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Abstract

We confirm a conjecture by Everett et al. (2004) regarding the problem of maximizing

closeness centralization in two-mode data, where the number of data of each type is fixed.

Intuitively, our result states that among all networks obtainable via two-mode data, the largest

closeness is achieved by simply locally maximizing the closeness of a node. Mathematically,

our study concerns bipartite graphs with fixed size bipartitions, and we show that the extremal

configuration is a rooted tree of depth 2, where neighbors of the root have an equal or almost

equal number of children.
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1 Introduction

A social network is often conveniently modeled by a graph: Nodes represent

individual persons and edges represent the relationships between pairs of individuals.

Our work focuses on simple unweighted graphs: Our graph only tells us, for a given

(binary) relation R, which pairs of individual are in relation according to R.

Centrality is a crucial concept in studying social networks (Freeman, 1979;

Newman & Park, 2003). It can be seen as a measure of how central is the position

of an individual in a social network. Various node-based measures of the centrality

have been proposed to determine the relative importance of a node within a graph

(the reader is referred to the work of Koschützki et al. (2005) for an overview).

Some widely used centrality measures are the degree centrality, the betweenness

centrality, the closeness centrality and the eigenvector centrality (definitions and

extended discussions are found in the book edited by Brandes & Erlebach (2005)).
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We focus on closeness centrality, which measures how close a node is to all other

nodes in the graph: The smaller the total distance from a node v to all other nodes,

the more important the node v is. Various closeness-based measures have been

developed (Bavelas, 1950; Beauchamp, 1965; Botafogo et al., 1992; Nieminen, 1973;

Moxley & Moxley, 1974; Sabidussi, 1966; Valente & Foreman, 1998; Nieminen,

1973).

Let us see an example: Suppose we want to place a service facility, e.g., a school,

such that the total distance to all inhabitants in the region is minimal. This would

make the chosen location as convenient as possible for most inhabitants. In social

network analysis, the centrality index based on this concept is called closeness

centrality.

Formally, for a node v of a graph G, the closeness of v is defined to be

CG(v) ..=
1∑

u∈V (G) distG(v, u)
, (1)

where distG(u, v) is the distance between u and v in G, that is, the length of a shortest

path in G between nodes u and v. We shall use the shorthand WG(v) ..=
∑

u∈V (G) d(v, u).

In both notations, we may drop the subscript when there is no risk of confusion.

While centrality measures compare the importance of a node within a graph,

the associated notion of centralization, as introduced by Freeman (1979), allows us

to compare the relative importance of nodes within their respective graphs. The

closeness centralization of a node v in a graph G is given by

C1(v;G) ..=
∑

u∈V (G)

[
C(v) − C(u)

]
. (2)

Further, we set C1(G) ..= max {C1(v;G) : v ∈ V (G)}.
It is important to note that the parameter C1 is really tailored to compare the

centralization of nodes in different graphs. If only one graph is involved, then one

readily sees that maximizing C1(v;G) over the nodes of a graph G amounts to

minimizing WG. Indeed, suppose that G is a graph and v a node of G such that

WG(v) � WG(u) for every u ∈ V (G). Then, for every node x of G,

C1(v;G) − C1(x;G) = (n − 1)

(
1

WG(v)
− 1

WG(x)

)
−

(
1

WG(x)
− 1

WG(v)

)

= n

(
1

WG(v)
− 1

WG(x)

)
� 0.

In what follows, we use the following notation. The star graph of order n,

sometimes simply known as an n-star, is the tree on n + 1 nodes with one node

having degree n. The star graph is thus a complete bipartite graph with one part of

size 1. Everett et al. (2004) established that over all graphs with a fixed number of

nodes, the closeness is maximized by the star graph.

Theorem 1.1

If G is a graph with n nodes, then

C1(u; Sn−1) � C1(G),

where u is the node of Sn−1 of maximum degree.
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S0 S1 S2

L0 L1 L2 L3

v ∈V (N)CN(v)C1(v,N)

S0 1/10 0.1222
S1 1/12 0.0055
S2 1/12 0.0055

L0 1/15 −0.1111
L1 1/15 −0.1111
L2 1/9 0.2000
L3 1/15 −0.1111

Fig. 1. A two-mode network N with seven nodes (three in one part, four in the other) and

seven edges, with the corresponding values for CN and C1.

They also considered the problem of maximizing centralization measures for

two-mode data (Everett et al., 2004). In this context, the relation studied links

two different types of data (e.g., persons and events) and we are interested in the

centralization of one type of data only (e.g., the most central person). Thus, the

graph obtained is bipartite: Its nodes can be partitioned into two parts so that

all the edges join nodes belonging to different parts. A toy example is depicted in

Figure 1, where one type of data consists of students and the other of classes: edges

link the students to the classes they attended. (The sole purpose of this example

is to make sure the reader is at ease with the definitions of C and C1.) Closeness

centrality is maximized at the student “S0” for one part and at the class “L2” for the

other. An example of a real-world two-mode network N on 89 edges with partition

sizes |P1| = 18 and |P2| = 14, borrowed from Davis et al. (1969) is depicted on

Figure 2. On the figure, one can observe a frequency of interparticipation of a group

of women in social events in Old City, 1936. On Tables 1 and 2, one can observe

closeness centralization for partitions P1 and P2 and notice that closeness centrality

(and hence centralization) is maximized at “Mrs. Evelyn Jefferson” and the event

from “September 16th,” respectively.

Everett et al. formulated an interesting conjecture, which was later proved

by Sinclair (2004). To state it, we first need a definition.

Definition 1.1

Let H(u; n0, n1) be the tree with node bipartition (A0, A1) such that

• |Ai| = ni for i ∈ {0, 1};
• there exists a node u ∈ A0 such that NG(u) = A1; and

• deg(w) ∈
{

1 +
⌈
n0−1
n1

⌉
, 1 +

⌊
n0−1
n1

⌋}
for all nodes w ∈ A1.

The node u is called the root of H(u; n0, n1).

The aforementioned conjecture was that the pair (H(u; n0, n1), u) is an extremal

pair for the problem of maximizing betweenness centralization in bipartite graphs

with a fixed sized bipartition into parts of sizes n0 and n1. Recall that for two-mode

data, we are only interested in one type of data: In graph-theoretic terms, we look

only at nodes that belong to the part of size n0, and we want to know which of

these nodes has the largest closeness in the graph. In other words, letting A0 be the

part of size n0 of V (G), we want to determine max {C1(v;G) : v ∈ A0}.
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Pearl Ruth Eleanor Frances Brenda Evelyn Laura Charlotte Theresa

Dorothy Flora Olivia Myrna Verne Helen Nora Katherine Sylvia

P05 P01 P03 P04 P02

P09P08 P06 P07

P11 P10P12
P13 P14

Fig. 2. A two-mode network N on 89 edges with partition sizes n0 = 18 and n1 = 14. The

network represents the participation of a given set of people in the social events from 1936

reported in Old City Herald, where circles represent social events while rectangles represent

women (see Tables 1 and 2).

Everett et al. also suggested that the same pair is extremal for closeness and

eigenvector centralization measures. In this paper, we confirm the conjecture for

the closeness centralization measure. That is, we prove that the pair H(v; n0, n1) is

extremal for the problem of maximizing closeness centralization in bipartite graphs

with parts of size n0 and n1, where v is the root.

We point out that a similar study for the centrality measure of eccentricity was

led recently (Krnc et al., 2015). In addition, Bell (2014) worked on closely related

notions, namely subgroup centrality measures. Similarly, as for two-mode data, a

susbet S of the nodes is fixed (called a group) and the aim is to find a node in S with

largest centrality. However, unlike in the standard centrality notion, the centrality

itself is computed using distances only to the nodes in S (local centrality) or to the

nodes outside S (global centrality). Note that the standard notion, which is used in

this work, takes into account the distances to all other nodes in the graph.
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Table 1. Nodes from the group of women and their closeness values.

v ∈ P1 CN(v) C1(v, N)

Mrs. Evelyn Jefferson 0.01667 0.07779

Miss Theresa Anderson 0.01667 0.07779

Mrs. Nora Fayette 0.01667 0.07779

Mrs. Sylvia Avondale 0.01613 0.06058

Miss Laura Mandeville 0.01515 0.02930

Miss Brenda Rogers 0.01515 0.02930

Miss Katherine Rogers 0.01515 0.02930

Mrs. Helen Lloyd 0.01515 0.02930

Miss Ruth DeSand 0.01471 0.01504

Miss Verne Sanderson 0.01471 0.01504

Miss Myra Liddell 0.01429 0.00160

Miss Frances Anderson 0.01389 −0.01110

Miss Eleanor Nye 0.01389 −0.01110

Miss Pearl Oglethorpe 0.01389 −0.01110

Mrs. Dorothy Murchison 0.01351 −0.02311

Miss Charlotte McDowd 0.01250 −0.05555

Mrs. Olivia Carleton 0.01220 −0.06530

Mrs. Flora Price 0.01220 −0.06530

Table 2. Nodes from the partition of social events from 1936, reported in Old City Herald,

and their closeness values.

v ∈ P2 label on Figure 2 CN(v) C1(v, N)

September 16th P8 0.01923 0.15984

April 8th P9 0.01786 0.11588

March 15th P7 0.01667 0.07779

May 19th P6 0.01562 0.04445

February 25th P5 0.01351 −0.02311

April 12th P3 0.01282 −0.04529

April 7th P12 0.01282 −0.04529

June 10th P10 0.01250 −0.05555

September 26th P4 0.01220 −0.06530

February 23rd P11 0.01220 −0.06530

June 27th P1 0.01190 −0.07459

March 2nd P2 0.01190 −0.07459

November 21st P13 0.01190 −0.07459

August 3rd P14 0.01190 −0.07459

2 Bipartite networks with fixed number of nodes

Theorem 2.1

Let G be a bipartite graph with node parts A0 and A1 sizes n0 and n1, respectively.

Then, for each v ∈ A0,

C1(u;H(u; n0, n1)) � C1(v;G).

To prove Theorem 2.1, suppose that G is a bipartite graph with bipartition

(A0, A1), where |Ai| = ni for i ∈ {0, 1}, and u is a node in A0 such that C1(u;G) �
C1(v;H(v; n0, n1)). We prove that this inequality must actually be an equality by
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showing that any such extremal pair C1(u;G) must satisfy the following three

properties:

P1. G is a tree;

P2. degG(u) = n1; and

P3. |degG(w1) − degG(w2)| � 1 whenever w1, w2 ∈ A1.

Property (P1) is relatively straightforward to check and so is (P3) if we assume

that (P2) holds. Thus, the majority of the discussion below will be devoted to

proving that (P2) holds, which we do last. For convenience, we define V to be V (G).

We start by establishing (P1); namely, that the graph G is a tree. Assume, for the

sake of contradiction, that G is not a tree and let T be a breadth-first-search tree

of G rooted at u. Note that WG(u) = WT (u) and WT (x) � WG(x), for any node

x ∈ V (G). In addition, there exist at least two nodes for which the above inequality

is strict. It follows that C1(u;T ) > C1(u;G), a contradiction.

We now establish that (P3) holds if (P2) does. Thus, we know that G is a tree

and we assume that NG(u) = A1, therefore also all nodes from A0 \ {u} are leaves.

Suppose, for the sake of contradiction, that there exist nodes w1, w2 ∈ A1 such that

deg(w1) � deg(w2) + 2. Let z be a neighbor of w1 different from u and consider

the graph G′ obtained by deleting the edge w1z and replacing it with w2z. Note

that WG′ (u) = WG(u) and that WG′(x) = WG(x) unless x ∈ NG[w1] ∪ NG[w2], that is

unless x belongs to the closed neighborhood of either w1 or w2. So,

C1(u;G
′) − C1(u;G) =

∑
x∈NG[w1]∪NG[w2]

1

WG(x)
− ∑

x∈NG[w1]∪NG[w2]

1

WG′ (x)
. (3)

Now, let NG(w1) = {u, z, x1, . . . , xt} and NG(w2) = {u, y1, . . . , ys} where, by assumption,

t > s.

Recalling that G is a tree, observe that the following hold for every i ∈ {1, . . . , t}
and every j ∈ {1, . . . , s} (for better illustration, see Figure 3).

i. WG′ (xi) = WG(xi) + 2;

ii. WG′ (yj) = WG(yj) − 2;

iii. WG(yj) = WG(xi) + 2(t − s + 1) > WG(xi) + 2;

iv. WG′ (z) = WG(z) + 2(t − s) > WG(z);

v. WG′ (w1) = WG(w1) + 2; and

vi. WG′ (w2) = WG(w2) − 2.

From (i)–(iii), we infer that for any j ∈ {1, . . . , s},
1

WG′ (xj)
+

1

WG′ (yj)
<

1

WG(xj)
+

1

WG(yj)
,

and similarly by (v) and (vi),

1

WG′ (w1)
+

1

WG′ (w2)
<

1

WG(w1)
+

1

WG(w2)
.

Thus the right side of Equation (3) is greater than

1

WG(z)
− 1

WG′ (z)
+

t∑
j=s+1

1

WG(xj)
− 1

WG′ (xj)
,
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w2w1

u

x1 xt z y1 ys

Fig. 3. The subtree of G induced by NG[w1] ∪ NG[w2].

which is positive by (i) and (iv). This contradiction shows that (P3) holds pro-

vided (P2) does.

It remains to prove that (P2) holds to complete the proof. First, if n1 = 1, then

the tree G must be an n0-star, hence the second property is satisfied. Now consider

the case where n1 = 2. Then, there is precisely one node x that is adjacent to both

nodes in A1. Moreover, WG(x) � WG(w) if w ∈ A0 since, if w ∈ A0 \ {x}, then

WG(w) � 2(n0 − 1)+4 = 2n0 + 2 while WG(x) = 2+2(n0 − 1) = 2n0 + 1. Thus, u = x

and hence degG(u) = n1 = 2, as wanted.

From now on, we assume that n1 � 3. As in the proof of (P3), we argue that

if (P2) does not hold then C1(u;G) can be increased by altering the graph G. In this

case, however, we find it necessary to use our assumption that C1(u;G) itself is at

least as large as C1(v;H(v; n0, n1)). This shall allow us to have a lower bound on

C1(u;G), by the next lemma.

Lemma 2.1

C1(u;H(u; n0, n1)) � n1−1
2(2n1−1)

.

Proof

We establish the inequality via a direct computation. Unfortunately, the expressions

involved force a lengthy computation.

We set m ..= n0 − 1 and we write m = pn1 + r where 0 � r < n1. Let us now

calculate W (x) for each node x of H(u; n0, n1).

1. W (u) = n1 + 2m.

2. Consider the neighbors of u: there are

a. r neighbors x for which W (x) = �m/n1� + 1 + 2(n1 − 1) + 3(m − �m/n1�);
and

b. n1 −r neighbors x for which W (x) = �m/n1	+1+2(n1 −1)+3(m−�m/n1	).
3. Consider the nodes at distance two from u: there are

a. r �m/n1� nodes x for which W (x) = 1+2 �m/n1�+3(n1 −1)+4(m−�m/n1�);
and

b. (n1 − r) �m/n1	 nodes x for which W (x) = 1 + 2 �m/n1	 + 3(n1 − 1) +

4(m − �m/n1	).
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Since �m/n1	 = (m − r)/n1 and, for r > 0, we have �m/n1� = (m + n1 − r)/n1, it

follows that if r > 0 then

C1(u) =
n1 + m

n1 + 2m
− rn1

3mn1 − 2m + 2n2
1 − 3n1 + 2r

− n1(n1 − r)

3mn1 − 2m + 2n2
1 − n1 + 2r

− r(m + n1 − r)

4mn1 − 2m + 3n2
1 − 4n1 + 2r

− (n1 − r)(m − r)

4mn1 − 2m + 3n2
1 − 2n1 + 2r

(4)

�
n1 + m

n1 + 2m
− n2

1

3mn1 − 2m + 2n2
1 − 3n1 + 2r

− n1m

4mn1 − 2m + 3n2
1 − 4n1 + 2r

,

(5)

where we used that n1 > 0 to derive Equation (5).

One notes that Equation (5) is still true if r = 0. Indeed, in this case � m
n1

� = � m
n1

	 =
m
n1

, so

C1(u) =
n1 + m

n1 + 2m
− n2

1

3mn1 − 2m + 2n2
1 − n1

− n1m

4mn1 − 2m + 3n2
1 − 2n1

,

so that Equation (5) stays true.

As is seen from Equation (4), if n1 is fixed and n0 tends to infinity (hence, so

does m), then C1(u) approaches 1/2 − n1/(4n1 − 2) = n1−1
4n1−2

.

Let us now subtract n1−1
4n1−2

from the right side of Equation (5) and show that

the difference is non-negative. After cross-multiplying and simplifying, we obtain

a fraction with positive denominator (since each denominator in the right side of

Equation (5) is positive), and with numerator equal to

m2(10n4
1 − 44n3

1 + 12n2
1r + 30n2

1 − 8n1r − 4n1)

+m(15n5
1 − 77n4

1 + 38n3
1r + 74n3

1 − 54n2
1r − 14n2

1 + 8n1r
2 + 8n1r)

+ (6n6
1 − 35n5

1 + 22n4
1r + 45n4

1 − 48n3
1r − 12n3

1 + 12n2
1r

2 + 14n2
1r − 4n1r

2). (6)

This expression increases with n1 and is clearly positive when n1 = 6 (to see it

quickly just compare, in each parenthesis, every (maximal) sequence of consecutive

negative terms with the (maximal) sequence of positive terms preceding it). Further,

a direct calculation ensures that Equation (6) is actually positive even when n1 = 5.

However, if n1 ∈ {3, 4}, then Equation (6) could take on negative values for certain

values of m. To deal with these two cases, we revert back to the initial equation (4).

Assume that n1 = 3. Then, subtracting n1−1
4n1−2

from both sides of Equation (4)

yields that C1(u) − n1−1
4n1−2

is at least

m + 3

2m + 3
− 3r

7m + 9 + 2r
− 9 − 3r

7m + 15 + 2r
− r(m + 3 − r)

10m + 15 + 2r
− (3 − r)(m − r)

10m + 21 + 2r
− 1

5
. (7)

Placing Equation (7) under one (positive) denominator, the numerator becomes

1540m4 + 2m3(9075 − 1016r + 588r2) + 6m2(10605 − 1047r + 937r2 + 112r3)

+m(88155 − 3816r + 9828r2 + 2408r3 + 96r4)

+ (42525 + 1350r + 6174r2 + 2280r3 + 184r4), (8)

which is clearly positive as r � n1 − 1 = 2.
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A similar calculation yields the conclusion when n1 = 4. In this case, the difference

of Equation (4) and n1−1
4n1−2

yields that C1(u) − n1−1
4n1−2

is at least

m + 4

2m + 4
− 2r

5m + 10 + r
− 8 − 2r

5m + 14 + r
− r(m + 4 − r)

14m + 32 + 2r
− (4 − r)(m − r)

14m + 40 + 2r
− 3

14
,

whose numerator, when placed under a common (positive) denominator, is

1855m4 + 4m3(5855 − 82r + 100r2) + 2m2(52090 + 206r + 1405r2 + 80r3)

+ 4m(49180 + 2022r + 1793r2 + 194r3 + 4r4)

+ 3(44800 + 4080r + 2204r2 + 332r3 + 13r4).

This is non-negative as r � n1 − 1 = 3. This concludes the proof. �

It remains to demonstrate that (P2) holds. To this end, we consider the tree G

to be rooted at u and, for a node x, we let Tx be the subtree of G rooted at x.

To avoid unnecessary notation later, let us observe immediately that if degG(u) = 1

then (P2) holds. For otherwise, n1 � 2 and there exists a node u′ at distance two

from u such that degG(u′) � 2. As a result, WG(u) � WG(u′) + |V (Tu′ )| − 1 > WG(u′),
which implies that C1(u

′;G) > C1(u;G), a contradiction.

We also note that if distG(u, x) � 2 for all x ∈ V (G), then (P2) is satisfied. So

assume that there exists some child of u whose subtree has depth at least 2. Among

all such children of u, let z be such that |V (Tz)| is maximum, that is,

|V (Tz)| = max {|V (Tv)| : v child of u and Tv has depth at least 2} .
We now give some notations, which are illustrated in Figure 4. Let y1, . . . , yt be the

nodes of Tz with depth 2 and set Y ..= ∪t
i=1V (Tyi ). Note that, by definition, t � 1

and distG(u, yi) = 3 whenever 1 � i � t. Let p1, . . . , p� be the children of z (in Tz)

with degree more than 1 and set P ..= {p1, . . . , p�}. Let P ′ be the set of children of z

with degree 1 and set k ..= |P ′|.
Note that for any w ∈ N(u), the definition of z ensures that Tw is a star whenever

|V (Tw)| > |V (Tz)|. The graph G′ is obtained from G as follows. (An illustration is

given in Figure 5.) For convenience, we set n ..= n0 + n1 = |V (G)|.
a. For each i ∈ {1, . . . , t}, the edge uyi is added.

b. For each i ∈ {1, . . . , �}, the edge zpi is removed and all other edges incident to

pi but one are removed. Thus, the vertices p1, . . . , p� become leaves of G′, each

being attached to one of the vertices y1, . . . , yt.

c. If there exists a child w of u different from z with |V (Tw)| � n/2, then we

select an arbitrary set S ⊂ V (Tw) \ {w} of size |V (Tw)| − �n/2	 and we set

S ′ ..= V (Tw) \ (S ∪ {w}). Then, for each s ∈ S , we replace the edge sw by the

edge sz.

d. If there is no node w as in c., then we let w be a child of u different from z

such that |V (Tw)| is as large as possible, and we define S ′ to be V (Tw) \ {w}.
(Recall that degG(u) � 2, hence such a child always exists.) Moreover, we set

S ..= � for convenience.

As noted earlier, if c. applies, then Tw is a star. Moreover, if S �= �, then one can

see that WG(w) < WG(u) and hence C1(w;G) > C1(u;G). However, this is not a

contradiction since C1(u;G) = max {C1(v;G) : v ∈ A0} and w ∈ A1.
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zw

u

p1 p�

y1 yi y j
yt

Ty1 Tyi
Ty j Tyt

S ′

S

P

Y

P ′

Other nodes of G
R

Fig. 4. Figurative view of the subsets of nodes of G. Recall that S ′ ..= V (Tw) \ {w} if S = �.

z
w

u

p1 p�

y1 yi y j
yt

Ty1 Tyi
Ty j Tyt

S ′

S

P

Y

P ′

Other nodes of G
R

Fig. 5. Obtaining G′ from G. Recall that S ′ ..= V (Tw) \ {w} if S = �.

Regardless of whether c. or d. applies, |S ′| �
⌊
n
2

⌋ − 1. Actually, it is important

to notice that, in G′, no child of u different from z has more than �n/2	 − 1

children itself. Even more, for any such child x we know that |V (Tx)| � �n/2	. This

follows from our previous remark if Tx has depth at most 2, and from the fact that

|V (Tx)| � |V (Tz)| otherwise. Also, setting R ..= V \ V (Tz) ∪ V (Tw), we observe that
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for every node pi ∈ P

distG(pi, x) =

⎧⎪⎪⎨
⎪⎪⎩

distG(u, x) − 2 if x ∈ V (Tpi )

distG(u, x) + 2 if x ∈ R ∪ V (Tw)

distG(u, x) otherwise.

Therefore, W (pi) � W (u) − 2(|V (Tpi )| − (|R| + |V (Tw)|)). Since the definition of u

implies that W (pi) � W (u), it follows that the size of V (Tpi ) is at most �n/2	.
Note that G′ is a tree, which we see rooted at u, and G and G′ have the same

node set, which we call V . In addition, G and G′ have the same bipartition (A0, A1).

Our next task is to compare the total distance of nodes in G and in G′, that is,

we compare WG(x) and WG′ (x). For readability purposes, let us set W (x) ..= WG(x),

W ′(x) ..= WG′ (x), and let T ′
x be the subtree of G′ rooted at x. We now make a few

statements about W (x) and W ′(x) for various nodes. We shall often use that

n = |V | = |R| + |Y | + |P | + |P ′| + |S | + |S ′| + 2.

Lemma 2.2

The following hold:

i. If x ∈ R, then W (x) − W ′(x) = 2 |Y |.
ii. If x ∈ {z} ∪ P ′, then W ′(x) � W (x) − 2 |S |.
iii. If x ∈ {w} ∪ S ′, then W ′(x) = W (x) + 2 |S | − 2 |Y |.
iv. If x ∈ P ∪ S , then W ′(x) � W (x).

v. If S �= �, then W (x1) > W (x2) and W ′(x1) > W ′(x2) whenever x1 ∈ P ′ and

x2 ∈ S ′.
vi. If x ∈ Y , then W ′(x) � W (x).

vii. W ′(x) � W ′(u) for every node x ∈ Y ∪ R ∪ S ′ ∪ {w}.
Proof

We prove all the statements in order.

i. If x ∈ R, then the distance from x to any node not in Y is unchanged. In addition,

distG′(x, y) = distG(x, y) − 2 whenever y ∈ Y , hence the conclusion.

ii. If x ∈ {z} ∪ P ′, then distG′(x, v) � distG(x, v) for each v ∈ V \ S . In addition, if

s ∈ S , then distG′ (x, s) = distG(x, s) − 2, which yields the conclusion.

iii. It suffices to observe that if x ∈ {w} ∪ S ′, then

distG′ (x, v) =

⎧⎪⎪⎨
⎪⎪⎩

distG(x, v) if v ∈ V \ (S ∪ Y )

distG(x, v) − 2 if v ∈ Y

distG(x, v) + 2 if v ∈ S .

iv. First, note that if x ∈ P , then the definition of G′ ensures that distG′(x, v) �
distG(x, v) for each v ∈ V , which implies that W ′(x) � W (x).

Now, let x ∈ S . Observe that if v ∈ V , then distG′(x, v) � distG(x, v)−2. In addition,

if v ∈ S ′ ∪ {w}, then distG′ (x, v) = distG(x, v) + 2. Consequently,

W ′(x) − W (x) � 2 |S ′ ∪ {w}| − 2 |V \ ({x, w} ∪ S ′)| ,
which is non-negative since |S ′ ∪ {w}| = �|V | /2	 when S �= �, and x /∈ S ′ ∪ {w}.
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v. Let x1 ∈ P ′ and x2 ∈ S ′. First, note that every node in V (Tw) \ {x1} is two units

closer to x1 than to x2. Similarly, every node in V (Tz) \ {x2} is two units closer to x2

than to x1. Since, in addition, every remaining node (different from x1 and x2) is at

the same distance from x1 and x2, we deduce that

W (x1) − W (x2) = 2(|S | + |S ′| − |P | − |P ′| − |Y |).
This quantity is positive since, as S �= �, we know that |S | + |S ′| � �n/2	 − 1 while

|P | + |P ′| + |Y | � n − |S | − |S ′| − 3 < �n/2	 − 2.

A similar analysis in G′ yields that

W ′(x1) − W ′(x2) = 2(|S ′| − |S | − |P ′|),
because every node not in S ′ ∪ S ∪ P ′ ∪ {x1, x2} is at the same distance (in G′)
from x1 and x2. Again, |S ′| − |S | − |P ′| is positive since |S ′| = �n/2	 − 1 while

|P ′| + |S ′| � n − |S ′| − 3 � �n/2	 − 2.

vi. Let x ∈ Y . Observe that if distG′(x, v) > distG(x, v), then v must be the child

of z that is an ancestor of x (that is, v ∈ P and x ∈ V (Tv)). Furthermore, in this

instance, the distance increases by exactly 2. As the distance from x to any node

in R decreases by 2 (and |R| � 1), it follows that W ′(x) � W (x).

vii. For readability, the proof is split into four cases depending on whether x ∈ {w},
x ∈ R, x ∈ S ′ or x ∈ Y . The interested reader will notice that a similar argument

is used in all these cases, however, proceeding with cases simplifies the verification

and gives a better vision of the situation.

We start by showing that W ′(w) � W ′(u). Since distG′(w, u) = 1, we know that

distG′ (w, v) =

{
distG′(u, v) − 1 if v ∈ V (Tw) \ S = S ′ ∪ {w}
distG′(u, v) + 1 otherwise.

Therefore,

W ′(w) − W ′(u) = |V \ (S ′ ∪ {w})| − |S ′ ∪ {w}|
= |V | − 2(|S ′| + 1),

which is non-negative since |S ′| � �n/2	 − 1.

A similar reasoning applies to the nodes in R. Let x ∈ R \ {u}. Set d ..= distG′(x, u)

and let x′ be the child of u on the unique path between u and x in G. Note that

T ′
x′ = Tx′ . Since

distG′ (x, v) = distG′(u, v) + d if v ∈ V \ V (Tx′ )

and

distG′ (x, v) � distG′(u, v) − d if v ∈ V (Tx′ ),

we observe that

W ′(x) − W ′(u) � d · (|V \ V (Tx′ )| − |V (Tx′ )|) .
This yields the desired inequality since, as reported earlier, |V (Tx′ )| � n/2.

We now deal with the nodes in S ′. Let x ∈ S ′. First, if S �= �, then S ′ is composed

of precisely �n/2	 − 1 nodes, which are all children of w. The definition of G′ thus
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implies that distG′ (x, v) � distG′(u, v) whenever v �= x, hence W ′(x) � W ′(u), as

asserted. Assume now that S = �. The situation can then be dealt with in the very

same way as for the nodes in R. Indeed, in this case,

W ′(x) − W ′(u) � distG′ (x, u) · (|V \ V (Tw)| − |V (Tw)|) ,
and Tw contains at most n/2 nodes since S = �.

Finally, let x ∈ Y . Similarly as before, set d ..= distG′ (x, u). For every v ∈ V ,

distG′ (x, v) � distG′(u, v) − d.

Let yi be the ancestor of x among {y1, . . . , yt}. If v /∈ V (T ′
yi
), then

distG′ (x, v) = distG′(u, v) + d.

Consequently,

W ′(x) − W ′(u) � d · (∣∣V \ V (T ′
yi
)
∣∣ − ∣∣V (T ′

yi
)
∣∣) .

Now, let pk be the father of yi in G. Then, V (T ′
yi
) ⊆ V (Tpk ). As reported earlier,

|V (Tpk )| � �n/2	, which yields that W ′(x) − W ′(u) � 0. �

The next lemma in particular bounds C1(u;G) from below.

Lemma 2.3

If x ∈ Y , then 0 � W (x)−W ′(x)
W (x)

< 2C1(u;G).

Proof

Assume that x ∈ V (Tyi ). Lemma 2.2vi ensures that W ′(x) � W (x), thereby proving

that W (x)−W ′(x)
W (x)

is non-negative.

Let D be the set of those nodes whose distance to x is greater in G than in G′,
that is, D ..= {v ∈ V : distG(v, x) > distG′ (v, x)}. Observe that W (x) − W ′(x) � 2 |D|,
since distG′(x, v) � distG(x, v) − 2 for every v ∈ V .

We partition D into parts D1, . . . , Dm, where v ∈ Dj if and only if v ∈ D and

distG(x, v) = j. Note that D1 = � = D2. In addition, D3 = {u} if x = yi while

D3 = � if x �= yi. Finally, if x �= yi, then D4 ⊆ {u}, while otherwise D4 is contained

in A1 \ {x, z}. In both cases, we deduce that |D4| � n1 − 2, since n1 � 3. Thus,

W (x) − W ′(x) � 2

m∑
i=3

|Di| (9)

and, since G contains at least one node at distance 2 from x,

W (x) � 1 + 2 +

m∑
i=3

i |Di| (10)
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Since we assume that C1(u;G) � C1(v;H(v; n0, n1)), it follows from Lemma 2.1

that C1(u;G) � n1−1
2(2n1−1)

. Therefore,

W (x) − W ′(x)

W (x)
− 2C1(u;G) �

W (x) − W ′(x)

W (x)
− n1 − 1

2n1 − 1

�
2
∑m

i=3 |Di|
W (x)

− n1 − 1

2n1 − 1

�
2(2n1 − 1)

∑m
i=3 |Di| − (n1 − 1)(3 +

∑m
i=3 i |Di|)

(2n1 − 1)W (x)

=
−3n1 + 3 +

∑m
i=3 |Di| (n1(4 − i) − 2 + i)

(2n1 − 1)W (x)

�
−3n1 + 3 + |D3| (n1 + 1) + 2 · |D4|

(2n1 − 1)W (x)

�
−3n1 + 3 + (n1 + 1) + 2(n1 − 2)

(2n1 − 1)W (x)

= 0,

where the second line follows from Equation (9), the third line from Equation (10),

and the fifth and seventh lines from our assumption that n1 � 3. �

To complete the proof of Theorem 2.1, what remains is to show that C1(u;G
′) >

C1(u;G) which contradicts the choice of (G, u). We define

γ ..=
∑

u∈{w}∪S ′

2 |S |
W (u)W ′(u)

− ∑
u∈{z}∪P ′

2 |S |
W (u)W ′(u)

.

By Lemma 2.2v and the fact that |S ′ ∪ {w}| � |P ′ ∪ {z}| whenever S �= �, we infer

that γ is always non-negative (noticing that γ = 0 if S = �).

Note that

C1(u;G
′) − C1(u;G) =

∑
v∈V

[
1

W ′(u)
− 1

W (u)
−

(
1

W ′(v)
− 1

W (v)

)]

=
∑
v∈V

[
W (u) − W ′(u)
W (u)W ′(u)

− W (v) − W ′(v)
W (v)W ′(v)

]
.

For readability, set f(v) ..= W (u)−W ′(u)
W (u)W ′(u) − W (v)−W ′(v)

W (v)W ′(v) and g(v) ..= 1
W (v)W ′(v) for each

node v ∈ V .

By Lemma 2.2i and iii,

f(v) =

{
2 |Y | (g(u) − g(v)) if v ∈ R

2 |Y | (g(u) − g(v)) + 2 |S | g(v) if v ∈ S ′ ∪ {w}.
In addition, if v ∈ P ∪ S , then W ′(v) � W (v), by Lemma 2.2iv, so f(v) � 2 |Y | g(u).
In total, we infer that C1(u;G

′) − C1(u;G) is at least∑
v∈Y ∪({z}∪P ′)

f(v) +
∑

v∈R∪S ′∪{w}
2 |Y | · (g(u) − g(v)) + 2 |Y | ∑

v∈P∪S
g(u) +

∑
v∈S ′∪{w}

2 |S | · g(v).
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Notice that g(u) > 1
W ′(u)

(
1

W (u)
− 1

W (v)

)
for every node v ∈ V . Moreover, by

Lemma 2.2i, vi, vii and Lemma 2.3, we know that∑
v∈Y

f(v) = 2 |Y | ∑
v∈Y

g(u) − ∑
v∈Y

(W (v) − W ′(v))g(v)

� 2 |Y | ∑
v∈Y

g(u) − 1

W ′(u)
∑
v∈Y

W (v) − W ′(v)
W (v)

> 2 |Y | ∑
v∈Y

g(u) − |Y |
W ′(u)

· 2C1(u;G)

>
2 |Y |
W ′(u)

∑
v∈Y

(
1

W (u)
− 1

W (v)

)
− 2 |Y |C1(u;G)

W ′(u)
.

So, we infer that C1(u;G
′) − C1(u;G) is greater than

∑
v∈P ′∪{z}

f(v) + 2 |Y | ∑
v∈R∪S ′∪{w}

(g(u) − g(v)) +
2 |Y |
W ′(u)

∑
v∈Y ∪P∪S

(
1

W (u)
− 1

W (v)

)

+ 2 |S | ∑
v∈{w}∪S ′

g(v) − 2 |Y | C1(u;G)

W ′(u)
.

Thanks to Lemma 2.2vii, if v ∈ R ∪ S ′ ∪ {w}, then

g(u) − g(v) �
1

W ′(u)

(
1

W (u)
− 1

W (v)

)
.

In addition, by Lemma 2.2ii if v ∈ P ′ ∪ {z}, then

f(v) � 2 |Y | g(u) − 2 |S | g(v) > 2 |Y |
W ′(u)

(
1

W (u)
− 1

W (v)

)
− 2 |S | g(v).

Consequently, we deduce that

C1(u;G) − C1(u;G
′) >

2 |Y |
W ′(u)

∑
v∈V

(
1

W (u)
− 1

W (v)

)
− 2 |Y |

W ′(u)
C1(u;G) + γ

�
2 |Y |
W ′(u)

(C1(u;G) − C1(u;G))

= 0.

This completes the proof of Theorem 2.1.

3 Concluding remarks and future work

In Figure 2 we have a bipartite network N on 89 edges with partition sizes |P1| = 18

and |P2| = 14 that maximizes closeness centralization at nodes corresponding to

“Mrs. Evelyn Jefferson” and to the event from “September 16th,” respectively. Their

closeness values are approximately equal to 0.0167 and 0.0192, while their closeness

centralization values are approximately equal to 0.078 and 0.160, respectively. As

shown in the paper, the graphs H(0, 18, 14) and H(0, 14, 18) maximize closeness

centralization among all bipartite graphs with partition sizes 11 and 28 (regarding

from which partition we are measuring). These graphs are depicted on Figure 6. In
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Fig. 6. The two graphs that maximize closeness centralization among all bipartite graphs

with partition sizes 14 and 18. Note that in both cases the root is node 0. (a) H(0, 14, 18).

(b) H(0, 18, 14).

both graphs, the maximum closeness centralization is attained at the node labeled 0

with values C1(H(0, 14, 18), 0) ≈ 0.329 and C1(H(0, 11, 28), 0) ≈ 0.299, respectively.

We showed that among all two-mode networks with fixed size bipartitions n0

and n1, the largest closeness centralization is achieved by a rooted tree of depth 2,

where neighbors of the root have an equal or almost equal number of children,

namely at node v of a graph H(v, n0, n1). This confirms a conjecture by Everett et al.

(2004) regarding the problem of maximizing closeness centralization in two-mode

data, where the number of data of each type is fixed. A similar statement for

the centrality measure of eccentricity was recently established (Krnc et al., 2015).

However, the same conjecture remains open for the eigenvalue centrality Ce.

Conjecture 3.1

Let B(n0, n1) be the class of all bipartite graphs with bipartition P0 and P1, such

that |Pi| = ni for i ∈ {0, 1}. Then,

max
G∈B(n0 ,n1)

max
v∈P0

Ce(v, G) = Ce (v, H (v, n0, n1)) .

A centrality measure C is said to satisfy the max-degree property in the family F
if for every graph G ∈ F and every node v ∈ V (G),

CG(v) = max
u∈V (G)

CG(u) =⇒ degG(v) = max
u∈V (G)

degG(u).

While degree centrality trivially satisfies the max-degree property in Gn, one can

easily observe that this is not true for closeness centrality. Still, it is interesting to

observe that the maximizing family for bipartite graphs H
(
v, |P0| , |P1|) (or stars, for

connected graphs Gn in general) satisfies the max-degree property.
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