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Abstract
Let k := (ky, ..., k) be a sequence of natural numbers. For a graph G, let F(G; k)
denote the number of colourings of the edges of G with colours 1, ..., s such that, for every
c € {l1,...,s}, the edges of colour ¢ contain no clique of order k.. Write F (n; k) to denote

the maximum of F(G; k) over all graphs G on n vertices. This problem was first considered
by Erd6s and Rothschild in 1974, but it has been solved only for a very small number of
non-trivial cases.

We prove that, for every k and n, there is a complete multipartite graph G on n vertices
with F(G; k) = F(n; k). Also, for every k we construct a finite optimisation problem whose
maximum is equal to the limit of log, F(n; k)/(5) as n tends to infinity. Our final result is a
stability theorem for complete multipartite graphs G, describing the asymptotic structure of
such G with F(G; k) = F(n; k) - 200" in terms of solutions to the optimisation problem.

1. Introduction and results

Let a sequence k = (ky,...,k;) € N° of natural numbers be given. By an s-edge-
colouring (or colouring for brevity) of a graph G = (V, E) we mean a functiono : E — [s],
where we denote [s] := {1, ..., s}. Note that we do not require colourings to be proper, that

is, adjacent edges can have the same colour. A colouring o of G is called k-valid if, for
every ¢ € [s], the colour-c subgraph o ~!(c) contains no copy of K., the complete graph of
order k.. Write F (G; k) for the number of k-valid colourings of G.

In this paper, we investigate F(n; k), the maximum of F(G; k) over all graphs G on
n vertices, and the k-extremal graphs, i.e. order-n graphs which attain this maximum. We
assume throughout the paper that s > 2 and that k, > 3 for all ¢ € [s] (since k. = 2 just
forbids colour ¢ and the problem reduces to one with s — 1 colours).

1 Supported by ERC grant 306493 and EPSRC grant EP/K012045/1.
1 Supported by ERC grant 306493.



342 O. PIKHURKO, K. STADEN AND Z. B. YILMA
1-1. Previous work

The problem, namely the case when k; = --- = k; =: k, was first considered by Erd6s
and Rothschild in 1974 (see [S, 6]). Clearly, any colouring of a K,-free graph is k-valid.
By Turan’s theorem [18], the maximum such graph on n vertices is T;_;(n), the complete
(k — 1)-partite graph with parts as equal as possible. This implies the trivial lower bound

Fn; (k, ..., k) > s, (1-1)

where #;_; (n) is the number of edges in 7;_;(n). In particular, Erd6s and Rothschild conjec-
tured that, when k = (3, 3) and n is sufficiently large, the trivial lower bound (1-1) is in fact
tight and, furthermore, 7, (n) is the unique k-extremal graph. The conjecture was verified for
all n > 6 by Yuster [20] (who also computed F'(n; (3, 3)) for smaller n). Yuster generalised
the conjecture to k = (k, k) and proved an asymptotic version. The full conjecture for all
k > 3 was proved by Alon, Balogh, Keevash and Sudakov [1] who further showed that an
analogous result holds for three colours:

THEOREM 1 (Alon, Balogh, Keevash and Sudakov [1]). Let k,n € N where k > 3 and
n > ny(k). Then

F(n; (k,k)) =2"'" and F(n; (k, k, k)) = 3%,

Moreover, Ty,_1(n) is the unique extremal graph in both cases.

The proof of Theorem 1 uses Szemerédi’s Regularity Lemma. Unfortunately, this also
means that the graphs to which it applies are very large indeed. In fact, the assertions are not
true for all numbers n of vertices. As was remarked in [1], the conclusion of Theorem 1 fails
when k < n < s*~2/2_as in this case a random colouring of the edges of K, with s colours
contains no monochromatic K; with probability more than 1/2. Thus, for this range of n,
we have F(n; (k, ..., k)) > s(G) /2 > s,

The authors of [1] noted that when more than three colours are used, the behaviour
of F(n; (k,...,k)) changes, making its determination both harder and more interesting.
Namely, it was shown in [1, page 287] that if s > 4 (and k > 3) then F(n; (k,...,k)) is
exponentially larger than s~ In particular, any extremal graph has to contain many cop-
ies of K. In the case when k = (3, 3, 3, 3), they determined log F'(n; k) asymptotically by
showing that F(n; (3, 3, 3, 3)) = (2!/831/2)”+o@") \where T,(n) achieves the right exponent.
Similarly, they proved that F(n; (4, 4,4, 4)) = (3%/°)"+°¢") where Ty(n) achieves the right
exponent. Determining the exact answer in these two cases, the first and third author of this
paper proved in [16] that, when n > ng, T4(n) is the unique (3, 3, 3, 3)-extremal graph on n
vertices, and Ty(n) is the unique (4, 4, 4, 4)-extremal graph on n vertices.

It was also proved in [1, proposition 5-1] that the limit
Fk) = lim 282 L0 (1-2)
n—00 n?/2
exists (and is positive) when k = (k, ..., k). As it is easy to see, the proof from [1] extends
to an arbitrary fixed sequence k.

Erdds and Rothschild also considered the generalisation of the problem, where one for-
bids a monochromatic graph H (the same for each colour). In [1] the authors showed that
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the analogue of Theorem 1 holds when H is colour-critical, that is, the removal of any
edge from H reduces its chromatic number. (Note that every clique is colour-critical.) In a
further generalisation, Balogh [3] considered edge-colourings which themselves do not con-
tain a specific colouring of a fixed graph H. Other authors have addressed this question in
the cases of forbidden monochromatic matchings, stars, paths, trees and some other graphs
in [8, 9], matchings with a prescribed colour pattern in [10], and rainbow stars in [12]. Ex-
tending work in [10], Benevides, Hoppen and Sampaio considered forbidden cliques with a
prescribed colour pattern, and using techniques similar to our own, obtained several results
in this direction, including a version of Theorem 2 below. In [7], a colouring version of the
Erd6s—Ko—Rado theorem for families of £-intersecting r-element subsets of an n-element
set was considered; that is, one counts the number of colourings of families of r-sets such
that every colour class is £-intersecting. A so-called ‘g-analogue’ was addressed in [11],
which considers a colouring version of the Erd6s—Ko—Rado theorem in the context of vector
spaces over a finite field G F (g).

Alon and Yuster [2] studied a directed version of the problem, to determine the maximum
number of T -free orientations of an n-vertex graph, where 7T is a given k-vertex tournament.
They showed that the answer is 2™ for n > ng(k). This in fact answers the original
question of Erdds [5], which he modified to ask about edge-colourings.

The problem of counting H-free edge-colourings in hypergraphs was studied in [7, 14,
15]. In an asymptotic hypergraph version of Theorem 1, Lefmann, Person and Schacht [15]
proved that, for every k-uniform hypergraph H and s € {2, 3}, the maximum number of
H-free s-edge-colourings over all k-uniform hypergraphs with n vertices is s&*(-#)+o(")
where the Turén function ex(n, H) is the maximum number of edges in an H-free k-uniform
hypergraph on n vertices. This is despite the fact that ex(n, H) is known only for few H.

1-2. New results

Our first result states that it suffices to consider very special graphs G in order to determine
the value of F(n; k):

THEOREM 2. For every n,s € N and k € N°, at least one of the k-extremal graphs of
order n is complete multipartite.

Independently, an analogue of Theorem 1 for a single multi-coloured pattern was proved
by Benevides et al. [4, theorem 1-1]. Our second result (Theorem 4 below) writes the limit
in (1-2) as the value of a certain optimisation problem.

Problem Q,: Given a sequence k := (ky, ..., k;) € N* of natural numbers and t € {0, 1, 2},
determine

Qt(k) = max CI(”7 ¢7a)7 (13)

(r,¢,0)EFEAS; (k)
the maximum value of
qr. ¢ @) =2 Y aa;log, [¢(i))] (1-4)
1<i<j<r
[1pEE%)
over the set FEAS, (k) of feasible solutions, that is, triples (r, ¢, &) such that:

(1) r e Nandr < R(k), where R(k) is the Ramsey number of k (i.e. the minimum R such
that K g admits no k-valid s-edge-colouring);
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>i1) ¢ € ®,(r; k), where ®,(r; k) is the set of all functions ¢ : ([;]) — 27 such that

(Y N
o7 =ije () ) ee )

is Ky -free for every colour c € [s] and |¢(ij)| > t forallij € ([ZJ);
(i) a = (oy, ...,a,) € A", where A" is the set of all « € R" with o; > 0 forall i € [r],
andoy + -+ 4+ a, = L.

Note that the maximum in (1-3) is attained. Indeed, for each of the finitely many allowed
pairs (7, ¢), the function ¢(r, ¢, -) is continuous and hence attains its maximum over the
non-empty compact set A”. A triple (r, ¢, «) is called Q,-optimal if it attains the maximum,
that is, (r, ¢, &) € FEAS,(k) and q(r, ¢, @) = Q, (k).

As we will show later in Lemma 6, Q¢(k) = Q(k) = Q,(k) so we will denote this
common value by Q (k). Of course, if one wishes to determine the value of Q(k), then one
should work with Problem Q5 as it has the smallest feasible set. Since one of our results is
stated in terms of Q-optimal triples (which may be a strict superset of Q,-optimal triples),
we stated different versions of the optimisation problem.

First we show that Q (k) gives rise to an asymptotic lower bound on F(n; k).

LEMMA 3. Foreverys € N and k € N, there exists C such that for all n € N there is a
graph G on n vertices with F(G; k) > 20k (5)—Cn.

Proof. Let (r, ¢, a) be Qp-optimal. For n € N, let G4 (n) be the graph of order n with
vertex partition Xy, ..., X,, where | |X;| — o;n| < 1; and in which for all i, j € [r] and
x; € X; and y; € X;, we have that x;y; is an edge of G4 «(n) if and only if i #+ j and
¢(ij) + . Consider those colourings of G 4(n) in which x;y; is coloured with some
colour in ¢ (ij), for every x; € X;, y; € X;, where 1 <i < j < r. Every such colouring is
k-valid because ¢! (¢) is K. «.-free for all ¢ € [s]. The number of such colourings gives the
desired lower bound for F(n; k):

F(nik) > F(Gya(mik) > [ 1gGj)%%! > 2000 ¢, (1-5)

1<i<j<r

SN+

where C = C (k) is a constant due to rounding. This proves Lemma 3.

THEOREM 4. For every s € N and k € N’, we have F(n; k) = 2000 G) o) ypar s,
F (k) = Q(k), where F (k) is the limit in (1-2).

So, as in the result of Lefmann, Person and Schacht [15] mentioned above, this theorem
can be proved without knowledge of Q (k). Our proof of Theorem 4 builds upon the tech-
niques of [1, 16] and also uses the Regularity Lemma.

The structure of an arbitrary order-n graph G with F(G; k) = 2(@®0+o()n*/2 cap be rather
complicated (see a short discussion in Section 5 of the case k = (4, 3)). However, the next
result states that if G is assumed to be complete multipartite, then the part ratios have to be
close to being Q-optimal.

THEOREM 5. For every § > 0 there are n > 0 and ng such that if G = (V, E) is a com-
plete multipartite graph of order n > ng with (non-empty) parts Vi, ..., V. and F(G; k) >
2QE=1*/2 then there is a Q-optimal triple (r, ¢, &') such that the €'-distance between
o' € Aranda = (|Vi|/n,....|V,|/n)isat most §: |l —o'||; := > ";_, |o; — o] <38.
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In a sense, a converse to Theorem 5 holds. Indeed, for every Q,-optimal triple (r, ¢, &’),
for all n € N, the proof of Lemma 3 gives a complete r-partite graph G o (1) on n vertices
with parts X{, ..., X” such that, setting ¢, = (|X{|/n,...,|X"|/n), we have, as n — oo,
that

log, F(Gy.o(n); k)

22 —> Q(k) and ||lee,, — | —> 0.

The rest of the paper is organised as follows. Theorem 2 is proved in Section 2. Section 3
contains a general lemma which is then used in Section 4 to prove Theorems 4 and 5. Sec-
tion 5 contains some concluding remarks. We will use the following notation. For a set X
and an integer k < | X|, let (f) denote the set of all k-subsets of X. Also, let 2% be the set of
all subsets of X. If it is clear from the context, we may write ij to denote the set {i, j} or the
ordered pair (i, j).

2. Symmetrisation and k-extremal graphs

In this section we prove Theorem 2, which states that, for any instance of the problem
(i.e. any choice of the parameters n, s, k), there is a complete multipartite graph which is
k-extremal. The proof uses the well-known symmetrisation method that was introduced by
Zykov [21].

Proof of Theorem 2. Let G = (V, E) be a k-extremal graph on n vertices. Consider distinct
vertices u, v € V with uv ¢ E.Let G' = G — {u, v}, where G — X = G[V \ X] is the
graph obtained from G by removing every vertex of a set X € V and every edge adjacent
to a vertex of X. For a graph H, let 7 (H) denote the set of k-valid colourings of H. (Thus
F(H; k) = |F(H)|.) Let 0, and o, denote the number of k-valid extensions of o € F(G’)
to G — {v} and G — {u} respectively. Since uv ¢ E and each forbidden graph is a clique, we
have that the number of k-valid extensions of ¢ to G is ¢,0,. Thus

F(G; k) = Z 0,0, 21

oeF(G")

Let G, be the graph obtained from G by deleting v and adding a new vertex u’ which is a
clone of u in G. Define G, analogously. From (2-1), it follows that

F(Gi:k)y= Y ol and F(Gik)= Y o, (2:2)

oeF(G) oeF(G)

Since G is k-extremal, we have that

0<2F(Gik) = F(G k) = F(Gyi k) "2 — 3 (0, —0,)* <0, (23)
oeF(G)

and hence we have equality everywhere. Therefore G, and G, are both k-extremal. In order
to finish the proof, it is enough to show that we can reach a complete multipartite graph by
starting with G and iteratively performing the above operation.

We say that two vertices x and y are fwins (and write x ~ y) if they have the same sets
of neighbours. Note that twins are necessarily non-adjacent. It is easy to see that ~ is an
equivalence relation. Let [x]. denote the equivalence class of x.

Let G! := G. Repeat the following for as long as possible. Suppose that we have defined
graphs G', ..., G' for some i > 1, which are all k-extremal. Suppose that G’ contains a
pair u, v of non-adjacent vertices which are not twins. Choose such a pair so that |[u]~| is
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maximal. Let G'*! = (G'), be the graph obtained from G’ by deleting v and adding a new
vertex u’ which is a clone of u. As was argued above, G'*! is necessarily k-extremal.

For each i > 1, call an equivalence class [x]~ in the graph G frozen if G' is complete
between [x]. and its complement, and unfrozen otherwise. Let f(G') be the sum of sizes
of all frozen classes plus the largest size of an unfrozen one (if such exists). It is easy to
see that f(G") is strictly increasing with i. Since f(G') is bounded above by n, the process
terminates in at most # — 1 steps with some k-extremal graph H. Since every pair of non-
adjacent vertices in H are twins, H is complete multipartite, as desired.

Also, the symmetrisation can be applied to Q,-optimal solutions. In particular, one can
prove the following.

LEMMA 6. For every k, we have Qy(k) = Q,(k) = Q,(k).

Proof. Since trivially FEASy(k) 2 FEAS (k) 2 FEAS,(k), we have Qq(k) > Q(k) >
Q1 (k).

On the other hand, among all Qy-optimal solutions (r, ¢, &), fix one with r as small as
possible. Then, in particular, we have that each «; is non-zero. We claim that necessarily
(r, ¢, o) € FEAS, (k) (which will give the required inequality Q,(k) > Qq(k)). If this is not
true, then | (ij)| < 1 for some ij € ([;]), say for {i, j} = {r — 1, r}. For a real ¢, consider
o definedby o, | = a,_1 +c¢, 0. =« —cand o), := o for all h € [r — 2]. In other
words, we shift weight ¢ from «, to «,_;. Since g (r, ¢, ') is a linear function f(c) of ¢ and
(r, ¢, a') € FEASy(k) when |c| is at most min{«,_;, @, } > 0, it must be the case that f(c)
is a constant function. Thus f(c) = f(0) = Qy(k) regardless of c. In particular, by taking
¢ = «,, that is, by shifting all weight from «, to «,_;, we obtain a Qy-optimal solution
(r, ¢,a’) with o, = 0, whose restriction to [r — 1] gives another Qy-optimal solution,
contradicting the minimality of » and proving Lemma 6.

3. A unifying lemma

The proofs of Theorems 4 and 5 will both follow from the next lemma, which states that
the number of k-valid colourings of any complete r-partite graph H can be bounded above
by evaluating g for a triple (7, ¢, ) € FEAS;(k), where 8 is given by the ratios of the parts
of H.

LEMMA 7. Foralls € N, k € N* and n > 0, there exists ny € N such that for every
complete multipartite graph H of order N > ng with (non-empty) parts Yy, ..., Y, with at
least one k-valid colouring, there is some ¢ € O (r; k) such that

log, F(H; k)
N2/2
where B := (IY,|/N, ..., |Y,|/N).

<q(r,¢,B) +n,

In outline, the argument to prove Lemma 7 is as follows. The main idea of the proof is
to use Szemerédi’s Regularity Lemma to pass from a k-valid colouring o of H to a set of
feasible solutions that come from r-tuples of clusters which are transversal with respect to
the r-partition of H. For each obtained solution (7, ¢, B) € FEASy(k), an upper bound on
q(r, ¢, B) can be translated via regularity into an upper bound on the number of restrictions
of possible colourings o to the involved clusters (an idea already used in [1]). Then we estim-
ate F(H; k) by taking an appropriately weighted sum of logarithms of these bounds. It turns
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out that the dominant contribution is from those triples (r, ¢, 8) that belong to FEAS, (k),
and so the bound obtained for F(H; k) is in terms of the largest g(r, ¢, B) among such
triples.

3-1. Regularity tools
We will need the following definitions related to Szemerédi’s Regularity Lemma.
Definition 8 (Edge density, e-regular, (e, y)-regular, equitable partition). Given a graph
G and disjoint non-empty sets A, B € V (G), we define the edge density between A and B

to be

i, By o [EGLA BDI
AI1B|

Given ¢, y > 0, the pair (A, B) is called:
(1) e-regularif forevery X € Aand Y C B with | X| > ¢|A| and |Y| > ¢|B|, we have that

ld(X,Y) —d(A, B)| < &
(1) (e, y)-regular if it is e-regular and has edge density at least y.

We call a partition V(G) = V,U-.-UV,;:

(i) equitableif | |V;| — |V;]| < 1foralli, j € [ml];
(ii) e-regular if it is equitable, m > 1/¢, and all but at most 8(’;) of the pairs (V;, V;) with
1 <i < j < mare g-regular.
Our first tool states that an induced subgraph of a regular pair is still regular, provided
both parts are not too small.

PROPOSITION 9. Let €, 8 be such that 0 < 2§ < ¢ < 1. Suppose that (X,Y) is a §-
regular pair, and let X' C X andY' C Y. If

{ X' 1Y } $
my ~—» o 2 g

IX| [Y] €

then the pair (X', Y') is e-regular.

Proof. Let X" € X’ and Y” C Y’ be such that [X”| > ¢|X’| and |Y"| > ¢|Y’|. Then
| X”1/1X1, 1Y"|/1Y| = §. Since (X, Y) is §-regular, we have that |[d(X",Y") —d(X, Y)| <.
Note further that |X'|/|X|, |Y'|/|Y] = §/e > 8, s0 |[d(X',Y) —d(X,Y)| < 4. By the
Triangle Inequality, |[d(X”,Y”) — d(X',Y")| < 2§ < . This implies that (X', Y') is &-
regular, as required.

We use the following multicolour version of Szemerédi’s Regularity Lemma [17] (see e.g
Komlés and Simonovits [13, theorem 1-18]).

LEMMA 10 (Multicolour Regularity Lemma). For every ¢ > 0 and s € N, there exists
M € N such that for any graph G on n > M vertices and any s-edge-colouring o :
E(G) — [s], there is an (equitable) partition V(G) = V,U ... UV,, withm < M, which is
e-regular simultaneously with respect to all graphs (V(G), o~'(c)), with ¢ € [s].

Finally, we need the following bound.

PROPOSITION 11. Lets,r e Nandk € N°. Let ¢ € Oy(r; k) and o, B € A”. Then
lg(r, ¢, 0) —q(r, ¢, B)| < 2|lec — B1log, s.
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Proof. We have that

lg(r,¢.a) —q(r. ¢, B)l

Do Y ajlogleGpl—D B D ﬂ;10g|¢(ij)l‘
} }

ielr]  jelri\{i ielr]  jelri\{i
<D =g > ajlog|¢<ij)|‘+ =B Y. ﬁilog|¢<z’j>|)
ielr] Jelr\i} Jjelrl ielr\{j}

< 2logy(s) - llee — Bl

3.2. Proof of Lemma 7l

Let n > 0 (assumed without loss of generality to be sufficiently small) and choose an
additional constant y so that 0 < y < n < 1/R(k). By the (standard) Embedding Lemma
(see, for example, [13, theorem 2-1]), there exist ¢ > 0 and m( € N such that the following
holds for all ¢ € [s]: if G is a graph with a partition V(G) = W, U ..U W,_ such that
|Wil = myg forall i € [k.] and every pair (W;, W;) for 1 < i < j < k. is (g, y)-regular,
then K;, € G.

We may assume that 0 < 1/mg < & < y since whenever ¢’ < &, we have that an
&’-regular pair is also an e-regular pair. Let M be the integer returned by Lemma 10 when
applied with parameters &> and 5. Choose n, € N and assume, without loss of generality,
that 1/ng < 1/M < 1/m,. We have the hierarchy

O0<1/ng <1/ M <K1/my<e <y <n<1/R(k). 31D

Let N > ng be arbitrary. Let H be a complete multipartite graph on N vertices with parts
Y1, ..., Y.. We may assume that r < R(k) otherwise F(H;k) = 0.Let G = (V, E) be a
graph obtained from H by removing all but one vertex from every part Y; of size at most
n*N (and all edges incident with the removed vertices). Write n := |V|and X; := Y; NV
foralli € [r]. Then N —n < R(k) - n°N. So

F(G,k) > F(H, k) - s RbmryN

and so
log, F(G; k log, F(G; k log, F(H; k
ng ( ) 2 ng ( ) 2 ng ( ) _ SR(k)T]leng
n%/2 N2/2 NZ%/2
log, F(H: k
> M _ ﬁ. (3-2)
N2/2 3

Define @ := (| X,|/n, ..., |X,|/n) and B := (|Y;|/N, ..., |Y,|/N). Then

R(kK)n*N
e — Bl < % < 2RO (33)

Without loss of generality, there is some w € [r] such that X; = {x;} is a singleton for all
i €[w],and |X;| > p’nforallw < j <r.
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For the rest of the proof, we will work with G rather than H. Informally, the reason
for passing to G is the following. After applying the Regularity Lemma to H with a valid
colouring o, we do not a priori have control on the distribution of coloured edges incident
to small parts of H. If the statement of Lemma 7 asked for a ¢ € ®y(r; k), we could simply
neglect these parts; but since we require ¢ € ®,(r; k) we cannot do this. Therefore we
introduce G in which each small part X; is replaced by a token vertex x;, which merely
asserts the existence of its part. But for each x € V(G), there are only constantly many
possible values for {o(xx;) : i € [w]} for all s-edge-colourings o. Thus we can refine
our regularity partition into parts according to these values. Now we have good control
between all pairs of parts: if both are large then regularity provides good control; and if
one of them is small it is necessarily a single vertex and ¢ is constant on all edges between
the parts.

Leto : E — [s] be a k-valid colouring of G. By the choice of M (that is, by Lemma 10
applied to G and o with parameters ¢? and s), there is an (equitable) partition V = V;U. ..U
Vi, with m < M, which is 2-regular simultaneously with respect to all graphs (V, o ~!(c)),
c € [s].

We will now take a common refinement of X, ..., X, and Vi, ..., V,, which also takes
into account attachments to W := {x;,..., x,}. Namely, for all j € [m], subdivide V;
into at most r(s” 4+ w) parts as follows. Put each vertex in W (1 V; into a separate part.
Now, for any vertices y, y’ remaining in V;, put y and y’ in the same part if and only if
there is some £ € [r] such that {y, y'} € X,, and o(x,y) = o(x;y’) for all A € [w].
Thus we obtain a (not necessarily equitable) partition U;; U --- U U, . of X; for each
i € [r], where m; < M(s¥ + w). Let U be the collection of sets U; ;. It is indexed
by

I:={ij:ie[r]andj € [m;]}.

For a colour ce[s], let P¢ consist of all pairs of indices {ig, jh} € (;) such that
o“(c)[U,»,g, Ujunl is (g, y)-regular, and at least one of the following holds: U, is a ver-
tex of W; U, is a vertex of W; or min{|U, 4|, |U; x|} = mo. (Soif, say, U; , is a vertex of W,
then {ig, jh} € P¢ for some ¢ € [s] since G[U; ,, U; ;] is a monochromatic star under o.)
We define E¢ C E to be the union of cr“(c)[Ui,g, U; 1 over all pairs {ig, jh} € P¢. Let
Ey := E\ (E'U...U E®). Thus E, consists of edges without endpoints in W which are
incident with a part of size less than m; and edges which come from coloured pairs that are
not e-regular or have edge density less than y. The following claim, whose proof is fairly
standard, shows that £, cannot contain many edges.

CLAIM 12. |Ey| < syn®.

have at least one vertex in a small part. Since each V, is subdivided into at most r(s* + w) <
2R(k)s®® new parts, the number of vertices in small parts is at most 2e R (k)s®®pn and,
trivially,

Proof. Call apart U; , € V, small if |U; 4| < ¢|V,|. Let Egmai € E be the set of edges that

|Esmall| g 28R(k)sR(k)n2‘

Let £y, € E consist of those edges of G that lie inside some V, or belong to some
colour-c bipartite subgraph o ~!(c)[V,, Vi] which is not g*-regular. Since V, U --- U V,, is
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an e2-regular (equitable) partition, we have

[n/m] L, (m\ n?
|E1n|<m< ) )+ss (J{;]

which is by m > 1/&* at most, say, en”.

Next, we bound the size of Ey \ (Egmai U Eirr). Let e be any edge from this set. Since each
Ui . is an independent set in G, we have e € E(G[U, 4, U;;]) for some distinct ig, jh € I.
Let £, ¢ € [m] satisfy V, D U; , and Vi D Uj ;. Since e ¢ Egnai, we have

min{ |Uie|, |U;jnl} = min{e|V|, e|Ve|} = eln/m],

which is at least m, by our choice of constants. Let ¢ = o (e) be the colour of e. Since
e ¢ Ej;, we have that £ # ¢’ and 0~ (¢)[V,, Vi ] is e2-regular. Thus Proposition 9 implies that
0 ()[Ui, Uj 4] is e-regular. Since e ¢ E¢, it must be the case that 0~ (c)[U; ., U] 3 e
has edge density less than y. We conclude that Eg \ (Egma U Ejr) has edge density at most
sy between any pair (U; ¢, U; ). Thus

n
|Eol < |Egmatl + 1 Eiel + Y sy|U,~,g||U,,-,h|<28R(k>s“’”n2+sn2+sy<2)<syn2,
{ig.ih}e(})

proving the claim.
Define ¢ : (}) — 2 by setting, for all {ig, jh} € (}),

¢(ig, jh) == {c €ls]: {ig, jh} € P}.

If neither U; , nor U; is a vertex of W but min{ |U; |, |U; x|} < myo, then ¢(ig, jh)
is empty. Otherwise, ¢ (ig, jh) consists of those ¢ for which a’l(c)[U,-,g, Ujnlis (e, y)-
regular. Also, let oy = o|g, be the restriction of ¢ to E.

For each k-valid colouring o of G, fix one partition V = V; U ..U V,, as above and then
define the tuple (U, I, ¢, Ey, 0p) accordingly.

CLAIM 13. The number of possible tuples U, I, ¢, Eo, 0y) is at most 27°/*,

Proof. Clearly, there are at most (M (s* + w))" < (M(s*® + R(k)))" < 27/12 possible
partitions of V in which, for alli € [r], every x € X; lies in one of at most M (s + w) parts.
Each such partition determines ¢/ and I uniquely (since the partition V = X; U ... U X, is
fixed throughout the whole proof).

Given U and 1, the number of possible ¢ is at most (25)("2 ™) < 21°/12 By Claim 12,
the number of ways to choose E( and colour these edges (i.e. choose oy) is, very roughly, at
most

( (2) )(S + l)Synz < 2;7”2/12.
syn?
The claim is proved by multiplying these three bounds.

Fix a tuple (U, 1, ¢, Ey, 0p) such that C £+ ¢, where C is the set of colourings o which
generate it. Our next step is to provide an upper bound for |C|. For every o € C, we have
o |g, = 0p. Also, by the definition of Ey, every e € E\ E lies in some (&, y)-regular bipartite
graph 0! (0)[U; 4. U; 4] with ¢ € [s] and {ig, jh} € (}) such that min{|U; ,|, |1U; 41} > my
or at least one of U; ,, U; , is a vertex of W. Thus {ig, jh} € P¢, thatis, o(e) € ¢(ig, jh).
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Therefore

ICl < l_[ l_[ lp(ig, jh)| Ve Uinl
e (1Y ghelm;1x[m;)
0eCS) Siie i

Let us agree that log, 0 := 0. Then
log, ICI< D Y Uil Ujullog, |6 (g, jh)l. (3-4)

() shetmixtm]

Let T := [m] x --- x [m,]. We use T to index all ‘transversal’ r-tuples of parts from
U, where we take one part from each of Xy, ..., X,. Foreacht = (#;,...,¢) in T, define
o : ([;]) — 201 by setting, forij € ([;]),

¢:e(ij) = (it jt;).
Recall the definition of & after (3-2).
CLAIM 14. log, [C| < (¢* + /¥)n*/2, where
g :==max{q(r, ¢;, ) : (r, ¢y, ) € FEAS,(k), t € T}.

Proof. We will first show that, for every ¢ € [s] and ¢ € T, the graph ¢, '(c) is K, -free.
Indeed, suppose that iy, ..., iy, span a copy of K, in ¢, '(¢). First consider the case when
Ui s, is not a vertex of W but Ui, | < mo. Then, by the definition of ¢, we have that
Uiq,,,q is a vertex of W for all 2 < ¢ < k.. Moreover, for every pg € ([';‘"
GU; Uiq,t[q] is coloured with ¢ by o, a contradiction.

So, without loss of generality, we may assume that there is some 0 < ¢ < min{k., w}
such thateach of Uj , , ..., Uy, ;,, consists of a vertex of W and |U;, ,, | > mo forall £+1 <
q < k.. Then, by the definition of U, we have that 6 (¢) = c forall e € G[U,'/,,,lp , U,-q,,jq] with
p € [€]and g € [k.]\{p}. By the definition of P¢ D ¢~!(c) and the Embedding Lemma (that
is, our choice of parameters at the beginning of the proof), for all £ + 1 < ¢ < k., there is
z4 € Ui, ,, such that together these vertices z, span a copy of K in o~ (c). Then o~ (c)
spans a copy of K_, contradicting the k-validity of o. This and the trivial bound r < R (k)
imply that ¢, € O (r; k). Therefore, for each ¢ € T, we have that (r, ¢;, &) € FEASq(k), and
SO

), every edge in

polip?

> aiajlog, (it jit))] < b(@), (3-5)
(%)
where we define
b(t) = q*/2 if (r, ¢y, &) € FEAS, (k)
| 210g,(5)/2  otherwise

(i.e. if (r, ¢, ) ¢ FEAS;(k) we take a (somewhat arbitrary) trivial bound for b(¢)). The
claim will follow from taking a weighted average of (3-5) by multiplying by [, 1Ue.!
and summing over all ¢ € T'. First consider the right-hand side of (3-5). Let Tj be the set of
t € T such that ¢,(ij) = ¢ for some ij € ([;]). We will show that the sum of ]_[km [Ue.s, |
overall ¢t € T \ Ty is not much less than the sum taken over the whole of T'.

To this end, fix a pair {ig, jh} € (é) such that ¢ (ig, jh) = . If at least one edge e in
GlUi 4, Uj sl is not in Ey, then there is some ¢ € [s] such that e € E°. Then {ig, jh} € P¢
and so ¢(ig, jh) > c is non-empty, a contradiction. Therefore E(G[U;,, U;;1) € Eo.
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Furthermore, by our definition of ¢, we have that |X;|, |X;| > n’n. Observe that, if one
sums only over those ¢ € T that contain {ig, jh}, then one gets

Z l_[|U[,z,|=|Ui,g||Uj,h| 1_[ 1X,| < |Uzg||Ujh|1_[|X|

€r: Lelr] eelr\i.j) telr]
ti=g,tj=h

Then, using the upper bound on | Ey| from Claim 12, we have that

ST wed< > > ]"[|U@,,¢|<7'7f—2]—[|xe|

teTy Lelr] ig.ime(h): teT: Lelr] Lelr]
E(GlUs g U SE =81
SV
]"[ |X,l. (3-6)
Lelr]

We can now give an upper bound for the weighted average of the right-hand side of (3-5) as
follows:

* 2
ST welb@ < &S T+ =280 S [ 1w,

teT telr] teT telr] teTy Lelr]
36 (g* risylog, s) 9+ Y
S\5+t—7 1Xel < ——— ] | 1Xel- (3-7)
b ( 2 2 éle_[!J b 2 lle_l!J

Using this bound together with a weighted average of the left-hand side of (3-5), we have
that

q*+ 7
T‘/_Hpm
telr]
>3 > aiejlogy 9t ji)| [ | 10|
teT ije([;]) Lelr]
= > we; Y. UillUjallog, loGg. il Y. [] 10l
ije([;]) ghelm;]x[m;] r:’;IT‘::h Lelr\{i,j}
1Xi|1X)] o
=) o =E Y WilWUullog lgGe. il [T 1xl
ije(%) ghelmi1x[m;] Celr\{i. j}
34 1
> —loglcl [T 1Xel,
Lelr]

proving Claim 14.

Let t* € T be such that g* = g(r, ¢4+, ). Recall that § = (|Y,|/N, ..., |Y,|/N). Then
(r, ¢4+, &) and hence (7, ¢y, B) lies in FEAS (k). Now Claims 13 and 14 and Proposition 11
imply that

log, F(H; k) (3<2) log, F(G; k) S5n

61
N2 ST o LR RV AU

6n (33
< q(r, ¢r, B) + 21logy(s)llee — Bl + - < q(r, ¢, B) + 1,

completing the proof of the lemma.
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4. Proofs of Theorems 4 and 5
4-1. Proof of Theorem 4
By Lemma 3, it suffices to show that for every n > 0, there exists ny € N such that
log, F(n; k) < (Q(k) + n)n?/2 for all n > ny. Fix n > 0 and obtain n, from Lemma 7.
Now let n > ny. By Theorem 2, there exists a complete multipartite graph G on n vertices
with F(G; k) = F(n; k). The required upper bound on log, F(G; k) follows immediately
from Lemma 7.

4.2. Proof of Theorem 5

Suppose that there is § > 0 which contradicts the theorem. We need the following claim,
which uses a compactness argument to show that a triple in FEAS; (k) which is almost op-
timal is in fact ‘close’ to a Q-optimal triple.

CLAIM 15. There exists n > O such that for all (r, ¢, ) € FEAS (k) with q(r, d, &) >
Q(k) — 2n, there is a Q-optimal triple (r, ¢, o') such that ||o¢' — ]| < 8.

Proof. Suppose this is not the case. Then for all n € N, there exists (r, ¢, &,) € FEAS; (k)
with

1
q(¢,a,) = Qk) — e 41

but for all ), € A" with ||e, — &/, ||; < §, we have that (, ¢, &/,) is not Q;-optimal.

Consider the sequence (e, o5, ...). Since A" is closed and bounded, the Heine—Borel
theorem implies that it is compact. Therefore there is some subsequence (a,,, ., ...) of
(a1, oy, ...) which converges (in any norm, since r is finite). Let A := lim;_, o ¢, . Ob-
serve that A € A’, so (r, ¢, A) € FEAS,(k). Having fixed r, ¢, observe that q(r, ¢, L) =
2% je(%) Aidjlog|é(ij)]| is a continuous function of A. Therefore

Jim g0 ¢, @) =g (.. 1)

Together with (4-1), this implies that ¢(r, ¢,A) = Q(k), and so (r, ¢, L) is Q;-optimal.
Now, since &,, — A, we can choose N € N such that |jey — A||; < . This contradicts our
assumption and hence proves the claim.

Choose 7 as in the claim. Obtain ny € N by applying Lemma 7 with 5. Since we supposed
that § > O contradicts the statement of Theorem 5, there exists a complete multipartite graph
G on n > ny vertices such that F(G; k) > 2@®-m7"/2 and G is a counterexample to the
statement. Let Vi, ..., V, be the parts of G and define o := (|Vy|/n, ..., |V,|/n). Then, for
all Q-optimal triples (r, ¢, &’), we have that & — &’||; > 8. Lemma 7 and our assumption
on G imply that there exists ¢ € ®,(r; k) such that

log, F(G; k)
n%/2

Claim 15 immediately gives a contradiction, completing the proof of the Theorem 5.

Q) —n < <q@r ¢, o) +1. (4-2)

5. Concluding remarks
The referee of this paper asked if the cases where F (k) was determined in [1] can be done
using our optimisation problem. While the answer is in the affirmative, some claims from [1]
are more conveniently derived by working with graphs rather than feasible solutions. For
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example, following [1] let us show that

1
Sea<s(1- ). 5-1)

Lels]

where k := (k, ..., k) has length s, (r, ¢, @) € FEASy(k) is an arbitrary feasible solution,
and we define

d, =2 Z oo, ford e [s].

iie(3))
@)=t

The shortest way is probably to consider the graph G4 4(n) from the proof of Lemma 3.
For ¢ € [s], let H. be the subgraph of G4 ,(n) spanned by pairs of parts (X;, X ;) such that
¢ € ¢(ij). Then H, is K;-free for all colours ¢ € [s] and so Turan’s theorem implies that
e(H.) < (1 —1/(k — 1))n*/2. Thus we have that, as n — oo,

=2y Y aiaj:zzwgs(l_ﬁ)+o(l),

Lels] cels] ,.je([;J) cels]
cep(ij)
which gives the claimed inequality (5-1). Interestingly, (5-1) and the trivial constraints
d; > 0 for ¢ € [s] imply the sharp upper bound on g(¢, @) = Y ,_, d;log, ¢ when
s € {2,3} and when k = (4,4,4,4). If k = (3, 3, 3, 3), then an additional constraint,
analogous to (5-1), suffices to determine Q(k), see [1].)

Unfortunately, the problem of (numerically) solving Problem Q, seems rather difficult
even for moderately small k. If we have a candidate pair (r, ¢), then the Lagrange Multiplier
Method gives a linear program which either returns a best possible a for this (r, ¢) in the
interior of A", or implies that there is an optimal solution on the boundary so we can reduce
r by one. This calculation can be efficiently implemented. However, the number of possible
pairs (r, ¢) becomes large very quickly. Here, the quest of replacing the crude bound r <
R (k) by abetter one leads to the following Ramsey-type question. Namely, r can be bounded
by Ry(k) — 1, where we define R,(k) to be the smallest » such that for every choice of a
list-colouring ¢ : ([;]) — ([;]) there is ¢ € [s] with ¢ ~'(c) containing a k.-clique. Clearly,
the definition would not change if we restrict ourselves to lists of size at least 2, so we
can assume r < R,(k) in the statement of Problem Q,. The problem of estimating R (k)
runs into similar difficulties as those for the classical version R(k). It is a special case of
a parameter studied in [19], and seems to grow fast. For example, in [19] it was shown
that R,(5,5,5) > 20, which is already too large for a naive enumeration of feasible ¢ by

computer.
As we mentioned, the existence of the limit in (1-2) can be shown by an easy modification
of the proof for the case k; = - - - = k; in [1]. In fact, there are two different proofs. The one

that appears in the published version of [1] was suggested by an anonymous referee and uses
an entropy inequality of Shearer to show that log F (n; k)/n? is a non-increasing function
of n.

The other proof, which was the original argument by Alon et al. [1], is similar to our
proof of Theorem 4. In our language, it can be sketched as follows. Fix a large N such
that log, F(N; k)/ (g’) is close to the limit superior of (1-2). Take an e-regular partition
V(G) = V;U...UV, of an arbitrary k-extremal order-N graph G with a ‘typical’ col-
ouring o. Let ¢(ij) be the set of those colours ¢ € [s] for which o~!(c)[V;, Vil is an
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(e, y)-regular pair. As in Lemma 3, use this function ¢ : ([’; ]) — 2051 with the uniform vec-
tora = (1/m, ..., 1/m) to produce graphs of order n — oo with at least 24("-¢-0n*/2=0)
valid colourings. Since g (m, ¢, o) can be made arbitrarily close to the limit superior of (1-2)
by choosing small y > ¢ > 1/N, the limit in (1-2) exists.

The latter proof can be adopted to prove Theorem 4 (by applying symmetrisation to re-
duce the triple (m, ¢, ) to one with fewer than R(k) parts). However, our proof (where
the Regularity Lemma is applied after the symmetrisation) has the advantages of giving
some explicit (although rather bad) bound on the rate of convergence in (1-2) and implying
Theorem 5 as well.

Despite Theorem 5, there may be order-n graphs G with F(G; k) = 2@®+o()m*/2 which
are very far in edit distance from being complete multipartite. For example, if k = (4, 3),
then one can take for G an equitable complete bipartite graph with parts A U B and add any
triangle-free graph into A (e.g. a blow-up of a pentagon which is far from being complete
partite). Here, we can colour edges between A and B arbitrarily provided all edges inside A
have colour 1. Thus F(G; (4,3)) > 2/AlIBl = 2:()+0® while Q((4, 3)) is easily seen to
be equal to 1/2.

Interestingly, our follow-up results (in preparation) show that all (4, 3)-extremal graphs
of sufficiently large order n happen to be in fact 3-partite. For example, if n = 2m + 1 is odd
(and large), then the unique extremal graph is K, ,—1 2. In order to illustrate how a small
part can increase the number of colourings, let us show that

F(Kp: (4,3)) = 2. 2m0+h _gm? (5-2)

that is, the number of (4, 3)-valid colourings of H := K,, ,,1 is by factor 2 — o(1) larger
than that for the Turdn graph K,, 1. If H has parts V; U V, U V; with | V3| = 1, then H has
2mm+D colourings where G[V, U V3, V5] is coloured arbitrarily while all edges between V;
and V; have colour 1. Similarly we have 2D colourings where V; is ‘bundled’ with V,
(and all edges between V, and V3 get colour 1). All colourings that appear twice are exactly
those that assign colour 1 to all edges incident to Vj, so there are 212l = 27 of them,
giving (5-2).

The above example shows that one can have parts of size o(n) in Theorem 5 even for k-
extremal graphs. (These parts will correspond to zero entries of « in the limit.) Nonetheless,
we conjecture that Theorem 2 captures all extremal graphs:

CONJECTURE 16. For every n,s € Nand k € N°, every n-vertex k-extremal graph is
complete multipartite.

In a future paper, we hope to provide a sufficient condition for this to be true for all
n > no(k) and apply the developed theory to solving the problem for new values of k.
We note that, in the different setting of forbidden cliques with prescribed colour patterns
explored in [4], the corresponding version of Conjecture 16 holds in some cases.
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