A New Bound for the 2/3 Conjecture[†]

DANIEL KRÁĽ, $^{1\$}$ CHUN-HUNG LIU, 2 JEAN-SÉBASTIEN SERENI, 3¶ PETER WHALEN 2 and ZELEALEM B. YILMA $^{4\parallel}$

⁴LIAFA (Université Denis Diderot), Paris, France (e-mail: Zelealem.Yilma@liafa.jussieu.fr)

Received 11 April 2012; revised 26 November 2012; first published online 23 January 2013

We show that any n-vertex complete graph with edges coloured with three colours contains a set of at most four vertices such that the number of the neighbours of these vertices in one of the colours is at least 2n/3. The previous best value, proved by Erdős, Faudree, Gould, Gyárfás, Rousseau and Schelp in 1989, is 22. It is conjectured that three vertices suffice.

AMS 2010 Mathematics subject classification: Primary 05C35 Secondary 05C55

1. Introduction

Erdős and Hajnal [9] made the observation that for a fixed positive integer t, a positive real ϵ , and a graph G on $n > n_0$ vertices, there is a set of t vertices that have a neighbourhood of size at least $(1 - (1 + \epsilon)(2/3)^t)n$ in either G or its complement. They further enquired whether 2/3 may be replaced by 1/2. This was answered in the affirmative by Erdős,

[†] This work was done in the framework of LEA STRUCO.

[§] The work of this author leading to this invention received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 259385. Previous affiliation: Institute of Computer Science (IUUK), Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 118 00 Prague 1, Czech Republic.

[¶] Partially supported by the French Agence Nationale de la Recherche under reference ANR 10 JCJC 0204 01.

Supported by the French Agence Nationale de la Recherche under reference ANR 10 JCJC 0204 01.

Faudree, Gyárfás and Schelp [7], who not only proved the result but also dispensed with the $(1 + \epsilon)$ factor. They also phrased the question as a problem of vertex domination in a multicoloured graph.

Given a colour c in an r-colouring of the edges of the complete graph, a subset A of the vertex set c-dominates another subset B if, for every $y \in B \setminus A$, there exists a vertex $x \in A$ such that the edge xy is coloured c. The subset A such that xy is coloured xy if, in addition, for every $y \in B \cap A$, there exists a vertex $x \in A$ such that xy is coloured xy. (Thus, the two notions coincide when xy is expected as follows.

Theorem 1.1. For any fixed positive integer t and any 2-colouring of the edges of the complete graph K_n on n vertices, there exist a colour c and a subset X of size at most t such that all but at most $n/2^t$ vertices of K_n are c-dominated by X.

In a more general form, they asked: Given positive integers r, t, and n along with an r-colouring of the edges of the complete graph K_n on n vertices, what is the largest subset B of the vertices of K_n necessarily monochromatically dominated by some t-element subset of K_n ? However, in the same paper [7], the authors presented a 3-colouring of the edges of K_n – attributed to Kierstead – which shows that if $r \ge 3$, then it is not possible to monochromatically dominate all but a small fraction of the vertices with any fixed number t of vertices. This 3-colouring is defined as follows. The vertices of K_n are partitioned into three sets V_1, V_2, V_3 of equal sizes and an edge xy with $x \in V_i$ and $y \in V_j$ is coloured i if $1 \le i \le j \le 3$ and $j - i \le 1$, while edges between V_1 and V_3 are coloured 3. Observe that, if t is fixed, then at most 2n/3 vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper of Erdős, Faudree, Gould, Gyárfás, Rousseau and Schelp [8] that if $t \ge 22$, then, indeed, at least 2n/3 vertices are monochromatically dominated in any 3-colouring of the edges of K_n . The authors then ask if 22 might be replaced by a smaller number (specifically, 3). We prove here that $t \ge 4$ is sufficient.

Theorem 1.2. For any 3-colouring of the edges of K_n , where $n \ge 2$, there exist a colour c and a subset A of at most four vertices of K_n such that A strongly c-dominates at least 2n/3 vertices of K_n .

In Kierstead's colouring, the number of colours appearing on the edges incident with any given vertex is precisely 2. As we shall see later on, this property plays a central role in our arguments. In this regard, our proof seems to suggest that Kierstead's colouring is somehow extremal, giving more credence to the conjecture that three vertices would suffice to monochromatically dominate a set of size 2n/3 in any 3-colouring of the edges of K_n .

We note that there exist 3-colourings of the edges of K_n such that no pair of vertices monochromatically dominate 2n/3 + O(1) vertices. This can be seen by realizing that in a random 3-colouring, the probability that an arbitrary pair of vertices monochromatically dominate more than 5n/9 + o(n) vertices is o(1) by Chernoff's bound.

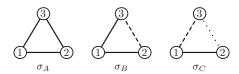


Figure 1. The elements of \mathbb{F}_3 . The edges of colour 1, 2 and 3 are represented by solid, dashed and dotted lines, respectively.

Our proof of Theorem 1.2 utilizes the flag algebra theory introduced by Razborov, which has recently led to numerous results in extremal graph and hypergraph theory. In the following section, we present a brief introduction to the flag algebra framework. The proof of Theorem 1.2 is presented in Section 3.

We end this introduction by pointing out another interesting question: What happens when one increases r, the number of colours? Constructions in the vein of that of Kierstead – for example, partitioning K_n into s parts and using $r = \binom{s}{2}$ colours – show that the size of dominated sets decreases with increasing r. While it may be difficult to determine the minimum value of t dominating a certain proportion of the vertices, it would be interesting to find out whether such constructions do, in fact, give the correct bounds.

2. Flag algebras

Flag algebras were introduced by Razborov [24] as a tool based on the graph limit theory of Lovász and Szegedy [21] and Borgs *et al.* [5] to approach problems pertaining to extremal graph theory. This tool has been successfully applied to various topics, such as Turán-type problems [26], super-saturation questions [25], jumps in hypergraphs [2], the Caccetta–Häggkvist conjecture [17], the chromatic number of common graphs [15] and the number of pentagons in triangle-free graphs [12, 14]. This list is far from exhaustive and results keep coming [1, 3, 4, 6, 11, 10, 13, 16, 19, 20, 22, 23].

Let us now introduce the terminology related to flag algebras needed in this paper. Since we deal with 3-colourings of the edges of complete graphs, we restrict our attention to this particular case. Let us define a *tricoloured graph* to be a complete graph whose edges are coloured with 3 colours. If G is a tricoloured graph, then V(G) is its vertex set and |G| is the number of vertices of G. Let \mathbb{F}_{ℓ} be the set of non-isomorphic tricoloured graphs with ℓ vertices, where two tricoloured graphs are considered to be isomorphic if they differ by a permutation of the vertices and a permutation of the edge colours. (Therefore, which specific colour is used for each edge is irrelevant: what matters is whether or not pairs of edges are assigned the same colour.) The elements of \mathbb{F}_3 are shown in Figure 1. We set $\mathbb{F} := \bigcup_{\ell \in \mathbb{N}} \mathbb{F}_{\ell}$. Given a tricoloured graph σ , we define $\mathbb{F}_{\ell}^{\sigma}$ to be the set of tricoloured graphs F on ℓ vertices with a fixed embedding of σ , that is, an injective mapping ν from $V(\sigma)$ to V(F) such that $Im(\nu)$ induces in F a subgraph that differs from σ only by a permutation of the edge colours. The elements of $\mathbb{F}_{\ell}^{\sigma}$ are usually called σ -flags within the flag algebras framework. We set $\mathbb{F}^{\sigma} := \bigcup_{\ell \in \mathbb{N}} \mathbb{F}_{\ell}^{\sigma}$.

The central notions are factor algebras of \mathbb{F} and \mathbb{F}^{σ} equipped with addition and multiplication. Let us start with the simpler case of \mathbb{F} . If $H \in \mathbb{F}$ and $H' \in \mathbb{F}_{|H|+1}$, then p(H,H') is the probability that a randomly chosen subset of |H| vertices of H' induces a subgraph isomorphic to H. For a set F, we define $\mathbf{R}F$ to be the set of all formal linear combinations of elements of F with real coefficients. Let $\mathcal{A} := \mathbf{R}\mathbb{F}$ and let \mathcal{F} be \mathcal{A} factorized by the subspace of $\mathbf{R}\mathbb{F}$ generated by all combinations of the form

$$H - \sum_{H' \in \mathbb{F}_{|H|+1}} p(H, H')H'.$$

Next, we define the multiplication on \mathcal{A} based on the elements of \mathbb{F} as follows. If H_1 and H_2 are two elements of \mathbb{F} and $H \in \mathbb{F}_{|H_1|+|H_2|}$, then $p(H_1,H_2;H)$ is the probability that two randomly chosen disjoint subsets of vertices of H with sizes $|H_1|$ and $|H_2|$ induce subgraphs isomorphic to H_1 and H_2 , respectively. We set

$$H_1 \cdot H_2 := \sum_{H \in \mathbb{F}_{|H_1| + |H_2|}} p(H_1, H_2; H) H.$$

The multiplication is linearly extended to $\mathbf{R}\mathbb{F}$. Standard elementary probability computations [24, Lemma 2.4] show that this multiplication in $\mathbf{R}\mathbb{F}$ gives rise to a well-defined multiplication in the factor algebra \mathcal{A} .

The definition of \mathcal{A}^{σ} follows the same lines. Let H and H' be two tricoloured graphs in \mathbb{F}^{σ} with embeddings v and v' of σ . Informally, we consider the copy of σ in H' and we extend it into an element of $\mathbb{F}^{\sigma}_{|H|}$ by randomly choosing additional vertices in H'. We are interested in the probability that this random extension is isomorphic to H and the isomorphism preserves the embeddings of σ . Formally, we let p(H, H') be the probability that $v'(V(\sigma))$ together with a randomly chosen subset of $|H| - |\sigma|$ vertices in $V(H') \setminus v'(V(\sigma))$ induce a subgraph that is isomorphic to H through an isomorphism f that preserves the embeddings, that is, $v' = f \circ v$. The set \mathcal{A}^{σ} is composed of all formal real linear combinations of elements of \mathbb{RF}^{σ} factorized by the subspace of \mathbb{RF}^{σ} generated by all combinations of the form

$$H - \sum_{H' \in \mathbb{F}_{|H|+1}^{\sigma}} p(H, H')H'.$$

Similarly, $p(H_1, H_2; H)$ is the probability that $v(V(\sigma))$ together with two randomly chosen disjoint subsets of $|H_1| - |\sigma|$ and $|H_2| - |\sigma|$ vertices in $V(H) \setminus v(V(\sigma))$ induce subgraphs isomorphic to H_1 and H_2 , respectively, with the isomorphisms preserving the embeddings of σ . The definition of the product is then analogous to that in \mathcal{A} .

Consider an infinite sequence $(G_i)_{i\in\mathbb{N}}$ of tricoloured graphs with an increasing number of vertices. Recall that if $H \in \mathbb{F}$, then $p(H, G_i)$ is the probability that a randomly chosen subset of |H| vertices of G_i induces a subgraph isomorphic to H. The sequence $(G_i)_{i\in\mathbb{N}}$ is convergent if $p(H, G_i)$ has a limit for every $H \in \mathbb{F}$. A standard argument (using Tychonoff's theorem [27]) yields that every infinite sequence of tricoloured graphs has a convergent (infinite) subsequence.

The results presented in this and the next paragraph were established by Razborov [24]. Now fix a convergent sequence $(G_i)_{i \in \mathbb{N}}$ of tricoloured graphs. We set $q(H) := \lim_{i \to \infty} p(H, G_i)$

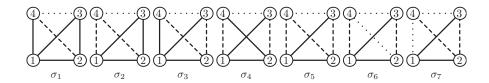


Figure 2. The elements $\sigma_1, \ldots, \sigma_7$ of \mathbb{F}_4 . The edges of colour 1, 2 and 3 are represented by solid, dashed and dotted lines, respectively.

for every $H \in \mathbb{F}$, and we linearly extend q to \mathcal{A} . The obtained mapping q is a homomorphism from \mathcal{A} to \mathbf{R} . Moreover, for $\sigma \in \mathbb{F}$ and an embedding v of σ in G_i , define $p_i^v(H) := p(H, G_i)$. Picking v at random thus gives rise to a random distribution of mappings from \mathcal{A}^{σ} to \mathbf{R} , for each $i \in \mathbf{N}$. Since $p(H, G_i)$ converges (as i tends to infinity) for every $H \in \mathbb{F}$, the sequence of these distributions must also converge. In fact, q itself fully determines the random distributions of q^{σ} for all σ . In what follows, q^{σ} will be a randomly chosen mapping from \mathcal{A}^{σ} to \mathbf{R} based on the limit distribution. Any mapping q^{σ} from support of the limit distribution is a homomorphism from \mathcal{A}^{σ} to \mathbf{R} .

Let us now have a closer look at the relation between q and q^{σ} . The 'averaging' operator $[\![\cdot]\!]_{\sigma}: \mathcal{A}^{\sigma} \to \mathcal{A}$ is a linear operator defined on the elements of \mathbb{F}^{σ} by $[\![H]\!]_{\sigma}:=p\cdot H'$, where H' is the (unlabelled) tricoloured graph in \mathbb{F} corresponding to H and p is the probability that a random injective mapping from $V(\sigma)$ to V(H') is an embedding of σ in H' yielding H. The key relation between q and q^{σ} is the following:

for all
$$H \in \mathcal{A}^{\sigma}$$
, $q(\llbracket H \rrbracket_{\sigma}) = \int q^{\sigma}(H)$, (2.1)

where the integration is over the probability space given by the limit random distribution of q^{σ} . We immediately conclude that if $q^{\sigma}(H) \ge 0$ almost surely, then $q(\llbracket H \rrbracket_{\sigma}) \ge 0$. In particular,

for all
$$H \in \mathcal{A}^{\sigma}$$
, $q(\llbracket H^2 \rrbracket_{\sigma}) \geqslant 0$. (2.2)

2.1. Particular notation used in our proof

We use the seven elements $\sigma_1, \ldots, \sigma_7$ out of the 15 elements of \mathbb{F}_4 that are depicted in Figure 2. For $i \in \{1, \ldots, 7\}$ and a quadruple $d \in \{1, 2, 3\}^4$, let F_d^i be the element of $\mathbb{F}_5^{\sigma_i}$ such that the unlabelled vertex of F_d^i is joined by an edge of colour d_j to the jth vertex of σ_i for $j \in \{1, 2, 3, 4\}$. If $i \in \{1, \ldots, 7\}$ and $c \in \{1, 2, 3\}$, then $F_{(c)}^i$ is the element of \mathcal{A}^{σ_i} that is the sum of all the five-vertex σ_i -flags F_d^i such that the unlabelled vertex is joined by an edge of colour c to at least one of the vertices of σ_i , i.e., at least one of the entries of d is c.

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2 by contradiction: in a series of lemmas, we shall prove some properties of a counterexample which eventually allow us to establish the

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7
c = 2	1/2	0	1/6	-1/3	$0 \\ -1/3 \\ 1/2$	-1/3	0

Table 1. The values $\varepsilon_c(\sigma_i)$ for $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$.

non-existence of counterexamples. Specifically, we first find a number of flag inequalities by hand and then we combine them with appropriate coefficients to obtain a contradiction. The coefficients are found with the help of a computer.

Let G be a tricoloured complete graph. For a vertex v of G, let A_v be the set of colours of the edges incident with v. Consider a sequence of graphs $(G_k)_{k\in\mathbb{N}}$, obtained from G by replacing each vertex v of G with a complete graph of order k with edges coloured uniformly at random with colours in A_v ; the colours of the edges between the complete graphs corresponding to the vertices v and v' of G are assigned the colour of the edge vv'. This sequence of graphs converges asymptotically almost surely; let q_G be the corresponding homomorphism from \mathcal{A} to \mathbf{R} .

Let $n \ge 2$. We define a *counterexample* to be a tricoloured graph with n vertices such that for every colour $c \in \{1, 2, 3\}$, each set W of at most four vertices strongly c-dominates less than 2n/3 vertices of G. A counterexample readily satisfies the following property.

Observation 3.1. If G is a counterexample, then every vertex is incident with edges of at least two different colours.

In the next lemma, we establish an inequality that q_G satisfies if G is a counterexample. To do so, define the quantity $\varepsilon_c(\sigma_i)$ for $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$ to be 1/2 if σ_i contains a single edge with colour c, -1/3 if each vertex of σ_i is incident with an edge coloured c, 1/6 if σ_i contains at least two edges with colour c and a vertex incident with edges of a single colour different from c, and 0, otherwise. These values are gathered in Table 1. Let us underline that, unlike in most of the previous applications of flag algebras, we do need to deal with second-order terms (specifically, O(1/n) terms) in our flag inequalities to establish Theorem 1.2.

Lemma 3.2. Let G be a counterexample with n vertices. For every $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$, a homomorphism $q_G^{\sigma_i}$ from \mathcal{A}^{σ_i} to \mathbf{R} almost surely satisfies the inequality

$$q_G^{\sigma_i}(F_{(c)}^i) \leqslant \frac{2}{3} + \frac{\varepsilon_c(\sigma_i)}{n}.$$

Proof. Fix $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$. Consider the graph G_k for sufficiently large k. Let (w_1, w_2, w_3, w_4) be a randomly selected quadruple of vertices of G_k inducing a subgraph isomorphic to σ_i . Further, let W be the set of vertices strongly c-dominated by

 $\{w_1,\ldots,w_4\}$. We show that

$$|W| \leq \frac{2nk}{3} + \varepsilon_c(\sigma_i)k + o(k)$$

with probability tending to one as k tends to infinity. This will establish the inequality stated in the lemma. Indeed, it implies that for every $\eta > 0$, there exists k_{η} such that if $k > k_{\eta}$, then

$$q_{G_k}^{\sigma_i}(F_{(c)}^i) \leqslant \frac{2}{3} + \frac{\varepsilon_c(\sigma_i)}{n} + \eta$$

with probability at least $1 - \eta$. As $q_{G_k}^{\sigma_i}(F_{(c)}^i)$ tends to $q_G^{\sigma_i}(F_{(c)}^i)$ as k tends to infinity, we obtain the stated inequality with probability 1.

For $i \in \{1, 2, 3, 4\}$, let v_i be the vertex of G corresponding to the clique W_i of G_k containing w_i . Let V be the set of vertices of G that are strongly c-dominated by $\{v_1, \ldots, v_4\}$. Since G is a counterexample, |V| < 2n/3, and hence, $|V| \le 2n/3 - 1/3$. If w_j and $w_{j'}$ are joined by an edge of colour c and, furthermore, $v_j = v_{j'}$, then v_j is added to V as well. Since V is still strongly c-dominated by a quadruple of vertices in G (replace $v_{j'}$ by any of its c-neighbours), it follows that $|V| \le 2n/3 - 1/3$.

The set W can contain the |V|k vertices of the cliques corresponding to the vertices in V, and, potentially, it also contains some additional vertices if w_i has no c-neighbours among w_1, \ldots, w_4 . In this case, the additional vertices in W are the c-neighbours of w_i in W_i . With high probability, there are at most k/3 + o(k) such vertices if v_i is incident with edges of all three colours in G, and at most k/2 + o(k) if v_i is incident with edges of only two colours in G.

If $\varepsilon_c(\sigma_i) = -1/3$, then all the vertices w_1, \ldots, w_4 have a c-neighbour among w_1, \ldots, w_4 and thus W contains only vertices of the cliques corresponding to the vertices V. We conclude that

$$|W| \leqslant \frac{(2n-1)k}{3} + o(k),$$

as required.

If $\varepsilon_c(\sigma_i) = 0$, then all but one of the vertices w_1, \ldots, w_4 have a c-neighbour among w_1, \ldots, w_4 and the vertex w_j that has none is incident in σ_i with edges of the two colours different from c. In particular, either w_j has no c-neighbours inside W_j or v_j is incident with edges of three distinct colours in G. This implies that

$$|W| \leqslant \frac{(2n-1)k}{3} + o(k)$$

in the former case and

$$|W| \leqslant \frac{2nk}{3} + o(k)$$

in the latter case. So, the bound holds.

If $\varepsilon_c(\sigma_i) = 1/6$, then all but one of the vertices among w_1, \dots, w_4 have a c-neighbour among w_1, \dots, w_4 . Let w_i be the exceptional vertex. Since w_i has at most k/2 + o(k)

c-neighbours in W_i , it follows that

$$|W| \leqslant \frac{2nk}{3} + \frac{k}{6} + o(k).$$

Finally, if $\varepsilon_c(\sigma_i) = 1/2$, then two vertices w_j and $w_{j'}$ among w_1, \ldots, w_4 have no c-neighbours in $\{w_1, \ldots, w_4\}$. The vertices w_j and $w_{j'}$ have at most k/2 + o(k) c-neighbours each in W_j and $W_{j'}$, respectively. Moreover, since σ_i contains edges of all three colours, one of w_j and $w_{j'}$ is incident in σ_i with edges of the two colours different from c. Hence, this vertex has at most k/3 + o(k) c-neighbours in W_j . We conclude that the set W contains at most

$$|V|k + 5k/6 + o(k) \le \frac{2nk}{3} + \frac{k}{2} + o(k)$$

vertices.

As a consequence of (2.1), we have the following corollary of Lemma 3.2.

Lemma 3.3. Let G be a counterexample with n vertices. For every $i \in \{1, ..., 7\}$ and $c \in \{1, 2, 3\}$ such that $\varepsilon_c(\sigma_i) \leq 0$, it holds that

$$q_G([2\sigma_i/3 - F_{(c)}^i]_{\sigma_i}) \geqslant 0.$$

We now prove that in a counterexample, at most two colours are used to colour the edges incident with any given vertex. As we shall see, this structural property of counterexamples directly implies their non-existence, thereby proving Theorem 1.2.

Lemma 3.4. No counterexample contains a vertex incident with edges of all three colours.

Proof. We present only an overview of the proof here. The version of this article available on arXiv [18] contains all the particular numerical details and definitions of the specific flags used (see Section 2.1, Proof of Lemma 6 and Appendix B).

Let G be a counterexample and let $w_3 \in \mathbf{RF}_5$ be the sum of all elements of \mathbb{F}_5 that contain a vertex incident with at least three colours. By the definition of q_G , the graph G has a vertex incident with edges of all three colours if and only if $q_G(w_3) > 0$. Let H_1, \ldots, H_{14} be the elements $[\![2\sigma_i/3 - F^i_{(c)}]\!]_{\sigma_i}$ of \mathbf{RF}_5 for those choices of $i \in \{1, \ldots, 7\}$ and $c \in \{1, 2, 3\}$ with $\varepsilon_c(\sigma_i) \leq 0$. By Lemma 3.3, $q_G(H_i) \geq 0$ for $i \in \{1, \ldots, 14\}$. Next, let H_{15} and H_{16} be $[\![s^2]\!]_{\sigma_B}$ and $[\![t^2]\!]_{\sigma_B}$, respectively, for suitably chosen elements s and t in $\mathbf{RF}_4^{\sigma_B}$, where σ_B is as in Figure 1. Finally, let H_{17} and H_{18} be $[\![u^2]\!]_{\sigma_C}$ and $[\![v^2]\!]_{\sigma_C}$, respectively, for suitably chosen elements u and v in $\mathbf{RF}_4^{\sigma_C}$, where σ_C is as in Figure 2. Note that H_{15} , H_{16} , H_{17} and H_{18} can be expressed as elements of \mathbf{RF}_5 . By (2.2), it also holds that $q_G(H_i) \geq 0$ for $i \in \{15, \ldots, 18\}$.

However, there exist non-negative coefficients ξ_1, \ldots, ξ_{18} such that for every $H \in \mathbb{F}_5$, the coefficient of H in $w_0 := -\sum_{i=1}^{18} \xi_i \cdot H_i$ is at least the coefficient of H in w_3 . In particular, the difference $w_0 - w_3$, which belongs to \mathbb{RF}_5 , has only non-negative coefficients. We now view both w_0 and w_3 as elements of A and use that q_G is a homomorphism from A to \mathbb{R} .

First of all, $q_G(w_0 - w_3) \ge 0$. So, we derive that $q_G(w_3) \le q_G(w_0)$. The inequalities $q_G(H_i) \ge 0$ and $\xi_i \ge 0$ for $i \in \{1, ..., 18\}$ yield that $q_G(w_0) \le 0$. This implies that $q_G(w_3) \le 0$, which is equivalent to the fact that G has no vertex incident with edges of all three colours. \square

We are now in a position to prove Theorem 1.2, whose statement is recalled below.

Theorem 1.2. Let $n \ge 2$. Every tricoloured graph with n vertices contains a subset of at most four vertices that strongly c-dominates at least 2n/3 vertices for some colour c.

Proof. Suppose, on the contrary, that there exists a counterexample G. Recall that A_v is the set of colours that appear on the edges incident to the vertex v. Now, by Observation 3.1 and Lemma 3.4, it holds that $|A_v| = 2$ for every vertex v of G. Hence, V(G) can be partitioned into three sets V_1 , V_2 and V_3 , where $v \in V_i$ if and only if $i \notin A_v$. Without loss of generality, assume that $|V_1| \geqslant |V_2| \geqslant |V_3|$. Pick $u \in V_1$ and $v \in V_2$. As $A_u \cap A_w = \{3\}$ for all $w \in V_2$, we observe that V_2 is 3-dominated by $\{u\}$. Similarly, V_1 is 3-dominated by $\{v\}$. Therefore, the set $\{u,v\}$ strongly 3-dominates $V_1 \cup V_2$, which has size at least 2n/3.

4. Concluding remarks

It is natural to ask what bound can be proved for domination with three vertices. Here, it does not seem that the trick we used in this paper helps. We can prove only that every tricoloured graph with n vertices contains a subset of at most three vertices that c-dominates at least 0.66117n vertices for some colour c.

We believe the difficulty we face is caused by the following phenomenon. The average number of vertices dominated by a triple isomorphic to σ_A or σ_B (see Figure 1 for notation) is bounded away from 2/3 in the graphs $(G_k)_{k\in\mathbb{N}}$, which are described at the beginning of Section 3, when G is the rainbow triangle. So, if any of these two configurations is used, a tight bound cannot be proved since the inequalities analogous to that in Lemma 3.3 are not tight and no triple of vertices dominates more than 2/3 of the vertices in $(G_k)_{k\in\mathbb{N}}$ to compensate this deficiency.

We see that if we aim to prove a tight result, we can only average over rainbow triangles (which are isomorphic to σ_C). Now consider the following graph G: start from the disjoint union of a large clique of order 2m with all edges coloured 1 and a rainbow triangle. For $i \in \{1,2\}$, join exactly m vertices of the clique to all three vertices of the rainbow triangle by edges coloured i. The obtained simple complete graph has exactly one rainbow triangle, which dominates about half of the vertices. Thus, the average proportion of vertices dominated by triples isomorphic to σ_C in the graphs $(G_k)_{k \in \mathbb{N}}$ is close to 1/2. This phenomenon does not occur for quadruples of vertices.

References

- [1] Baber, R. Turán densities of hypercubes. Submitted. arXiv:1201.3587.
- [2] Baber, R. and Talbot, J. (2011) Hypergraphs do jump. Combin. Probab. Comput. 20 161-171.

- [3] Baber, R. and Talbot, J. (2012) New Turán densities for 3-graphs. Electron. J. Combin. 19 R22.
- [4] Balogh, J., Hu, P., Lidický, B. and Liu, H. Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube. Submitted. arXiv:1201.0209.
- [5] Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T. and Vesztergombi, K. (2008) Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. *Adv. Math.* **219** 1801–1851.
- [6] Cummings, J., Král', D., Pfender, F., Sperfeld, K., Treglown, A. and Young, M. Monochromatic triangles in three-coloured graphs. Submitted. arXiv:1206.1987.
- [7] Erdős, P., Faudree, R., Gyárfás, A. and Schelp, R. H. (1989) Domination in colored complete graphs. *J. Graph Theory* **13** 713–718.
- [8] Erdős, P., Faudree, R. J., Gould, R. J., Gyárfás, A., Rousseau, C. and Schelp, R. H. (1990) Monochromatic coverings in colored complete graphs. In *Proc. Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congr. Numer.* 71 29–38.
- [9] Erdős, P. and Hajnal, A. (1989) Ramsey-type theorems. In *Combinatorics and Complexity*. *Discrete Appl. Math.* **25** 37–52.
- [10] Falgas-Ravry, V. and Vaughan, E. R. On applications of Razborov's flag algebra calculus to extremal 3-graph theory. Submitted. arXiv:1110.1623.
- [11] Falgas-Ravry, V. and Vaughan, E. R. Turán *H*-densities for 3-graphs. Submitted. arXiv:1201.4326.
- [12] Grzesik, A. (2012) On the maximum number of five-cycles in a triangle-free graph. *J. Combin. Theory Ser. B* **102** 1061–1066.
- [13] Hatami, H., Hirst, J. and Norine, S. The inducibility of blow-up graphs. Submitted. arXiv:1108.5699.
- [14] Hatami, H., Hladký, J., Král', D., Norine, S. and Razborov, A. On the number of pentagons in triangle-free graphs. *J. Combin. Theory Ser. A.* Submitted. arXiv:1102.1634.
- [15] Hatami, H., Hladký, J., Král', D., Norine, S. and Razborov, A. (2012) Non-three-colourable common graphs exist. Combin. Probab. Comput. 21 734–742.
- [16] Hirst, J. The inducibility of graphs on four vertices. Submitted. arXiv:1109.1592.
- [17] Hladký, J., Král', D. and Norine, S. Counting flags in triangle-free digraphs. Submitted. arXiv:0908.2791.
- [18] Král', D., Liu, C.-H., Sereni, J.-S., Whalen, P. and Yilma, Z. B. A new bound for the 2/3 conjecture. arXiv:1204.2519.
- [19] Král', D., Mach, L. and Sereni, J.-S. (2012) A new lower bound based on Gromov's method of selecting heavily covered points. *Discrete Comput. Geom.* 48 487–498.
- [20] Kramer, L., Martin, R. R. and Young, M. On diamond-free subposets of the Boolean lattice. J. Combin. Theory Ser. A. Submitted. arXiv:1205.1501.
- [21] Lovász, L. and Szegedy, B. (2006) Limits of dense graph sequences. J. Combin. Theory Ser. B 96 933–957.
- [22] Pikhurko, O. Minimum number of *k*-cliques in graphs with bounded independence number. Submitted. arXiv:1203.4393.
- [23] Pikhurko, O. and Razborov, A. Asymptotic structure of graphs with the minimum number of triangles. Submitted. arXiv:1204.2846.
- [24] Razborov, A. (2007) Flag algebras. J. Symbolic Logic 72 1239–1282.
- [25] Razborov, A. (2008) On the minimal density of triangles in graphs. Combin. Probab. Comput. 17 603–618.
- [26] Razborov, A. (2010) On 3-hypergraphs with forbidden 4-vertex configurations. SIAM J. Discrete Math. 24 946–963.
- [27] Tychonoff, A. (1930) Über die topologische Erweiterung von Räumen. Math. Ann. 102 544-561.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.