CMU Campus
Center for                           Nonlinear Analysis
CNA Home People Seminars Publications Workshops and Conferences CNA Working Groups CNA Comments Form Summer Schools Summer Undergraduate Institute PIRE Cooperation Graduate Topics Courses SIAM Chapter Seminar Positions Contact
Publication 00-CNA-09

Relaxation results in micromagnetics

Irene Fonseca
Department of Mathematical Sciences
Carnegie Mellon Universit
Pittsburgh, PA 15213
email: fonseca@cmu.edu

Giovanni Leoni
Dipartimento di Scienze e Tecnologie Avanzate
Università del Piemonte
Orientale, Alessandria, Italy 15100
email: leoni@unipmn.it


Abstract:

In this paper an integral representation formula is obtained for the relaxed energy of a large ferromagnetic body. With $\Omega\subset\mathbb{R} ^{N}$ being the reference configuration of the body and $m:\Omega\rightarrow S^{N-1}$ the magnetization, consider the energy

\begin{displaymath}F(m):=\int_{\mathbb{R} ^{N}}f(x,\chi_{\Omega}(x)\,m(x),u(x),\nabla u(x))\,dx
\end{displaymath}

where $(\chi_{\Omega}\,m,\nabla u)$ satisfies Maxwell's equations, i.e. $u\in
H^{1}(\mathbb{R} ^{N})$ is the unique solution of $\Delta u+\mathrm{div}%
(\chi_{\Omega}\,m)=0$ in $\mathbb{R} ^{N}$. If f is a Carathéodory function satisfying very mild growth conditions then it is shown that the relaxation of F with respect to $L^{\infty}$-$w\ast$ convergence in $L^{\infty}(\Omega;\overline{B(0,1)})$ is given by

\begin{displaymath}\mathcal{F}(m)=\int_{\Omega}Q_{M}\,f(x,m(x),u(x),\nabla u(x))...
...t
_{\mathbb{R} ^{N}\setminus\Omega}f(x,0,u(x),\nabla u(x))\,dx
\end{displaymath}

where $Q_{M}\,f$ is the quasiconvex envelope of f relative to the underlying partial differential equations. This class of integrands includes those of the type

\begin{displaymath}f(x,m,u,h)=\varphi(x,m,u)+\psi(x,u,h)
\end{displaymath}

with $\psi(x,u,\cdot)$ non convex, thus extending the available relaxation results in micromagnetics.

Get the paper in its entirety as