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Abstract: An antimagic labeling of a graph with m edges and n vertices
is a bijection from the set of edges to the integers 1, ..., m such that all n
vertex sums are pairwise distinct, where a vertex sum is the sum of labels
of all edges incident with the same vertex. A graph is called antimagic if it
has an antimagic labeling. In this article, we discuss antimagic properties
of graphs that contain vertices of large degree. We also show that graphs
with maximum degree at least n — 3 are antimagic. © 2012 Wiley Periodicals, Inc. J.
Graph Theory 72: 367-373, 2013
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1. INTRODUCTION

All graphs in this article are finite, undirected, and simple. To avoid repetition, unless
specified otherwise, a graph G has m edges and n vertices. We denote by I'(v) and dg (v)
(dropping the subscripts when the graph G is clear from context) the neighborhood and
the degree, respectively, of a vertex v € V (G).

Forsome S C Z,lett : E(G) — Sbealabeling of the edges of a graph G. The labeling
7 induces a weight, w, : V(G) — Z, on the vertices of G, where w, (v) = ) . T(uv).
Journal of Graph Theory
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One may then specify the set S and/or put restrictions on the function t and ask if w;
satisfies a specified property. There are various results and conjectures using this setup
(see, e.g. [6,7]). In this article, we consider labelings where S = {1,...,m} and 7 is a
bijection. Such a labeling is called antimagic if w, (v) # w, (u) for all distinct u, v € V.
The graph G is antimagic if it permits an antimagic labeling.

It is conjectured in [3] that

Conjecture 1.1. Every connected graph, but K>, is antimagic.

While the general question is still open, probabilistic (Alon, Kaplan, Roditty, and
Yuster [1]), combinatorial (Cranston [2]), and algebraic (Hefetz [4]; Hefetz, Saluz, and
Tran [5]) arguments have been used to confirm the conjecture for certain classes of
graphs. One such class is that of graphs with large maximum degree. In [1], Alon et al.
show the following result.

Theorem 1.2. [f G has n > 4 vertices and A(G) > n — 2, then G is antimagic.

They also note that it is still open whether every connected graph with A(G) > n —k
and n > ng (k) is antimagic.
In this article, we provide a simple constructive proof of the following theorem:

Theorem 1.3. If G is a graph on nvertices, A(G) = d(x) = n — k, where k < n/3, and
there exists y € V such that T'(x) UT'(y) =V, then G is antimagic.

This not only provides a simpler proof of Theorem 1.2 but arguments in the proof may
be modified to show the following theorem:

Theorem 1.4. If G is connected, has n > 9 vertices, and A(G) > n — 3, then G is
antimagic.

In the next section, we present a lemma which provides us with the basic framework
that we exploit in proving both Theorem 1.3 (Section 3) and Theorem 1.4 (Section 4).

2. FRAMEWORK

We reproduce the proof of this well-known result which also appears in [1].

Lemma 2.1. If A(G) = n — 1, then G is antimagic.

Proof. Let v, be a vertex of degree n — 1 and let T be a breadth-first spanning tree
rooted at vy (in this case, T is a star). Let G = G\ T. Let v’ : E(G') —» {1,...,m —
n+ 1} be an arbitrary (bijective) labeling of the edges of G’ and let w' = w,.. Order
the n — 1 vertices V \ {vo} such that w'(v;) > w'(v;)forl <i< j<n—1.Lett : E —
{1, ..., m} be an extension of 7’ such that t(vov;)) =m —i+1fori=1,...,n—1.
Then, fori < j,

we) =we)tm+1—i>w@)+m+1—i>w@)+m+1—j=w ().

In addition, edges incident to vy receive the largest n — 1 labels. Thus, w. (v;) > w; (v;)
forall0 <i < j <n—1and G is antimagic. |

The above proof highlights the major steps in proving Theorems 1.3 and 1.4. The key
idea is to isolate a breadth-first spanning tree T and reserve the largest n — 1 labels for
it. First of all, this guarantees (given lower bounds on A (G)) that the root vertex has the
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highest possible vertex sum. In addition, after arbitrarily labeling the remaining edges
(or, in general, assigning arbitrary, but bounded, partial weights to the other vertices), we
may label the edges of T so that all other vertex sums are distinct.

However, when A(G) < n — 1, the above simple labeling of 7 may not suffice. To
fix this problem, we alter the above labeling by shifting the labels on some edges. We
prove that this shifting procedure remedies some instances of the problem when 7' has
at most two nonroot vertices which are not leaves. The analysis seems to get messy after
that.

3. PROOF OF THEOREM 1.3

Let x be a vertex of degree A(G) =n — k, where kK <n/3, and let y be such that
F'x)UT'(y) =V. Let T be a breadth-first spanning tree rooted at x and visiting y
first. Therefore, all vertices in V \ {x, y} are leaves in T and the degree sequence
of Tis (n—k,k, 1,...,1). Let G = G\ T. Fix an arbitrary bijection 7’ : E(G') —
{1,...,m—n+1}andletw = w,.

Lemma 3.1. For any extension 1 : E(G) — {1,...,m} of t/ and all u # x, w,(x) >
we (u).

Proof of Lemma. First note that

n—k

wr(x) > Z(m—n—l—l—i—i).

i=1

Letu € V, u # x. Then,

we () =w @) + Y T(uv)

vel'r (u)
dgr (u)—1 dr (u)—1
< Y m-n+l-D+ Y (m—i) (1)
i=0 i=0
n—2k—1 k—1
< Y m—n+1-i+Y (m—i )
i=0 i=0
n—2k—1 n—k—1 k
= > (m—n+24+D+ Y (m—n+2+i)— (n—2k)2—|—2(2)
i=0 i=n—2k
n—k—1 k
. 2
< ;):(m—n+2+t)—k +2(2) 3)
1=
<w;(x) —k.
In (1), we bound w, (1) from above by taking the largest d¢' (1) labels from {1, ..., m —
n+ 1} and the largest dr(u) labels from {m —n+2, ..., m}. However, as dg(u) =

de (1) + dy (u) < n — k, this sum is maximized when dr («) is as large as possible. We
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then obtain (2) by noting that dy (1) < k for u # x. We rewrite the expression in a more
convenient form and use the fact that n > 3k to obtain (3), thereby proving the lemmall

Now, let V' =V \ {x,y} = {vi, ..., v,—2} where the vertices v; € V' are ordered such
that w'(v;) > w'(v) for 1 < j < k <n— 2. Let ¢; denote the unique, as yet unlabeled,
edge incident to v; in T (so, e; = xv; or e; = yv;). As in the proof of Lemma 2.1, we
want an extension t for which 7 (e;) > 7(ex) whenever j < k. This gives us one degree
of freedom for the label of edge xy. To this end, we define a sequence of extensions

;. E— [m]oft/fori=0,...,n—2, where
m—i, if e = xy
Tie)=1m—j+1 ife=e; j<i
m— j, ife=ej, j>1i.

Notice that 7; may be obtained from 7;_; by exchanging the labels on xy and e;,
essentially incrementing the vertex sum at v; and potentially decrementing the vertex sum
at y. Letting w; = wy,, we immediately observe that w;(v;) > w;(v;) for all i whenever
J < k. Therefore, we need only to show that the vertex sum at y is distinct from vertex
sums of vertices in V’ for some extension 7,. We not only show the existence of such
an index ¢, but we find one in which y is, in some sense, in its “natural position.” To
be precise, we pick g such that the order imposed on the edges {xy, ei, ..., e,—2} by 7,
matches the order imposed on the vertices {y, vi, ..., v,—2} by w,. In other words, as the
label 7, (xy) = m — q < 1,(e;) for g edges ¢; € T, we also have exactly g vertices v; € V'
whose vertex sum exceeds that of y.

LetZ ={i : w;(y) > w;(viy1)}andletZ* = 7 U {n — 2}. Let g be the smallest member
of 7*. If ¢ = 0, then wo(y) > wo(vy) ... > wy(v,—2). Otherwise,

Wq(Vq+1) < Wq()’) =< qul()/) =< qul(vq) = Wq(Vq) -1< Wq(vq)-

Therefore, 7, is an antimagic labeling and G is antimagic, completing the proof of
Theorem 1.3.

Corollary 3.2. If A(G) = n — 2, then G is antimagic.

Proof. 1If G is connected, the proof follows from Theorem 1.3. Otherwise, G has an
isolated vertex and a component G” on n” = n — 1 vertices with A(G”) = n” — 1. Then
the result follows from Lemma 2.1. |

4. PROOF OF THEOREM 1.4

Let x be a vertex of degree n — 3 and let a, b be the two nonneighbors of x. We divide the
proof into three cases, two of which are easily resolved by applying (a slight modification
of) the argument in Theorem 1.3. The proof of the third case follows in a similar vein
but is a bit more involved. The restriction that n > 9 is needed here as we apply a variant
of Lemma 3.1 (with &k = 3). It is simple (but time consuming) to verify the theorem for
n<9.

Case 1: There is a vertex y such thata, b € I'(y).

This follows via a direct application of Theorem 1.3.

Case 2: I'(a) = {b}.
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Assign the label 1 to the edge ab. As the vertex sum at a will be 1, it is guaranteed to
be less than that of other vertices. A slight modification of the argument from Theorem
1.3 can then be applied to G’ = G \ {a}.

Case 3: Cases 1 and 2 do not hold.

As G is connected, there are two vertices y; # b, y, #% a such that ay;, by, € E(G).
Let T be a breadth-first spanning tree rooted at x and visiting y; and y, first. Observe
that the degree sequence in T is (n — 3,2,2,1,...,1). Let G’ = G\ T, fix an arbitrary
bijection v’ : E(G') — {1,...,m —n+ 1}, and retain the largest n — 1 labels for the
edges in 7. Let w = w, be the induced partial weight after this initial labeling. Even
though T has three non-leaves, the argument in Lemma 3.1 applies and w (x) > w (1)
for all u € V, u # x and all extensions 7 : E(G) — {1, ..., m}of T’.

Let V' =V \ {x,y1,¥2} = {vi, ..., va—3} Where the vertices v; € V' are ordered such
that w'(v;) > w'(vj;1). Let ¢; be the unique edge in 7T incident to v;. To obtain an
antimagic labeling, we once again look for an extension 7 satisfying t(e;) > t(ex)
whenever j < k. However, this time, we have two degrees of freedom as we are free to
choose the labels on xy; and xy,. We begin by defining the following (n — 1)(n — 2)
different extensions of 7/, and apply an argument like the one used in the proof of Theorem
1.3, although modifications are required in some cases.

Lett,;: E— {1,...,m}, wherei, j€{0,...,n—2},i# jsatisfy

/(e) ifee G
m—i, if e = xy,
. _)m— if e =xy,
GO Vw141, ife=e; t <minG, j)
m—t, if e = ¢;; min(i, j) <t < max(i, j) and

m—t—1, ife=e; t>max(, j).

Let ij = wy,,. We first observe that w? ) > W;(V/) whenever k < [. Therefore, we
need only find a pair p, ¢ for which w}(y;) and w/(y,) are unequal and distinct from
wh(ve) forallk € {1, ..., n — 3}. We find an index ¢ by starting from 7 ; and considering
extensions of the form 7 ;, that is, by shifting the label on xy, to find a “natural position”
for y,. Next, we range over the first index to find a suitable value for p.

LetJ = {j : w)(3») > w)(v;)}and T* = J U {n — 2}. Let g be the smallest member
of 7*. Now let U = V' U {y,} = {u1, ..., up_»}, where

Vi, fork < gq
w, = { y2, fork=¢q and
Vi—1, fork > gq.

Observe that, after renaming the vertices, we have wg(uk) > w2(uk+1) foralll <k <
n — 3. Furthermore, under 7o 4, the edge joining a vertex u to its parent in T receives the
label m — k. Now, with 7, as our new starting point, we consider extensions obtained
by shifting the label on xy;. As the label on xy; is decremented on the gth shift, these
extensions will be of the form 7; ,, where ¢’ = g fori < gand ¢’ =g — 1 fori > g. Let
I={i: w;/ o) > W;,(MH_])} and Z* = Z U {n — 2}. Let p be the smallest member of
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FIGURE 1. lllustrative example for shifting. Note that WSZ1 (b) = Wé,l1 (y2).

Z*. The choice of p guarantees that

However, note that as u, = y, is not a leaf in 7', its weight is incremented not only when
i = ¢ (that is, the label on edge xy, is incremented) but also when u; = b (the label on
edge by, is incremented). It is possible, therefore, that WZ’ (ug) > wZ, (ug—1). We check
for and correct these instances by considering the following cases: (for brevity’s sake,
we have chosen not to segregate the cases where ¢’ = 0. Inequalities seemingly referring

wg,(up) > wg,(yl) > wf;, (Upt1).

to u_; are to be considered void.)

(1) Case A: u,_1 #b.

Here, 7, ; itself is an antimagic labeling. Note that, by definition of 7, we have

2_1(uq—l) > Wg_l(y2),

and, as u,_1 # b, it follows that

(2) CaseB: u,_; =b.

wh_ (g 1) = wh (g ) +2 = wy  00) +2=wh () + 1

wi(ug—1) = wy(y2) +2

W0 Gtg—1) = w)ug—1) = W) +2 = wh(y2) + 1.

On the other hand, if p > ¢, then (4) implies

Note that, in this case, we can only guarantee

WHB) = w)() + 1.
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(the shift increments the label on e,_; and decrements that of xy,). Hence, if p < ¢,
it follows from (5) that
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Further, note that the label on by, is incremented if p > ¢ — 1 and the label on xy,
is incremented if p > g.

So, if p < g — 1, the label on neither of the edges by, and xy, is affected and
wy(b) = wi(y2) + 1.

If p = g — 1, both vertex sums are incremented by one and the required inequality
still holds.

The remaining case is then p > gq. Note here that the labels on both by, and xy, have
been incremented and, thus, the vertex sum at b goes up by 1 whereas that of y,
goes up by 2, potentially causing an overlap. If so, that is, if qull b) = wal 0n),
consider instead the labeling 7, ,—», essentially swapping the labels on by, and
xy,. This swap decreases the vertex sum at b by 1 and leaves all other vertex sums
unchanged, thereby avoiding the conflict (see Fig. 1).

This completes the proof of Theorem 1.4.
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