a partial least-squares fit and a thresholding (sparsity-promoting) step. In this work, we provide some theoretical results on the behavior and convergence of the algorithm proposed in [6]. In particular, we prove that the algorithm approximates local minimizers of an unconstrained $\ell^0$-penalized least-squares problem. From this, we provide sufficient conditions for general convergence, rate of convergence, and conditions for one-step recovery. Examples illustrate that the rates of convergence are sharp. In addition, our results extend to other algorithms related to the algorithm in [6], and provide theoretical verification to several observed phenomena.Get the paper in its entirety as 18-CNA-013.pdf |