|  Center for                              Nonlinear AnalysisCNA Home
  People
  Seminars
  Publications
  Workshops and Conferences
  CNA Working Groups
  CNA Comments Form
  Summer Schools
  Summer Undergraduate Institute
  PIRE
  Cooperation
  Graduate Topics Courses
  SIAM Chapter Seminar
  Positions
  Contact | 
Publication 12-CNA-002
   Asymptotic stability of solitary waves in the Benney-Luke model of water waves  Tetsu Mizumachi Abstract: We study asymptotic stability of solitary wave solutions in the one-dimensional Benney-Luke equation, a formally valid approximation for describing two-way water wave propagation. For this equation, as for the full water wave problem, the classic variational method for proving orbital stability of solitary waves fails dramatically due to the fact that the second variation of the energy-momentum functional is infinitely indefinite. We establish nonlinear stability in energy norm under the spectral stability hypothesis that the linearization admits no non-zero eigenvalues of non-negative real part. We also verify this hypothesis for waves of small energy. Get the paper in its entirety as | 
