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Abstract: An antimagic labeling of a graph with m edges and n vertices
is a bijection from the set of edges to the integers 1, . . . , m such that all n
vertex sums are pairwise distinct, where a vertex sum is the sum of labels
of all edges incident with the same vertex. A graph is called antimagic if it
has an antimagic labeling. In this article, we discuss antimagic properties
of graphs that contain vertices of large degree. We also show that graphs
with maximum degree at least n − 3 are antimagic. C© 2012 Wiley Periodicals, Inc. J.

Graph Theory 72: 367–373, 2013
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1. INTRODUCTION

All graphs in this article are finite, undirected, and simple. To avoid repetition, unless
specified otherwise, a graph G has m edges and n vertices. We denote by �G(v) and dG(v)

(dropping the subscripts when the graph G is clear from context) the neighborhood and
the degree, respectively, of a vertex v ∈ V (G).

For some S ⊆ Z, let τ : E(G) → S be a labeling of the edges of a graph G. The labeling
τ induces a weight, wτ : V (G) → Z, on the vertices of G, where wτ (v) = ∑

uv∈E τ (uv).

Journal of Graph Theory
C© 2012 Wiley Periodicals, Inc.

367



368 JOURNAL OF GRAPH THEORY

One may then specify the set S and/or put restrictions on the function τ and ask if wτ

satisfies a specified property. There are various results and conjectures using this setup
(see, e.g. [6, 7]). In this article, we consider labelings where S = {1, . . . , m} and τ is a
bijection. Such a labeling is called antimagic if wτ (v) �= wτ (u) for all distinct u, v ∈ V .
The graph G is antimagic if it permits an antimagic labeling.

It is conjectured in [3] that

Conjecture 1.1. Every connected graph, but K2, is antimagic.

While the general question is still open, probabilistic (Alon, Kaplan, Roditty, and
Yuster [1]), combinatorial (Cranston [2]), and algebraic (Hefetz [4]; Hefetz, Saluz, and
Tran [5]) arguments have been used to confirm the conjecture for certain classes of
graphs. One such class is that of graphs with large maximum degree. In [1], Alon et al.
show the following result.

Theorem 1.2. If G has n > 4 vertices and �(G) ≥ n − 2, then G is antimagic.

They also note that it is still open whether every connected graph with �(G) ≥ n − k
and n > n0(k) is antimagic.

In this article, we provide a simple constructive proof of the following theorem:

Theorem 1.3. If G is a graph on n vertices, �(G) = d(x) = n − k, where k ≤ n/3, and
there exists y ∈ V such that �(x) ∪ �(y) = V , then G is antimagic.

This not only provides a simpler proof of Theorem 1.2 but arguments in the proof may
be modified to show the following theorem:

Theorem 1.4. If G is connected, has n ≥ 9 vertices, and �(G) ≥ n − 3, then G is
antimagic.

In the next section, we present a lemma which provides us with the basic framework
that we exploit in proving both Theorem 1.3 (Section 3) and Theorem 1.4 (Section 4).

2. FRAMEWORK

We reproduce the proof of this well-known result which also appears in [1].

Lemma 2.1. If �(G) = n − 1, then G is antimagic.

Proof. Let v0 be a vertex of degree n − 1 and let T be a breadth-first spanning tree
rooted at v0 (in this case, T is a star). Let G′ = G \ T . Let τ ′ : E(G′) → {1, . . . , m −
n + 1} be an arbitrary (bijective) labeling of the edges of G′ and let w′ = wτ ′ . Order
the n − 1 vertices V \ {v0} such that w′(vi) ≥ w′(v j) for 1 ≤ i < j ≤ n − 1. Let τ : E →
{1, . . . , m} be an extension of τ ′ such that τ (v0vi) = m − i + 1 for i = 1, . . . , n − 1.
Then, for i < j,

wτ (vi) = w′(vi) + m + 1 − i ≥ w′(v j) + m + 1 − i > w′(v j) + m + 1 − j = wτ (v j).

In addition, edges incident to v0 receive the largest n − 1 labels. Thus, wτ (vi) > wτ (v j)

for all 0 ≤ i < j ≤ n − 1 and G is antimagic. �
The above proof highlights the major steps in proving Theorems 1.3 and 1.4. The key

idea is to isolate a breadth-first spanning tree T and reserve the largest n − 1 labels for
it. First of all, this guarantees (given lower bounds on �(G)) that the root vertex has the
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highest possible vertex sum. In addition, after arbitrarily labeling the remaining edges
(or, in general, assigning arbitrary, but bounded, partial weights to the other vertices), we
may label the edges of T so that all other vertex sums are distinct.

However, when �(G) < n − 1, the above simple labeling of T may not suffice. To
fix this problem, we alter the above labeling by shifting the labels on some edges. We
prove that this shifting procedure remedies some instances of the problem when T has
at most two nonroot vertices which are not leaves. The analysis seems to get messy after
that.

3. PROOF OF THEOREM 1.3

Let x be a vertex of degree �(G) = n − k, where k ≤ n/3, and let y be such that
�(x) ∪ �(y) = V . Let T be a breadth-first spanning tree rooted at x and visiting y
first. Therefore, all vertices in V \ {x, y} are leaves in T and the degree sequence
of T is (n − k, k, 1, . . . , 1). Let G′ = G \ T . Fix an arbitrary bijection τ ′ : E(G′) →
{1, . . . , m − n + 1} and let w′ = wτ ′ .

Lemma 3.1. For any extension τ : E(G) → {1, . . . , m} of τ ′ and all u �= x, wτ (x) >

wτ (u).

Proof of Lemma. First note that

wτ (x) ≥
n−k∑
i=1

(m − n + 1 + i).

Let u ∈ V , u �= x. Then,

wτ (u) = w′(u) +
∑

v∈�T (u)

τ (uv)

≤
dG′ (u)−1∑

i=0

(m − n + 1 − i) +
dT (u)−1∑

i=0

(m − i) (1)

≤
n−2k−1∑

i=0

(m − n + 1 − i) +
k−1∑
i=0

(m − i) (2)

=
n−2k−1∑

i=0

(m − n + 2 + i) +
n−k−1∑
i=n−2k

(m − n + 2 + i) − (n − 2k)2 + 2

(
k
2

)

≤
n−k−1∑

i=0

(m − n + 2 + i) − k2 + 2

(
k
2

)
(3)

≤ wτ (x) − k.

In (1), we bound wτ (u) from above by taking the largest dG′ (u) labels from {1, . . . , m −
n + 1} and the largest dT (u) labels from {m − n + 2, . . . , m}. However, as dG(u) =
dG′ (u) + dT (u) ≤ n − k, this sum is maximized when dT (u) is as large as possible. We
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then obtain (2) by noting that dT (u) ≤ k for u �= x. We rewrite the expression in a more
convenient form and use the fact that n ≥ 3k to obtain (3), thereby proving the lemma.�

Now, let V ′ = V \ {x, y} = {v1, . . . , vn−2} where the vertices v j ∈ V ′ are ordered such
that w′(v j) ≥ w′(vk) for 1 ≤ j < k ≤ n − 2. Let e j denote the unique, as yet unlabeled,
edge incident to v j in T (so, e j = xv j or e j = yv j). As in the proof of Lemma 2.1, we
want an extension τ for which τ (e j) > τ (ek) whenever j < k. This gives us one degree
of freedom for the label of edge xy. To this end, we define a sequence of extensions
τi : E → [m] of τ ′ for i = 0, . . . , n − 2, where

τi(e) =
⎧⎨
⎩

m − i, if e = xy
m − j + 1 if e = e j, j ≤ i
m − j, if e = e j, j > i.

Notice that τi may be obtained from τi−1 by exchanging the labels on xy and ei,
essentially incrementing the vertex sum at vi and potentially decrementing the vertex sum
at y. Letting wi = wτi , we immediately observe that wi(v j) > wi(vk) for all i whenever
j < k. Therefore, we need only to show that the vertex sum at y is distinct from vertex
sums of vertices in V ′ for some extension τq. We not only show the existence of such
an index q, but we find one in which y is, in some sense, in its “natural position.” To
be precise, we pick q such that the order imposed on the edges {xy, e1, . . . , en−2} by τq

matches the order imposed on the vertices {y, v1, . . . , vn−2} by wq. In other words, as the
label τq(xy) = m − q < τq(ei) for q edges ei ∈ T , we also have exactly q vertices vi ∈ V ′

whose vertex sum exceeds that of y.
LetI = {i : wi(y) > wi(vi+1)} and letI∗ = I ∪ {n − 2}. Let q be the smallest member

of I∗. If q = 0, then w0(y) > w0(v1) . . . > w0(vn−2). Otherwise,

wq(vq+1) < wq(y) ≤ wq−1(y) ≤ wq−1(vq) = wq(vq) − 1 < wq(vq).

Therefore, τq is an antimagic labeling and G is antimagic, completing the proof of
Theorem 1.3.

Corollary 3.2. If �(G) = n − 2, then G is antimagic.

Proof. If G is connected, the proof follows from Theorem 1.3. Otherwise, G has an
isolated vertex and a component G′′ on n′′ = n − 1 vertices with �(G′′) = n′′ − 1. Then
the result follows from Lemma 2.1. �

4. PROOF OF THEOREM 1.4

Let x be a vertex of degree n − 3 and let a, b be the two nonneighbors of x. We divide the
proof into three cases, two of which are easily resolved by applying (a slight modification
of) the argument in Theorem 1.3. The proof of the third case follows in a similar vein
but is a bit more involved. The restriction that n ≥ 9 is needed here as we apply a variant
of Lemma 3.1 (with k = 3). It is simple (but time consuming) to verify the theorem for
n < 9.

Case 1: There is a vertex y such that a, b ∈ �(y).
This follows via a direct application of Theorem 1.3.
Case 2: �(a) = {b}.

Journal of Graph Theory DOI 10.1002/jgt
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ANTIMAGIC PROPERTIES OF GRAPHS WITH LARGE MAXIMUM DEGREE 371

Assign the label 1 to the edge ab. As the vertex sum at a will be 1, it is guaranteed to
be less than that of other vertices. A slight modification of the argument from Theorem
1.3 can then be applied to G′ = G \ {a}.

Case 3: Cases 1 and 2 do not hold.
As G is connected, there are two vertices y1 �= b, y2 �= a such that ay1, by2 ∈ E(G).

Let T be a breadth-first spanning tree rooted at x and visiting y1 and y2 first. Observe
that the degree sequence in T is (n − 3, 2, 2, 1, . . . , 1). Let G′ = G \ T , fix an arbitrary
bijection τ ′ : E(G′) → {1, . . . , m − n + 1}, and retain the largest n − 1 labels for the
edges in T . Let w′ = wτ ′ be the induced partial weight after this initial labeling. Even
though T has three non-leaves, the argument in Lemma 3.1 applies and wτ (x) > wτ (u)

for all u ∈ V, u �= x and all extensions τ : E(G) → {1, . . . , m} of τ ′.
Let V ′ = V \ {x, y1, y2} = {v1, . . . , vn−3} where the vertices v j ∈ V ′ are ordered such

that w′(v j) ≥ w′(v j+1). Let e j be the unique edge in T incident to v j. To obtain an
antimagic labeling, we once again look for an extension τ satisfying τ (e j) > τ (ek)

whenever j < k. However, this time, we have two degrees of freedom as we are free to
choose the labels on xy1 and xy2. We begin by defining the following (n − 1)(n − 2)

different extensions of τ ′, and apply an argument like the one used in the proof of Theorem
1.3, although modifications are required in some cases.

Let τi, j : E → {1, . . . , m}, where i, j ∈ {0, . . . , n − 2}, i �= j satisfy

τi, j(e) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ ′(e) if e ∈ G′

m − i, if e = xy1

m − j, if e = xy2

m − t + 1, if e = et; t ≤ min(i, j)
m − t, if e = et; min(i, j) < t < max(i, j) and
m − t − 1, if e = et; t ≥ max(i, j).

Let wi
j = wτi, j . We first observe that wi

j(vk) > wi
j(vl ) whenever k < l. Therefore, we

need only find a pair p, q for which wp
q(y1) and wp

q(y2) are unequal and distinct from
wp

q(vk) for all k ∈ {1, . . . , n − 3}. We find an index q by starting from τ0,1 and considering
extensions of the form τ0, j, that is, by shifting the label on xy2 to find a “natural position”
for y2. Next, we range over the first index to find a suitable value for p.

Let J = { j : w0
j (y2) > w0

j (v j)} and J ∗ = J ∪ {n − 2}. Let q be the smallest member
of J ∗. Now let U = V ′ ∪ {y2} = {u1, . . . , un−2}, where

uk =
⎧⎨
⎩

vk, for k < q
y2, for k = q and
vk−1, for k > q.

Observe that, after renaming the vertices, we have w0
q(uk) > w0

q(uk+1) for all 1 ≤ k ≤
n − 3. Furthermore, under τ0,q, the edge joining a vertex uk to its parent in T receives the
label m − k. Now, with τ0,q as our new starting point, we consider extensions obtained
by shifting the label on xy1. As the label on xy2 is decremented on the qth shift, these
extensions will be of the form τi,q′ , where q′ = q for i < q and q′ = q − 1 for i ≥ q. Let
I = {i : wi

q′ (y1) > wi
q′ (ui+1)} and I∗ = I ∪ {n − 2}. Let p be the smallest member of

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 1. Illustrative example for shifting. Note that w p
q−1(b) = w p

q−1(y2).

I∗. The choice of p guarantees that

wp
q′ (up) > wp

q′ (y1) > wp
q′ (up+1).

However, note that as uq = y2 is not a leaf in T , its weight is incremented not only when
i = q (that is, the label on edge xy2 is incremented) but also when ui = b (the label on
edge by2 is incremented). It is possible, therefore, that wp

q′ (uq) ≥ wp
q′ (uq−1). We check

for and correct these instances by considering the following cases: (for brevity’s sake,
we have chosen not to segregate the cases where q′ = 0. Inequalities seemingly referring
to u−1 are to be considered void.)

(1) Case A: uq−1 �= b.
Here, τp,q′ itself is an antimagic labeling. Note that, by definition of J , we have

w0
q−1(uq−1) ≥ w0

q−1(y2), (4)

and, as uq−1 �= b, it follows that

w0
q(uq−1) ≥ w0

q(y2) + 2 (5)

(the shift increments the label on eq−1 and decrements that of xy2). Hence, if p < q,
it follows from (5) that

wp
q(uq−1) ≥ w0

q(uq−1) ≥ w0
q(y2) + 2 ≥ wp

q(y2) + 1.

On the other hand, if p ≥ q, then (4) implies

wp
q−1(uq−1) = w0

q−1(uq−1) + 2 ≥ w0
q−1(y2) + 2 ≥ wp

q−1(y2) + 1.

(2) Case B: uq−1 = b.
Note that, in this case, we can only guarantee

w0
q(b) ≥ w0

q(y2) + 1.

Journal of Graph Theory DOI 10.1002/jgt
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Further, note that the label on by2 is incremented if p ≥ q − 1 and the label on xy2

is incremented if p ≥ q.
So, if p < q − 1, the label on neither of the edges by2 and xy2 is affected and
wp

q(b) ≥ wp
q(y2) + 1.

If p = q − 1, both vertex sums are incremented by one and the required inequality
still holds.
The remaining case is then p ≥ q. Note here that the labels on both by2 and xy2 have
been incremented and, thus, the vertex sum at b goes up by 1 whereas that of y2

goes up by 2, potentially causing an overlap. If so, that is, if wp
q−1(b) = wp

q−1(y2),
consider instead the labeling τp,q−2, essentially swapping the labels on by2 and
xy2. This swap decreases the vertex sum at b by 1 and leaves all other vertex sums
unchanged, thereby avoiding the conflict (see Fig. 1).

This completes the proof of Theorem 1.4.
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[6] M. Kalkowski, M. Karoński, and F. Pfender, Vertex-coloring edge
-weightings: Towards the 1-2-3-conjecture, J Combin Theory Ser B 100
(2010), 347–349.

[7] B. M. Stewart, Magic graphs, Canad. J. Math 18 (1966), 1031–1059.

Journal of Graph Theory DOI 10.1002/jgt

 10970118, 2013, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.21664 by C

arnegie M
ellon U

niversity, W
iley O

nline L
ibrary on [27/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


