next up previous contents
Next: Another choice for and Up: Free Energies for Structured Previous: Limiting behavior of the

Proof of Proposition 2.2

From the analysis in Subsection 2.4, it suffices to consider the case $%
\kappa =\emptyset $, and Proposition 2.1 reduces our task to veryfying: for each $(\emptyset ,g,G)\in Std((0,1))$, there exists a sequence of simple deformations satisfying $(f_m,\nabla
f_m)\rightarrow (g,G)$ and

 \begin{displaymath}\lim\limits_{m\rightarrow \infty }\sum\limits_{z\in \Gamma
(f_m)}h([f_m](z))=L\int\limits_0^1(\nabla g(x)-G(x))dx.
\end{displaymath} (9)

Our first step in constructing such a sequence is to consider the case $%
\nabla g(x)=G(x)$ for all $x\in (0,1)$. In this case, $(\emptyset ,g,\nabla
g)=$ $(\emptyset ,g,G)\in Std((0,1))$, and we may put $\kappa _m:=\emptyset $and fm:=g for every positive integer m. Thus, $\Gamma (f_m)=\emptyset $and $\sum\limits_{z\in \Gamma (f_m)}h([f_m](z))=0=\int_0^1(\nabla
g(x)-G(x))\,dx$ for all m, so that (2.9) is evident.

The remaining case to consider is when there exists $x_0\in (0,1)$ for which $\nabla g(x_0)$ $\neq G(x_0).$ The continuity of $\nabla g$ and of G and the relations $\nabla g(x)=\det \nabla g(x)\geq \det G(x)=G(x)$ for all $x\in (0,1)$ imply that

 \begin{displaymath}I:=\int\limits_0^1(\nabla g(x)-G(x))dx>0.
\end{displaymath} (10)

By the definition $L:=\liminf_{\zeta \rightarrow 0+}\frac{h(\zeta )}\zeta $, we may choose $m\mapsto \zeta _m>0$ such that $\lim_{m\rightarrow \infty
}\zeta _m=0$ and $\lim_{m\rightarrow \infty }\frac{h(\,\zeta _m\,)}{\zeta _m}%
=L.$ Moreover, we may assume that $m\mapsto \zeta _m$ is strictly decreasing and, because I>0, that $\zeta _m<I$ for all m. Let m now be given, and note that, because the function $y\mapsto $ $\int_0^y(\nabla
g(x)-G(x))\,dx$ is continuous, we may choose a number xq1 $\in
(0,1) $ such that

 \begin{displaymath}\int_0^{x_{q_{_1}}}(\nabla g(x)-G(x))\,dx=\zeta _m.
\end{displaymath} (11)

For x in the interval (0,xq1), put

 \begin{displaymath}f_m(x):=g(0+)+\int\limits_0^xG(\xi )d\xi
\end{displaymath} (12)

and note that $\nabla f_m(x)=G(x)$ and

\begin{eqnarray*}0 &\leq &g(x)-f_m(x)=\left( g(0+)+\int\limits_0^x\nabla g(\xi )...
...q
\int\limits_0^{x_{q_1}}(\nabla g(\xi )-G(\xi ))d\xi =\zeta _m.
\end{eqnarray*}


To define fm on (xq1,1), we first consider the case

\begin{displaymath}\int_{x_{q_{_1}}}^1(\nabla g(x)-G(x))\,dx\leq \zeta _m.
\end{displaymath}

For $x\in (x_{q_1},1)$ we define

 \begin{displaymath}f_m(x):=g(x_{q_1})+\int\limits_{x_{q_1}}^xG(\xi )d\xi
\end{displaymath} (13)

and we note as above that $\nabla f_m(x)=G(x)$ and $0\leq g(x)-f_m(x)\leq
\zeta _m.$ Relations (2.12) and (2.13) tell us that

\begin{eqnarray*}f_m(x_{q_1}+)-f_m(x_{q_1}-) &=&g(x_{q_1})-\left(
g(0+)+\int\lim...
...\int\limits_0^{x_{q_1}}(\nabla g(\xi )-G(\xi ))d\xi =\zeta _m>0,
\end{eqnarray*}


and it follows that $\Gamma (f_m)=\{x_{q_1}\}$ and $[f_m](x_{q_1})=\zeta
_m>0.$ Consequently,
$(\{x_{q_1}\},f_m)\in Sid((0,1))$, the condition (ii) in Proposition 2.2 is satisfied, and

 \begin{displaymath}\left\vert f_m(x)-g(x)\right\vert \leq \zeta _m\ {\rm and }\ \left\vert \nabla
f_m(x)-G(x)\right\vert =0\qquad
\end{displaymath} (14)

for all $x\in (0,1)\,\backslash \,\{x_{q_1}\}.$

In the remaining case

\begin{displaymath}\int_{x_{q_{_1}}}^1(\nabla g(x)-G(x))\,dx>\zeta _m,
\end{displaymath}

we may choose xq2 $\in (x_{q_1},1)$ such that

\begin{displaymath}\int_{x_{q_{_1}}}^{x_{q_2}}(\nabla g(x)-G(x))\,dx=\zeta _m,
\end{displaymath}

and for x in the interval (xq1,xq2) we define fm(x) again using the formula (2.13), so that the relations (2.14) are satisfied for all $x\in (x_{q_1},x_{q_2})$ and $[f_m](x_{q_1})=\zeta _m>0$. If we now put $M_m:=\lfloor \frac I{\zeta _m}$, i.e., the greatest integer less than or equal to the number $\frac I{\zeta _m}>1$, then we may choose for each $k\in \left\{ 1,2,\ldots ,M_m\right\} $ a point $x_{q_k}\in (0,1)$such that

 \begin{displaymath}x_{q_1}<\cdots <x_{q_k}<x_{q_{k+1}}<\cdots <x_{q_{M_m}},
\end{displaymath} (15)


 
$\displaystyle \int_0^{x_{q_1}}(\nabla g(x)-G(x))\,dx$ = $\displaystyle \int_{x_{q_{_1}}}^{x_{q_2}}(\nabla
g(x)-G(x))\,dx$  
  = $\displaystyle \cdots =\int_{x_{q_{M_m-1}}}^{x_{q_{M_m}}}(\nabla g(x)-G(x))\,dx=\zeta _m,$ (16)

and

 \begin{displaymath}\int_{x_{q_{M_m}}}^1(\nabla g(x)-G(x))\,dx\leq \zeta _m.
\end{displaymath} (17)

We now define $\kappa _m:=\left\{ x_{q_1},\cdots ,x_{q_k},x_{q_{k+1}},\cdots
,x_{q_{M_m}}\right\} $ and, setting xq0:=0 and xqMm+1:=1,we put

 \begin{displaymath}f_m(x):=g(x_{q_k})+\int_{x_{q_k}}^{x_{q_{k+1}}}G(\xi )\,d\xi ...
...{k+1}})\ { \rm and }\ k\in \left\{ 0,1,2,\ldots
,M_m\right\} .
\end{displaymath} (18)


This definition yields a simple deformation $(\kappa _m,f_m)\in
Sid((0,1))\ $with $\Gamma (f_m)=\kappa _m$, $[f_m](z)=\zeta _m$ for all $%
z\in \Gamma (f_m),$ and satisfying (2.14) for all $x\in
(0,1)\backslash \kappa _m$. We now may write

\begin{eqnarray*}\sum\limits_{z\in \Gamma (f_m)}h([f_m](z)) &=&\sum\limits_{z\in...
...ta _m)}{\zeta _m},(\frac{I\,}{%
\zeta _m}+1)h(\zeta _m)\right) .
\end{eqnarray*}


In other words, for all positive integers m,

\begin{displaymath}\begin{array}{ll}
\frac{\,h(\zeta _m)}{\zeta _m}\int_0^1(\nab...
...}{\zeta _m}(\int_0^1(\nabla g(x)-G(x))dx+\zeta _m)
\end{array}\end{displaymath}

and, letting $m\rightarrow \infty $, we obtain the desired relation(2.9).


next up previous contents
Next: Another choice for and Up: Free Energies for Structured Previous: Limiting behavior of the
Nancy J Watson
1999-09-30