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Abstract

Let k := (k1, . . . , ks) be a sequence of natural numbers. For a graph G, let F(G; k)

denote the number of colourings of the edges of G with colours 1, . . . , s such that, for every
c ∈ {1, . . . , s}, the edges of colour c contain no clique of order kc. Write F(n; k) to denote
the maximum of F(G; k) over all graphs G on n vertices. This problem was first considered
by Erdős and Rothschild in 1974, but it has been solved only for a very small number of
non-trivial cases.

We prove that, for every k and n, there is a complete multipartite graph G on n vertices
with F(G; k) = F(n; k). Also, for every k we construct a finite optimisation problem whose
maximum is equal to the limit of log2 F(n; k)/

(n
2

)
as n tends to infinity. Our final result is a

stability theorem for complete multipartite graphs G, describing the asymptotic structure of
such G with F(G; k) = F(n; k) · 2o(n2) in terms of solutions to the optimisation problem.

1. Introduction and results

Let a sequence k = (k1, . . . , ks) ∈ N
s of natural numbers be given. By an s-edge-

colouring (or colouring for brevity) of a graph G = (V, E) we mean a function σ : E → [s],
where we denote [s] := {1, . . . , s}. Note that we do not require colourings to be proper, that
is, adjacent edges can have the same colour. A colouring σ of G is called k-valid if, for
every c ∈ [s], the colour-c subgraph σ−1(c) contains no copy of Kkc , the complete graph of
order kc. Write F(G; k) for the number of k-valid colourings of G.

In this paper, we investigate F(n; k), the maximum of F(G; k) over all graphs G on
n vertices, and the k-extremal graphs, i.e. order-n graphs which attain this maximum. We
assume throughout the paper that s � 2 and that kc � 3 for all c ∈ [s] (since kc = 2 just
forbids colour c and the problem reduces to one with s − 1 colours).
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1·1. Previous work

The problem, namely the case when k1 = · · · = ks =: k, was first considered by Erdős
and Rothschild in 1974 (see [5, 6]). Clearly, any colouring of a Kk-free graph is k-valid.
By Turán’s theorem [18], the maximum such graph on n vertices is Tk−1(n), the complete
(k − 1)-partite graph with parts as equal as possible. This implies the trivial lower bound

F(n; (k, . . . , k)) � stk−1(n), (1·1)

where tk−1(n) is the number of edges in Tk−1(n). In particular, Erdős and Rothschild conjec-
tured that, when k = (3, 3) and n is sufficiently large, the trivial lower bound (1·1) is in fact
tight and, furthermore, T2(n) is the unique k-extremal graph. The conjecture was verified for
all n � 6 by Yuster [20] (who also computed F(n; (3, 3)) for smaller n). Yuster generalised
the conjecture to k = (k, k) and proved an asymptotic version. The full conjecture for all
k � 3 was proved by Alon, Balogh, Keevash and Sudakov [1] who further showed that an
analogous result holds for three colours:

THEOREM 1 (Alon, Balogh, Keevash and Sudakov [1]). Let k, n ∈ N where k � 3 and
n � n0(k). Then

F(n; (k, k)) = 2tk−1(n) and F(n; (k, k, k)) = 3tk−1(n).

Moreover, Tk−1(n) is the unique extremal graph in both cases.

The proof of Theorem 1 uses Szemerédi’s Regularity Lemma. Unfortunately, this also
means that the graphs to which it applies are very large indeed. In fact, the assertions are not
true for all numbers n of vertices. As was remarked in [1], the conclusion of Theorem 1 fails
when k � n < s(k−2)/2, as in this case a random colouring of the edges of Kn with s colours
contains no monochromatic Kk with probability more than 1/2. Thus, for this range of n,
we have F(n; (k, . . . , k)) > s(

n
2)/2 � stk−1(n).

The authors of [1] noted that when more than three colours are used, the behaviour
of F(n; (k, . . . , k)) changes, making its determination both harder and more interesting.
Namely, it was shown in [1, page 287] that if s � 4 (and k � 3) then F(n; (k, . . . , k)) is
exponentially larger than stk−1(n). In particular, any extremal graph has to contain many cop-
ies of Kk . In the case when k = (3, 3, 3, 3), they determined log F(n; k) asymptotically by
showing that F(n; (3, 3, 3, 3)) = (21/831/2)n2+o(n2), where T4(n) achieves the right exponent.
Similarly, they proved that F(n; (4, 4, 4, 4)) = (38/9)n2+o(n2), where T9(n) achieves the right
exponent. Determining the exact answer in these two cases, the first and third author of this
paper proved in [16] that, when n � n0, T4(n) is the unique (3, 3, 3, 3)-extremal graph on n
vertices, and T9(n) is the unique (4, 4, 4, 4)-extremal graph on n vertices.

It was also proved in [1, proposition 5·1] that the limit

F(k) := lim
n→∞

log2 F(n; k)

n2/2
(1·2)

exists (and is positive) when k = (k, . . . , k). As it is easy to see, the proof from [1] extends
to an arbitrary fixed sequence k.

Erdős and Rothschild also considered the generalisation of the problem, where one for-
bids a monochromatic graph H (the same for each colour). In [1] the authors showed that
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the analogue of Theorem 1 holds when H is colour-critical, that is, the removal of any
edge from H reduces its chromatic number. (Note that every clique is colour-critical.) In a
further generalisation, Balogh [3] considered edge-colourings which themselves do not con-
tain a specific colouring of a fixed graph H . Other authors have addressed this question in
the cases of forbidden monochromatic matchings, stars, paths, trees and some other graphs
in [8, 9], matchings with a prescribed colour pattern in [10], and rainbow stars in [12]. Ex-
tending work in [10], Benevides, Hoppen and Sampaio considered forbidden cliques with a
prescribed colour pattern, and using techniques similar to our own, obtained several results
in this direction, including a version of Theorem 2 below. In [7], a colouring version of the
Erdős–Ko–Rado theorem for families of �-intersecting r -element subsets of an n-element
set was considered; that is, one counts the number of colourings of families of r -sets such
that every colour class is �-intersecting. A so-called ‘q-analogue’ was addressed in [11],
which considers a colouring version of the Erdős–Ko–Rado theorem in the context of vector
spaces over a finite field G F(q).

Alon and Yuster [2] studied a directed version of the problem, to determine the maximum
number of T -free orientations of an n-vertex graph, where T is a given k-vertex tournament.
They showed that the answer is 2tk−1(n) for n � n0(k). This in fact answers the original
question of Erdős [5], which he modified to ask about edge-colourings.

The problem of counting H -free edge-colourings in hypergraphs was studied in [7, 14,
15]. In an asymptotic hypergraph version of Theorem 1, Lefmann, Person and Schacht [15]
proved that, for every k-uniform hypergraph H and s ∈ {2, 3}, the maximum number of
H -free s-edge-colourings over all k-uniform hypergraphs with n vertices is sex(n,H)+o(nk ),
where the Turán function ex(n, H) is the maximum number of edges in an H -free k-uniform
hypergraph on n vertices. This is despite the fact that ex(n, H) is known only for few H .

1·2. New results

Our first result states that it suffices to consider very special graphs G in order to determine
the value of F(n; k):

THEOREM 2. For every n, s ∈ N and k ∈ N
s , at least one of the k-extremal graphs of

order n is complete multipartite.

Independently, an analogue of Theorem 1 for a single multi-coloured pattern was proved
by Benevides et al. [4, theorem 1·1]. Our second result (Theorem 4 below) writes the limit
in (1·2) as the value of a certain optimisation problem.

Problem Qt : Given a sequence k := (k1, . . . , ks) ∈ N
s of natural numbers and t ∈ {0, 1, 2},

determine

Qt(k) := max
(r,φ,α)∈FEASt (k)

q(r, φ, α), (1·3)

the maximum value of

q(r, φ, α) := 2
∑

1�i< j�r

φ(i j)��

αiα j log2 |φ(i j)| (1·4)

over the set FEASt(k) of feasible solutions, that is, triples (r, φ, α) such that:

(i) r ∈ N and r < R(k), where R(k) is the Ramsey number of k (i.e. the minimum R such
that K R admits no k-valid s-edge-colouring);



344 O. PIKHURKO, K. STADEN AND Z. B. YILMA

(ii) φ ∈ �t(r; k), where �t(r; k) is the set of all functions φ : ([r ]
2

) → 2[s] such that

φ−1(c) :=
{

i j ∈
([r ]

2

)
: c ∈ φ(i j)

}

is Kkc -free for every colour c ∈ [s] and |φ(i j)| � t for all i j ∈ ([r ]
2

)
;

(iii) α = (α1, . . . , αr ) ∈ �r , where �r is the set of all α ∈ R
r with αi � 0 for all i ∈ [r ],

and α1 + · · · + αr = 1.

Note that the maximum in (1·3) is attained. Indeed, for each of the finitely many allowed
pairs (r, φ), the function q(r, φ, ·) is continuous and hence attains its maximum over the
non-empty compact set �r . A triple (r, φ, α) is called Qt -optimal if it attains the maximum,
that is, (r, φ, α) ∈ FEASt(k) and q(r, φ, α) = Qt(k).

As we will show later in Lemma 6, Q0(k) = Q1(k) = Q2(k) so we will denote this
common value by Q(k). Of course, if one wishes to determine the value of Q(k), then one
should work with Problem Q2 as it has the smallest feasible set. Since one of our results is
stated in terms of Q1-optimal triples (which may be a strict superset of Q2-optimal triples),
we stated different versions of the optimisation problem.

First we show that Q(k) gives rise to an asymptotic lower bound on F(n; k).

LEMMA 3. For every s ∈ N and k ∈ N
s , there exists C such that for all n ∈ N there is a

graph G on n vertices with F(G; k) � 2Q(k)(n
2)−Cn.

Proof. Let (r, φ, α) be Q0-optimal. For n ∈ N, let Gφ,α(n) be the graph of order n with
vertex partition X1, . . . , Xr , where | |Xi | − αi n| � 1; and in which for all i, j ∈ [r ] and
xi ∈ Xi and y j ∈ X j , we have that xi y j is an edge of Gφ,α(n) if and only if i � j and
φ(i j) � �. Consider those colourings of Gφ,α(n) in which xi y j is coloured with some
colour in φ(i j), for every xi ∈ Xi , y j ∈ X j , where 1 � i < j � r . Every such colouring is
k-valid because φ−1(c) is Kkc -free for all c ∈ [s]. The number of such colourings gives the
desired lower bound for F(n; k):

F(n; k) � F(Gφ,α(n); k) �
∏

1�i< j�r

φ(i j)��

|φ(i j)||Xi | |X j | � 2Q(k)(n
2)−Cn, (1·5)

where C = C(k) is a constant due to rounding. This proves Lemma 3.

THEOREM 4. For every s ∈ N and k ∈ N
s , we have F(n; k) = 2Q(k)(n

2)+o(n2), that is,
F(k) = Q(k), where F(k) is the limit in (1·2).

So, as in the result of Lefmann, Person and Schacht [15] mentioned above, this theorem
can be proved without knowledge of Q(k). Our proof of Theorem 4 builds upon the tech-
niques of [1, 16] and also uses the Regularity Lemma.

The structure of an arbitrary order-n graph G with F(G; k) = 2(Q(k)+o(1))n2/2 can be rather
complicated (see a short discussion in Section 5 of the case k = (4, 3)). However, the next
result states that if G is assumed to be complete multipartite, then the part ratios have to be
close to being Q1-optimal.

THEOREM 5. For every δ > 0 there are η > 0 and n0 such that if G = (V, E) is a com-
plete multipartite graph of order n � n0 with (non-empty) parts V1, . . . , Vr and F(G; k) �
2(Q(k)−η)n2/2 then there is a Q1-optimal triple (r, φ, α′) such that the �1-distance between
α′ ∈ �r and α = (|V1|/n, . . . , |Vr |/n) is at most δ: ‖α − α′‖1 := ∑r

i=1 |αi − α′
i | � δ.
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In a sense, a converse to Theorem 5 holds. Indeed, for every Q1-optimal triple (r, φ, α′),
for all n ∈ N, the proof of Lemma 3 gives a complete r -partite graph Gφ,α′(n) on n vertices
with parts Xn

1 , . . . , Xn
r such that, setting αn = (|Xn

1 |/n, . . . , |Xn
r |/n), we have, as n → ∞,

that
log2 F(Gφ,α′(n); k)

n2/2
−→ Q(k) and ‖αn − α′‖ −→ 0.

The rest of the paper is organised as follows. Theorem 2 is proved in Section 2. Section 3
contains a general lemma which is then used in Section 4 to prove Theorems 4 and 5. Sec-
tion 5 contains some concluding remarks. We will use the following notation. For a set X
and an integer k � |X |, let

(X
k

)
denote the set of all k-subsets of X . Also, let 2X be the set of

all subsets of X . If it is clear from the context, we may write i j to denote the set {i, j} or the
ordered pair (i, j).

2. Symmetrisation and k-extremal graphs

In this section we prove Theorem 2, which states that, for any instance of the problem
(i.e. any choice of the parameters n, s, k), there is a complete multipartite graph which is
k-extremal. The proof uses the well-known symmetrisation method that was introduced by
Zykov [21].

Proof of Theorem 2. Let G = (V, E) be a k-extremal graph on n vertices. Consider distinct
vertices u, v ∈ V with uv � E . Let G ′ = G − {u, v}, where G − X = G[V \ X ] is the
graph obtained from G by removing every vertex of a set X ⊆ V and every edge adjacent
to a vertex of X . For a graph H , let F(H) denote the set of k-valid colourings of H . (Thus
F(H ; k) = |F(H)|.) Let σu and σv denote the number of k-valid extensions of σ ∈ F(G ′)
to G − {v} and G − {u} respectively. Since uv � E and each forbidden graph is a clique, we
have that the number of k-valid extensions of σ to G is σuσv. Thus

F(G; k) =
∑

σ∈F(G ′)

σuσv. (2·1)

Let Gu be the graph obtained from G by deleting v and adding a new vertex u′ which is a
clone of u in G. Define Gv analogously. From (2·1), it follows that

F(Gu; k) =
∑

σ∈F(G ′)

σ 2
u and F(Gv; k) =

∑
σ∈F(G ′)

σ 2
v . (2·2)

Since G is k-extremal, we have that

0 � 2F(G; k) − F(Gu; k) − F(Gv; k)
(2·1),(2·2)= −

∑
σ∈F(G ′)

(σu − σv)
2 � 0, (2·3)

and hence we have equality everywhere. Therefore Gu and Gv are both k-extremal. In order
to finish the proof, it is enough to show that we can reach a complete multipartite graph by
starting with G and iteratively performing the above operation.

We say that two vertices x and y are twins (and write x ∼ y) if they have the same sets
of neighbours. Note that twins are necessarily non-adjacent. It is easy to see that ∼ is an
equivalence relation. Let [x]∼ denote the equivalence class of x .

Let G1 := G. Repeat the following for as long as possible. Suppose that we have defined
graphs G1, . . . , Gi for some i � 1, which are all k-extremal. Suppose that Gi contains a
pair u, v of non-adjacent vertices which are not twins. Choose such a pair so that |[u]∼| is
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maximal. Let Gi+1 = (Gi)u be the graph obtained from Gi by deleting v and adding a new
vertex u′ which is a clone of u. As was argued above, Gi+1 is necessarily k-extremal.

For each i � 1, call an equivalence class [x]∼ in the graph Gi frozen if Gi is complete
between [x]∼ and its complement, and unfrozen otherwise. Let f (Gi) be the sum of sizes
of all frozen classes plus the largest size of an unfrozen one (if such exists). It is easy to
see that f (Gi) is strictly increasing with i . Since f (Gi) is bounded above by n, the process
terminates in at most n − 1 steps with some k-extremal graph H . Since every pair of non-
adjacent vertices in H are twins, H is complete multipartite, as desired.

Also, the symmetrisation can be applied to Qt -optimal solutions. In particular, one can
prove the following.

LEMMA 6. For every k, we have Q0(k) = Q1(k) = Q2(k).

Proof. Since trivially FEAS0(k) ⊇ FEAS1(k) ⊇ FEAS2(k), we have Q0(k) � Q1(k) �
Q2(k).

On the other hand, among all Q0-optimal solutions (r, φ, α), fix one with r as small as
possible. Then, in particular, we have that each αi is non-zero. We claim that necessarily
(r, φ, α) ∈ FEAS2(k) (which will give the required inequality Q2(k) � Q0(k)). If this is not
true, then |φ(i j)| � 1 for some i j ∈ ([r ]

2

)
, say for {i, j} = {r − 1, r}. For a real c, consider

α′ defined by α′
r−1 = αr−1 + c, α′

r = αr − c and α′
h := αh for all h ∈ [r − 2]. In other

words, we shift weight c from αr to αr−1. Since q(r, φ, α′) is a linear function f (c) of c and
(r, φ, α′) ∈ FEAS0(k) when |c| is at most min{αr−1, αr } > 0, it must be the case that f (c)
is a constant function. Thus f (c) = f (0) = Q0(k) regardless of c. In particular, by taking
c = αr , that is, by shifting all weight from αr to αr−1, we obtain a Q0-optimal solution
(r, φ, α′) with α′

r = 0, whose restriction to [r − 1] gives another Q0-optimal solution,
contradicting the minimality of r and proving Lemma 6.

3. A unifying lemma

The proofs of Theorems 4 and 5 will both follow from the next lemma, which states that
the number of k-valid colourings of any complete r -partite graph H can be bounded above
by evaluating q for a triple (r, φ, β) ∈ FEAS1(k), where β is given by the ratios of the parts
of H .

LEMMA 7. For all s ∈ N, k ∈ N
s and η > 0, there exists n0 ∈ N such that for every

complete multipartite graph H of order N � n0 with (non-empty) parts Y1, . . . , Yr with at
least one k-valid colouring, there is some φ ∈ �1(r; k) such that

log2 F(H ; k)

N 2/2
� q(r, φ, β) + η,

where β := (|Y1|/N , . . . , |Yr |/N ).

In outline, the argument to prove Lemma 7 is as follows. The main idea of the proof is
to use Szemerédi’s Regularity Lemma to pass from a k-valid colouring σ of H to a set of
feasible solutions that come from r -tuples of clusters which are transversal with respect to
the r -partition of H . For each obtained solution (r, φ, β) ∈ FEAS0(k), an upper bound on
q(r, φ, β) can be translated via regularity into an upper bound on the number of restrictions
of possible colourings σ to the involved clusters (an idea already used in [1]). Then we estim-
ate F(H ; k) by taking an appropriately weighted sum of logarithms of these bounds. It turns



Edge-colourings with forbidden monochromatic cliques 347

out that the dominant contribution is from those triples (r, φ, β) that belong to FEAS1(k),
and so the bound obtained for F(H ; k) is in terms of the largest q(r, φ, β) among such
triples.

3·1. Regularity tools

We will need the following definitions related to Szemerédi’s Regularity Lemma.

Definition 8 (Edge density, ε-regular, (ε, γ )-regular, equitable partition). Given a graph
G and disjoint non-empty sets A, B ⊆ V (G), we define the edge density between A and B
to be

d(A, B) := |E(G[A, B])|
|A| |B| .

Given ε, γ > 0, the pair (A, B) is called:

(i) ε-regular if for every X ⊆ A and Y ⊆ B with |X | � ε|A| and |Y | � ε|B|, we have that
|d(X, Y ) − d(A, B)| � ε;

(ii) (ε, γ )-regular if it is ε-regular and has edge density at least γ .

We call a partition V (G) = V1 � · · · � Vm :

(i) equitable if
∣∣ |Vi | − |Vj |

∣∣ � 1 for all i, j ∈ [m];
(ii) ε-regular if it is equitable, m � 1/ε, and all but at most ε

(m
2

)
of the pairs (Vi , Vj ) with

1 � i < j � m are ε-regular.

Our first tool states that an induced subgraph of a regular pair is still regular, provided
both parts are not too small.

PROPOSITION 9. Let ε, δ be such that 0 < 2δ � ε < 1. Suppose that (X, Y ) is a δ-
regular pair, and let X ′ ⊆ X and Y ′ ⊆ Y . If

min

{ |X ′|
|X | ,

|Y ′|
|Y |

}
� δ

ε
,

then the pair (X ′, Y ′) is ε-regular.

Proof. Let X ′′ ⊆ X ′ and Y ′′ ⊆ Y ′ be such that |X ′′| � ε|X ′| and |Y ′′| � ε|Y ′|. Then
|X ′′|/|X |, |Y ′′|/|Y | � δ. Since (X, Y ) is δ-regular, we have that |d(X ′′, Y ′′) − d(X, Y )| � δ.

Note further that |X ′|/|X |, |Y ′|/|Y | � δ/ε > δ, so |d(X ′, Y ′) − d(X, Y )| � δ. By the
Triangle Inequality, |d(X ′′, Y ′′) − d(X ′, Y ′)| � 2δ � ε. This implies that (X ′, Y ′) is ε-
regular, as required.

We use the following multicolour version of Szemerédi’s Regularity Lemma [17] (see e.g
Komlós and Simonovits [13, theorem 1·18]).

LEMMA 10 (Multicolour Regularity Lemma). For every ε > 0 and s ∈ N, there exists
M ∈ N such that for any graph G on n � M vertices and any s-edge-colouring σ :
E(G) → [s], there is an (equitable) partition V (G) = V1 � . . . � Vm with m � M, which is
ε-regular simultaneously with respect to all graphs (V (G), σ−1(c)), with c ∈ [s].

Finally, we need the following bound.

PROPOSITION 11. Let s, r ∈ N and k ∈ N
s . Let φ ∈ �0(r; k) and α, β ∈ �r . Then

|q(r, φ, α) − q(r, φ, β)| � 2‖α − β‖1 log2 s.
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Proof. We have that

|q(r, φ, α) − q(r, φ, β)|
=

∣∣∣∣∑
i∈[r ]

αi

∑
j∈[r ]\{i}

α j log |φ(i j)| −
∑
i∈[r ]

βi

∑
j∈[r ]\{i}

β j log |φ(i j)|
∣∣∣∣

�
∣∣∣∣∑
i∈[r ]

(αi − βi)
∑

j∈[r ]\{i}
α j log |φ(i j)|

∣∣∣∣ +
∣∣∣∣∑

j∈[r ]
(α j − β j )

∑
i∈[r ]\{ j}

βi log |φ(i j)|
∣∣∣∣

� 2 log2(s) · ‖α − β‖1.

3·2. Proof of Lemma 7

Let η > 0 (assumed without loss of generality to be sufficiently small) and choose an
additional constant γ so that 0 < γ � η � 1/R(k). By the (standard) Embedding Lemma
(see, for example, [13, theorem 2·1]), there exist ε > 0 and m0 ∈ N such that the following
holds for all c ∈ [s]: if G is a graph with a partition V (G) = W1 � · · · � Wkc such that
|Wi | � m0 for all i ∈ [kc] and every pair (Wi , W j ) for 1 � i < j � kc is (ε, γ )-regular,
then Kkc ⊆ G.

We may assume that 0 < 1/m0 � ε � γ since whenever ε′ � ε, we have that an
ε′-regular pair is also an ε-regular pair. Let M be the integer returned by Lemma 10 when
applied with parameters ε2 and s. Choose n0 ∈ N and assume, without loss of generality,
that 1/n0 � 1/M � 1/m0. We have the hierarchy

0 < 1/n0 � 1/M � 1/m0 � ε � γ � η � 1/R(k). (3·1)

Let N � n0 be arbitrary. Let H be a complete multipartite graph on N vertices with parts
Y1, . . . , Yr . We may assume that r < R(k) otherwise F(H ; k) = 0. Let G = (V, E) be a
graph obtained from H by removing all but one vertex from every part Yi of size at most
η2 N (and all edges incident with the removed vertices). Write n := |V | and Xi := Yi � V
for all i ∈ [r ]. Then N − n � R(k) · η2 N . So

F(G, k) � F(H, k) · s−R(k)η2 N 2

and so

log2 F(G; k)

n2/2
� log2 F(G; k)

N 2/2
� log2 F(H ; k)

N 2/2
− 3R(k)η2 log2 s

� log2 F(H ; k)

N 2/2
− η

3
. (3·2)

Define α := (|X1|/n, . . . , |Xr |/n) and β := (|Y1|/N , . . . , |Yr |/N ). Then

‖α − β‖1 � R(k)η2 N

n
� 2R(k)η2. (3·3)

Without loss of generality, there is some w ∈ [r ] such that Xi = {xi } is a singleton for all
i ∈ [w], and |X j | > η2n for all w < j � r .
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For the rest of the proof, we will work with G rather than H . Informally, the reason
for passing to G is the following. After applying the Regularity Lemma to H with a valid
colouring σ , we do not a priori have control on the distribution of coloured edges incident
to small parts of H . If the statement of Lemma 7 asked for a φ ∈ �0(r; k), we could simply
neglect these parts; but since we require φ ∈ �1(r; k) we cannot do this. Therefore we
introduce G in which each small part Xi is replaced by a token vertex xi , which merely
asserts the existence of its part. But for each x ∈ V (G), there are only constantly many
possible values for {σ(xxi) : i ∈ [w]} for all s-edge-colourings σ . Thus we can refine
our regularity partition into parts according to these values. Now we have good control
between all pairs of parts: if both are large then regularity provides good control; and if
one of them is small it is necessarily a single vertex and σ is constant on all edges between
the parts.

Let σ : E → [s] be a k-valid colouring of G. By the choice of M (that is, by Lemma 10
applied to G and σ with parameters ε2 and s), there is an (equitable) partition V = V1 �· · ·�
Vm , with m � M , which is ε2-regular simultaneously with respect to all graphs (V, σ−1(c)),
c ∈ [s].

We will now take a common refinement of X1, . . . , Xr and V1, . . . , Vm which also takes
into account attachments to W := {x1, . . . , xw}. Namely, for all j ∈ [m], subdivide Vj

into at most r(sw + w) parts as follows. Put each vertex in W � Vj into a separate part.
Now, for any vertices y, y′ remaining in Vj , put y and y′ in the same part if and only if
there is some � ∈ [r ] such that {y, y′} ⊆ X�, and σ(xh y) = σ(xh y′) for all h ∈ [w].
Thus we obtain a (not necessarily equitable) partition Ui,1 � · · · � Ui,mi of Xi for each
i ∈ [r ], where mi � M(sw + w). Let U be the collection of sets Ui, j . It is indexed
by

I := { i j : i ∈ [r ] and j ∈ [mi ] }.
For a colour c∈[s], let Pc consist of all pairs of indices {ig, jh} ∈ (I

2

)
such that

σ−1(c)[Ui,g, U j,h] is (ε, γ )-regular, and at least one of the following holds: Ui,g is a ver-
tex of W ; U j,h is a vertex of W ; or min{|Ui,g|, |U j,h|} � m0. (So if, say, Ui,g is a vertex of W ,
then {ig, jh} ∈ Pc for some c ∈ [s] since G[Ui,g, U j,h] is a monochromatic star under σ .)
We define Ec ⊆ E to be the union of σ−1(c)[Ui,g, U j,h] over all pairs {ig, jh} ∈ Pc. Let
E0 := E \ (E1 � · · · � Es). Thus E0 consists of edges without endpoints in W which are
incident with a part of size less than m0; and edges which come from coloured pairs that are
not ε-regular or have edge density less than γ . The following claim, whose proof is fairly
standard, shows that E0 cannot contain many edges.

CLAIM 12. |E0| � sγ n2.

Proof. Call a part Ui,g ⊆ V� small if |Ui,g| < ε|V�|. Let Esmall ⊆ E be the set of edges that
have at least one vertex in a small part. Since each V� is subdivided into at most r(sw +w) <

2R(k)s R(k) new parts, the number of vertices in small parts is at most 2εR(k)s R(k)n and,
trivially,

|Esmall| � 2εR(k)s R(k)n2.

Let Eirr ⊆ E consist of those edges of G that lie inside some V� or belong to some
colour-c bipartite subgraph σ−1(c)[V�, V�′ ] which is not ε2-regular. Since V1 � · · · � Vm is
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an ε2-regular (equitable) partition, we have

|Eirr| � m

(�n/m�
2

)
+ sε2

(
m

2

)⌈ n

m

⌉2

which is by m � 1/ε2 at most, say, εn2.
Next, we bound the size of E0 \ (Esmall � Eirr). Let e be any edge from this set. Since each

Ui,g is an independent set in G, we have e ∈ E(G[Ui,g, U j,h]) for some distinct ig, jh ∈ I .
Let �, �′ ∈ [m] satisfy V� ⊇ Ui,g and V�′ ⊇ U j,h . Since e � Esmall, we have

min{ |Ui,g|, |U j,h| } � min{ ε|V�|, ε|V�′ | } � ε
n/m�,
which is at least m0 by our choice of constants. Let c = σ(e) be the colour of e. Since
e � Eirr, we have that �� �′ and σ−1(c)[V�, V�′ ] is ε2-regular. Thus Proposition 9 implies that
σ−1(c)[Ui,g, U j,h] is ε-regular. Since e � Ec, it must be the case that σ−1(c)[Ui,g, U j,h] � e
has edge density less than γ . We conclude that E0 \ (Esmall � Eirr) has edge density at most
sγ between any pair (Ui,g, U j,h). Thus

|E0| � |Esmall|+ |Eirr|+
∑

{ig,ih}∈(I
2)

sγ |Ui,g| |U j,h| � 2εR(k)s R(k)n2 +εn2 + sγ

(
n

2

)
< sγ n2,

proving the claim.

Define φ : (I
2

) → 2[s] by setting, for all {ig, jh} ∈ (I
2

)
,

φ(ig, jh) := {c ∈ [s] : {ig, jh} ∈ Pc}.
If neither Ui,g nor U j,h is a vertex of W but min{ |Ui,g|, |U j,h| } < m0, then φ(ig, jh)

is empty. Otherwise, φ(ig, jh) consists of those c for which σ−1(c)[Ui,g, U j,h] is (ε, γ )-
regular. Also, let σ0 = σ |E0 be the restriction of σ to E0.

For each k-valid colouring σ of G, fix one partition V = V1 � · · · � Vm as above and then
define the tuple (U, I, φ, E0, σ0) accordingly.

CLAIM 13. The number of possible tuples (U, I, φ, E0, σ0) is at most 2ηn2/4.

Proof. Clearly, there are at most (M(sw + w))n � (M(s R(k) + R(k)))n < 2ηn2/12 possible
partitions of V in which, for all i ∈ [r ], every x ∈ Xi lies in one of at most M(sw +w) parts.
Each such partition determines U and I uniquely (since the partition V = X1 � · · · � Xr is
fixed throughout the whole proof).

Given U and I , the number of possible φ is at most (2s)(
r(Msw+w)

2 ) < 2ηn2/12. By Claim 12,
the number of ways to choose E0 and colour these edges (i.e. choose σ0) is, very roughly, at
most ( (n

2

)
sγ n2

)
(s + 1)sγ n2

< 2ηn2/12.

The claim is proved by multiplying these three bounds.

Fix a tuple (U, I, φ, E0, σ0) such that C � �, where C is the set of colourings σ which
generate it. Our next step is to provide an upper bound for |C|. For every σ ∈ C, we have
σ |E0 = σ0. Also, by the definition of E0, every e ∈ E\E0 lies in some (ε, γ )-regular bipartite
graph σ−1(c)[Ui,g, U j,h] with c ∈ [s] and {ig, jh} ∈ (I

2

)
such that min{|Ui,g|, |U j,h|} � m0

or at least one of Ui,g, U j,h is a vertex of W . Thus {ig, jh} ∈ Pc, that is, σ(e) ∈ φ(ig, jh).
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Therefore

|C| �
∏

i j∈([r ]
2 )

∏
gh∈[mi ]×[m j ]

φ(ig, jh)��

|φ(ig, jh)||Ui,g | |U j,h |.

Let us agree that log2 0 := 0. Then

log2 |C| �
∑

i j∈([r ]
2 )

∑
gh∈[mi ]×[m j ]

|Ui,g| |U j,h| log2 |φ(ig, jh)|. (3·4)

Let T := [m1] × · · · × [mr ]. We use T to index all ‘transversal’ r -tuples of parts from
U , where we take one part from each of X1, . . . , Xr . For each t = (t1, . . . , tr ) in T , define
φt : ([r ]

2

) → 2[s] by setting, for i j ∈ ([r ]
2

)
,

φt(i j) := φ(i ti , j t j ).

Recall the definition of α after (3·2).

CLAIM 14. log2 |C| � (q∗ + √
γ )n2/2, where

q∗ := max{q(r, φt, α) : (r, φt, α) ∈ FEAS1(k), t ∈ T }.
Proof. We will first show that, for every c ∈ [s] and t ∈ T , the graph φ−1

t (c) is Kkc -free.
Indeed, suppose that i1, . . . , ikc span a copy of Kkc in φ−1

t (c). First consider the case when
Ui1,ti1

is not a vertex of W but |Ui1,ti1
| < m0. Then, by the definition of φ, we have that

Uiq ,tiq is a vertex of W for all 2 � q � kc. Moreover, for every pq ∈ ([kc]
2

)
, every edge in

G[Ui p,ti p
, Uiq ,tiq ] is coloured with c by σ , a contradiction.

So, without loss of generality, we may assume that there is some 0 � � � min{kc, w}
such that each of Ui1,ti1

, . . . , Ui�,ti�
consists of a vertex of W and |Uiq ,tiq | > m0 for all �+1 �

q � kc. Then, by the definition of U , we have that σ(e) = c for all e ∈ G[Ui p,ti p
, Uiq ,tiq ] with

p ∈ [�] and q ∈ [kc]\{p}. By the definition of Pc ⊇ φ−1(c) and the Embedding Lemma (that
is, our choice of parameters at the beginning of the proof), for all � + 1 � q � kc, there is
zq ∈ Uiq ,tiq such that together these vertices zq span a copy of Kkc−� in σ−1(c). Then σ−1(c)
spans a copy of Kkc , contradicting the k-validity of σ . This and the trivial bound r < R(k)

imply that φt ∈ �(r; k). Therefore, for each t ∈ T , we have that (r, φt, α) ∈ FEAS0(k), and
so ∑

i j∈([r ]
2 )

αiα j log2 |φ(i ti , j t j )| � b(t), (3·5)

where we define

b(t) =
{

q∗/2 if (r, φt, α) ∈ FEAS1(k)

r 2 log2(s)/2 otherwise

(i.e. if (r, φt, α) � FEAS1(k) we take a (somewhat arbitrary) trivial bound for b(t)). The
claim will follow from taking a weighted average of (3·5) by multiplying by

∏
�∈[r ] |U�,t� |

and summing over all t ∈ T . First consider the right-hand side of (3·5). Let T0 be the set of
t ∈ T such that φt(i j) = � for some i j ∈ ([r ]

2

)
. We will show that the sum of

∏
�∈[r ] |U�,t� |

over all t ∈ T \ T0 is not much less than the sum taken over the whole of T .
To this end, fix a pair {ig, jh} ∈ (I

2

)
such that φ(ig, jh) = �. If at least one edge e in

G[Ui,g, U j,h] is not in E0, then there is some c ∈ [s] such that e ∈ Ec. Then {ig, jh} ∈ Pc

and so φ(ig, jh) � c is non-empty, a contradiction. Therefore E(G[Ui,g, U j,h]) ⊆ E0.



352 O. PIKHURKO, K. STADEN AND Z. B. YILMA

Furthermore, by our definition of φ, we have that |Xi |, |X j | � η2n. Observe that, if one
sums only over those t ∈ T that contain {ig, jh}, then one gets∑

t∈T :
ti =g,t j =h

∏
�∈[r ]

|U�,t� | = |Ui,g||U j,h|
∏

�∈[r ]\{i, j}
|X�| � |Ui,g||U j,h|

η4n2

∏
�∈[r ]

|X�|.

Then, using the upper bound on |E0| from Claim 12, we have that∑
t∈T0

∏
�∈[r ]

|U�,t� | �
∑

{ig, jh}∈(I
2):

E(G[Ui,g,U j,h ])⊆E0

∑
t∈T :

ti =g,t j =h

∏
�∈[r ]

|U�,t� | � |E0|
η4n2

∏
�∈[r ]

|X�|

� sγ

η4

∏
�∈[r ]

|X�|. (3·6)

We can now give an upper bound for the weighted average of the right-hand side of (3·5) as
follows:∑

t∈T

∏
�∈[r ]

|U�,t� |b(t) � q∗

2

∑
t∈T

∏
�∈[r ]

|U�,t� | + r 2 log2 s

2

∑
t∈T0

∏
�∈[r ]

|U�,t� |

(3·6)

�
(

q∗

2
+ r 2sγ log2 s

2η4

) ∏
�∈[r ]

|X�| �
q∗ + √

γ

2

∏
�∈[r ]

|X�|. (3·7)

Using this bound together with a weighted average of the left-hand side of (3·5), we have
that

q∗ + √
γ

2

∏
�∈[r ]

|X�|

�
∑
t∈T

∑
i j∈([r ]

2 )

αiα j log2 |φ(i ti , j t j )|
∏
�∈[r ]

|U�,t� |

=
∑

i j∈([r ]
2 )

αiα j

∑
gh∈[mi ]×[m j ]

|Ui,g| |U j,h| log2 |φ(ig, jh)|
∑

t∈T :
ti =g,t j =h

∏
�∈[r ]\{i, j}

|U�,t� |

=
∑

i j∈([r ]
2 )

|Xi |
n

· |X j |
n

∑
gh∈[mi ]×[m j ]

|Ui,g| |U j,h| log2 |φ(ig, jh)|
∏

�∈[r ]\{i, j}
|X�|

(3.4)

� 1

n2
log2 |C|

∏
�∈[r ]

|X�|,

proving Claim 14.

Let t∗ ∈ T be such that q∗ = q(r, φt∗, α). Recall that β = (|Y1|/N , . . . , |Yr |/N ). Then
(r, φt∗, α) and hence (r, φt∗, β) lies in FEAS1(k). Now Claims 13 and 14 and Proposition 11
imply that

log2 F(H ; k)

N 2/2

(3·2)

� log2 F(G; k)

n2/2
+ η

3
� 5η

6
+ q∗ + √

γ < q(r, φt∗, α) + 6η

7

� q(r, φt∗, β) + 2 log2(s)‖α − β‖1 + 6η

7

(3·3)

� q(r, φt∗, β) + η,

completing the proof of the lemma.
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4. Proofs of Theorems 4 and 5

4·1. Proof of Theorem 4

By Lemma 3, it suffices to show that for every η > 0, there exists n0 ∈ N such that
log2 F(n; k) � (Q(k) + η)n2/2 for all n � n0. Fix η > 0 and obtain n0 from Lemma 7.
Now let n � n0. By Theorem 2, there exists a complete multipartite graph G on n vertices
with F(G; k) = F(n; k). The required upper bound on log2 F(G; k) follows immediately
from Lemma 7.

4·2. Proof of Theorem 5

Suppose that there is δ > 0 which contradicts the theorem. We need the following claim,
which uses a compactness argument to show that a triple in FEAS1(k) which is almost op-
timal is in fact ‘close’ to a Q1-optimal triple.

CLAIM 15. There exists η > 0 such that for all (r, φ, α) ∈ FEAS1(k) with q(r, φ, α) �
Q(k) − 2η, there is a Q1-optimal triple (r, φ, α′) such that ‖α′ − α‖1 � δ.

Proof. Suppose this is not the case. Then for all n ∈ N, there exists (r, φ, αn) ∈ FEAS1(k)

with

q(φ, αn) � Q(k) − 1

n
, (4·1)

but for all α′
n ∈ �r with ‖αn − α′

n‖1 < δ, we have that (r, φ, α′
n) is not Q1-optimal.

Consider the sequence (α1, α2, . . .). Since �r is closed and bounded, the Heine–Borel
theorem implies that it is compact. Therefore there is some subsequence (αn1, αn2, . . .) of
(α1, α2, . . .) which converges (in any norm, since r is finite). Let λ := limk→∞ αnk . Ob-
serve that λ ∈ �r , so (r, φ, λ) ∈ FEAS1(k). Having fixed r, φ, observe that q(r, φ, λ) =
2

∑
i j∈([r ]

2 )
λiλ j log |φ(i j)| is a continuous function of λ. Therefore

lim
k→∞

q(r, φ, αnk ) = q(r, φ, λ).

Together with (4·1), this implies that q(r, φ, λ) = Q(k), and so (r, φ, λ) is Q1-optimal.
Now, since αnk → λ, we can choose N ∈ N such that ‖αN − λ‖1 < δ. This contradicts our
assumption and hence proves the claim.

Choose η as in the claim. Obtain n0 ∈ N by applying Lemma 7 with η. Since we supposed
that δ > 0 contradicts the statement of Theorem 5, there exists a complete multipartite graph
G on n � n0 vertices such that F(G; k) � 2(Q(k)−η)n2/2 and G is a counterexample to the
statement. Let V1, . . . , Vr be the parts of G and define α := (|V1|/n, . . . , |Vr |/n). Then, for
all Q1-optimal triples (r, φ, α′), we have that ‖α − α′‖1 > δ. Lemma 7 and our assumption
on G imply that there exists φ ∈ �1(r; k) such that

Q(k) − η � log2 F(G; k)

n2/2
� q(r, φ, α) + η. (4·2)

Claim 15 immediately gives a contradiction, completing the proof of the Theorem 5.

5. Concluding remarks

The referee of this paper asked if the cases where F(k) was determined in [1] can be done
using our optimisation problem. While the answer is in the affirmative, some claims from [1]
are more conveniently derived by working with graphs rather than feasible solutions. For
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example, following [1] let us show that

∑
�∈[s]

�d� � s

(
1 − 1

k − 1

)
, (5·1)

where k := (k, . . . , k) has length s, (r, φ, α) ∈ FEAS0(k) is an arbitrary feasible solution,
and we define

d� := 2
∑

i j∈([r ]
2 )

|φ(i j)|=�

αiα j , for � ∈ [s].

The shortest way is probably to consider the graph Gφ,α(n) from the proof of Lemma 3.
For c ∈ [s], let Hc be the subgraph of Gφ,α(n) spanned by pairs of parts (Xi , X j ) such that
c ∈ φ(i j). Then Hc is Kk-free for all colours c ∈ [s] and so Turán’s theorem implies that
e(Hc) � (1 − 1/(k − 1))n2/2. Thus we have that, as n → ∞,

∑
�∈[s]

�d� = 2
∑
c∈[s]

∑
i j∈([r ]

2 )
c∈φ(i j)

αiα j = 2
∑
c∈[s]

e(Hc) + O(n)

n2
� s

(
1 − 1

k − 1

)
+ o(1),

which gives the claimed inequality (5·1). Interestingly, (5·1) and the trivial constraints
d� � 0 for � ∈ [s] imply the sharp upper bound on q(φ, α) = ∑s

�=1 d� log2 � when
s ∈ {2, 3} and when k = (4, 4, 4, 4). (If k = (3, 3, 3, 3), then an additional constraint,
analogous to (5·1), suffices to determine Q(k), see [1].)

Unfortunately, the problem of (numerically) solving Problem Q2 seems rather difficult
even for moderately small k. If we have a candidate pair (r, φ), then the Lagrange Multiplier
Method gives a linear program which either returns a best possible α for this (r, φ) in the
interior of �r , or implies that there is an optimal solution on the boundary so we can reduce
r by one. This calculation can be efficiently implemented. However, the number of possible
pairs (r, φ) becomes large very quickly. Here, the quest of replacing the crude bound r <

R(k) by a better one leads to the following Ramsey-type question. Namely, r can be bounded
by R2(k) − 1, where we define R2(k) to be the smallest r such that for every choice of a
list-colouring φ : ([r ]

2

) → ([s]
2

)
there is c ∈ [s] with φ−1(c) containing a kc-clique. Clearly,

the definition would not change if we restrict ourselves to lists of size at least 2, so we
can assume r < R2(k) in the statement of Problem Q2. The problem of estimating R2(k)

runs into similar difficulties as those for the classical version R(k). It is a special case of
a parameter studied in [19], and seems to grow fast. For example, in [19] it was shown
that R2(5, 5, 5) � 20, which is already too large for a naı̈ve enumeration of feasible φ by
computer.

As we mentioned, the existence of the limit in (1·2) can be shown by an easy modification
of the proof for the case k1 = · · · = ks in [1]. In fact, there are two different proofs. The one
that appears in the published version of [1] was suggested by an anonymous referee and uses
an entropy inequality of Shearer to show that log F(n; k)/n2 is a non-increasing function
of n.

The other proof, which was the original argument by Alon et al. [1], is similar to our
proof of Theorem 4. In our language, it can be sketched as follows. Fix a large N such
that log2 F(N ; k)/

(N
2

)
is close to the limit superior of (1·2). Take an ε-regular partition

V (G) = V1 � · · · � Vm of an arbitrary k-extremal order-N graph G with a ‘typical’ col-
ouring σ . Let φ(i j) be the set of those colours c ∈ [s] for which σ−1(c)[Vi , Vj ] is an
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(ε, γ )-regular pair. As in Lemma 3, use this function φ : ([m]
2

) → 2[s] with the uniform vec-
tor α = (1/m, . . . , 1/m) to produce graphs of order n → ∞ with at least 2q(m,φ,α)n2/2−O(n)

valid colourings. Since q(m, φ, α) can be made arbitrarily close to the limit superior of (1·2)
by choosing small γ � ε � 1/N , the limit in (1·2) exists.

The latter proof can be adopted to prove Theorem 4 (by applying symmetrisation to re-
duce the triple (m, φ, α) to one with fewer than R(k) parts). However, our proof (where
the Regularity Lemma is applied after the symmetrisation) has the advantages of giving
some explicit (although rather bad) bound on the rate of convergence in (1·2) and implying
Theorem 5 as well.

Despite Theorem 5, there may be order-n graphs G with F(G; k) = 2(Q(k)+o(1))n2/2 which
are very far in edit distance from being complete multipartite. For example, if k = (4, 3),
then one can take for G an equitable complete bipartite graph with parts A � B and add any
triangle-free graph into A (e.g. a blow-up of a pentagon which is far from being complete
partite). Here, we can colour edges between A and B arbitrarily provided all edges inside A
have colour 1. Thus F(G; (4, 3)) � 2|A| |B| = 2

1
2 (

n
2)+O(n), while Q((4, 3)) is easily seen to

be equal to 1/2.
Interestingly, our follow-up results (in preparation) show that all (4, 3)-extremal graphs

of sufficiently large order n happen to be in fact 3-partite. For example, if n = 2m +1 is odd
(and large), then the unique extremal graph is Km,m−1,2. In order to illustrate how a small
part can increase the number of colourings, let us show that

F(Km,m,1; (4, 3)) � 2 · 2m(m+1) − 2m2
, (5·2)

that is, the number of (4, 3)-valid colourings of H := Km,m,1 is by factor 2 − o(1) larger
than that for the Turán graph Km+1,m . If H has parts V1 � V2 � V3 with |V3| = 1, then H has
2m(m+1) colourings where G[V1 � V3, V2] is coloured arbitrarily while all edges between V1

and V3 have colour 1. Similarly we have 2m(m+1) colourings where V3 is ‘bundled’ with V2

(and all edges between V2 and V3 get colour 1). All colourings that appear twice are exactly
those that assign colour 1 to all edges incident to V3, so there are 2|V1| |V2| = 2m2

of them,
giving (5·2).

The above example shows that one can have parts of size o(n) in Theorem 5 even for k-
extremal graphs. (These parts will correspond to zero entries of α in the limit.) Nonetheless,
we conjecture that Theorem 2 captures all extremal graphs:

CONJECTURE 16. For every n, s ∈ N and k ∈ N
s , every n-vertex k-extremal graph is

complete multipartite.

In a future paper, we hope to provide a sufficient condition for this to be true for all
n � n0(k) and apply the developed theory to solving the problem for new values of k.
We note that, in the different setting of forbidden cliques with prescribed colour patterns
explored in [4], the corresponding version of Conjecture 16 holds in some cases.
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