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We show that any n-vertex complete graph with edges coloured with three colours contains

a set of at most four vertices such that the number of the neighbours of these vertices in

one of the colours is at least 2n/3. The previous best value, proved by Erdős, Faudree,

Gould, Gyárfás, Rousseau and Schelp in 1989, is 22. It is conjectured that three vertices

suffice.

AMS 2010 Mathematics subject classification: Primary 05C35

Secondary 05C55

1. Introduction

Erdős and Hajnal [9] made the observation that for a fixed positive integer t, a positive real

ε, and a graph G on n > n0 vertices, there is a set of t vertices that have a neighbourhood

of size at least (1 − (1 + ε)(2/3)t)n in either G or its complement. They further enquired

whether 2/3 may be replaced by 1/2. This was answered in the affirmative by Erdős,
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Faudree, Gyárfás and Schelp [7], who not only proved the result but also dispensed with

the (1 + ε) factor. They also phrased the question as a problem of vertex domination in

a multicoloured graph.

Given a colour c in an r-colouring of the edges of the complete graph, a subset A of the

vertex set c-dominates another subset B if, for every y ∈ B \ A, there exists a vertex x ∈ A

such that the edge xy is coloured c. The subset A strongly c-dominates B if, in addition,

for every y ∈ B ∩ A, there exists a vertex x ∈ A such that xy is coloured c. (Thus, the two

notions coincide when A ∩ B = ∅.) The result of Erdős et al. [7] may then be stated as

follows.

Theorem 1.1. For any fixed positive integer t and any 2-colouring of the edges of the

complete graph Kn on n vertices, there exist a colour c and a subset X of size at most

t such that all but at most n/2t vertices of Kn are c-dominated by X.

In a more general form, they asked: Given positive integers r, t, and n along with an

r-colouring of the edges of the complete graph Kn on n vertices, what is the largest subset

B of the vertices of Kn necessarily monochromatically dominated by some t-element

subset of Kn? However, in the same paper [7], the authors presented a 3-colouring of the

edges of Kn – attributed to Kierstead – which shows that if r � 3, then it is not possible to

monochromatically dominate all but a small fraction of the vertices with any fixed number

t of vertices. This 3-colouring is defined as follows. The vertices of Kn are partitioned into

three sets V1, V2, V3 of equal sizes and an edge xy with x ∈ Vi and y ∈ Vj is coloured i if

1 � i � j � 3 and j − i � 1, while edges between V1 and V3 are coloured 3. Observe that,

if t is fixed, then at most 2n/3 vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper of Erdős, Faudree, Gould,

Gyárfás, Rousseau and Schelp [8] that if t � 22, then, indeed, at least 2n/3 vertices are

monochromatically dominated in any 3-colouring of the edges of Kn. The authors then

ask if 22 might be replaced by a smaller number (specifically, 3). We prove here that t � 4

is sufficient.

Theorem 1.2. For any 3-colouring of the edges of Kn, where n � 2, there exist a colour c

and a subset A of at most four vertices of Kn such that A strongly c-dominates at least 2n/3

vertices of Kn.

In Kierstead’s colouring, the number of colours appearing on the edges incident with

any given vertex is precisely 2. As we shall see later on, this property plays a central role

in our arguments. In this regard, our proof seems to suggest that Kierstead’s colouring

is somehow extremal, giving more credence to the conjecture that three vertices would

suffice to monochromatically dominate a set of size 2n/3 in any 3-colouring of the edges

of Kn.

We note that there exist 3-colourings of the edges of Kn such that no pair of vertices

monochromatically dominate 2n/3 + O(1) vertices. This can be seen by realizing that in a

random 3-colouring, the probability that an arbitrary pair of vertices monochromatically

dominate more than 5n/9 + o(n) vertices is o(1) by Chernoff’s bound.
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Figure 1. The elements of F3. The edges of colour 1, 2 and 3 are represented by solid, dashed

and dotted lines, respectively.

Our proof of Theorem 1.2 utilizes the flag algebra theory introduced by Razborov,

which has recently led to numerous results in extremal graph and hypergraph theory. In

the following section, we present a brief introduction to the flag algebra framework. The

proof of Theorem 1.2 is presented in Section 3.

We end this introduction by pointing out another interesting question: What happens

when one increases r, the number of colours? Constructions in the vein of that of

Kierstead – for example, partitioning Kn into s parts and using r =
(
s
2

)
colours – show

that the size of dominated sets decreases with increasing r. While it may be difficult to

determine the minimum value of t dominating a certain proportion of the vertices, it

would be interesting to find out whether such constructions do, in fact, give the correct

bounds.

2. Flag algebras

Flag algebras were introduced by Razborov [24] as a tool based on the graph limit theory

of Lovász and Szegedy [21] and Borgs et al. [5] to approach problems pertaining to

extremal graph theory. This tool has been successfully applied to various topics, such as

Turán-type problems [26], super-saturation questions [25], jumps in hypergraphs [2], the

Caccetta–Häggkvist conjecture [17], the chromatic number of common graphs [15] and

the number of pentagons in triangle-free graphs [12, 14]. This list is far from exhaustive

and results keep coming [1, 3, 4, 6, 11, 10, 13, 16, 19, 20, 22, 23].

Let us now introduce the terminology related to flag algebras needed in this paper. Since

we deal with 3-colourings of the edges of complete graphs, we restrict our attention to this

particular case. Let us define a tricoloured graph to be a complete graph whose edges are

coloured with 3 colours. If G is a tricoloured graph, then V (G) is its vertex set and |G| is

the number of vertices of G. Let F� be the set of non-isomorphic tricoloured graphs with

� vertices, where two tricoloured graphs are considered to be isomorphic if they differ by

a permutation of the vertices and a permutation of the edge colours. (Therefore, which

specific colour is used for each edge is irrelevant: what matters is whether or not pairs of

edges are assigned the same colour.) The elements of F3 are shown in Figure 1. We set

F := ∪�∈NF�. Given a tricoloured graph σ, we define F
σ
� to be the set of tricoloured graphs

F on � vertices with a fixed embedding of σ, that is, an injective mapping ν from V (σ) to

V (F) such that Im(ν) induces in F a subgraph that differs from σ only by a permutation

of the edge colours. The elements of F
σ
� are usually called σ-flags within the flag algebras

framework. We set F
σ := ∪�∈NF

σ
� .
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The central notions are factor algebras of F and F
σ equipped with addition and

multiplication. Let us start with the simpler case of F. If H ∈ F and H ′ ∈ F|H |+1, then

p(H,H ′) is the probability that a randomly chosen subset of |H | vertices of H ′ induces

a subgraph isomorphic to H . For a set F , we define RF to be the set of all formal

linear combinations of elements of F with real coefficients. Let A := RF and let F be A
factorized by the subspace of RF generated by all combinations of the form

H −
∑

H ′∈F|H |+1

p(H,H ′)H ′.

Next, we define the multiplication on A based on the elements of F as follows. If H1

and H2 are two elements of F and H ∈ F|H1|+|H2|, then p(H1, H2;H) is the probability that

two randomly chosen disjoint subsets of vertices of H with sizes |H1| and |H2| induce

subgraphs isomorphic to H1 and H2, respectively. We set

H1 · H2 :=
∑

H∈F|H1 |+|H2 |

p(H1, H2;H)H.

The multiplication is linearly extended to RF. Standard elementary probability compu-

tations [24, Lemma 2.4] show that this multiplication in RF gives rise to a well-defined

multiplication in the factor algebra A.

The definition of Aσ follows the same lines. Let H and H ′ be two tricoloured graphs

in F
σ with embeddings ν and ν ′ of σ. Informally, we consider the copy of σ in H ′

and we extend it into an element of F
σ
|H | by randomly choosing additional vertices in

H ′. We are interested in the probability that this random extension is isomorphic to H

and the isomorphism preserves the embeddings of σ. Formally, we let p(H,H ′) be the

probability that ν ′(V (σ)) together with a randomly chosen subset of |H | − |σ| vertices in

V (H ′) \ ν ′(V (σ)) induce a subgraph that is isomorphic to H through an isomorphism f

that preserves the embeddings, that is, ν ′ = f ◦ ν. The set Aσ is composed of all formal

real linear combinations of elements of RF
σ factorized by the subspace of RF

σ generated

by all combinations of the form

H −
∑

H ′∈F
σ
|H |+1

p(H,H ′)H ′.

Similarly, p(H1, H2;H) is the probability that ν(V (σ)) together with two randomly chosen

disjoint subsets of |H1| − |σ| and |H2| − |σ| vertices in V (H) \ ν(V (σ)) induce subgraphs

isomorphic to H1 and H2, respectively, with the isomorphisms preserving the embeddings

of σ. The definition of the product is then analogous to that in A.

Consider an infinite sequence (Gi)i∈N of tricoloured graphs with an increasing number

of vertices. Recall that if H ∈ F, then p(H,Gi) is the probability that a randomly chosen

subset of |H | vertices of Gi induces a subgraph isomorphic to H . The sequence (Gi)i∈N is

convergent if p(H,Gi) has a limit for every H ∈ F. A standard argument (using Tychonoff’s

theorem [27]) yields that every infinite sequence of tricoloured graphs has a convergent

(infinite) subsequence.

The results presented in this and the next paragraph were established by Razborov [24].

Now fix a convergent sequence (Gi)i∈N of tricoloured graphs. We set q(H) := limi→∞ p(H,Gi)
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Figure 2. The elements σ1, . . . , σ7 of F4. The edges of colour 1, 2 and 3 are represented by solid,

dashed and dotted lines, respectively.

for every H ∈ F, and we linearly extend q to A. The obtained mapping q is a homo-

morphism from A to R. Moreover, for σ ∈ F and an embedding ν of σ in Gi, define

pνi (H) := p(H,Gi). Picking ν at random thus gives rise to a random distribution of

mappings from Aσ to R, for each i ∈ N. Since p(H,Gi) converges (as i tends to infinity)

for every H ∈ F, the sequence of these distributions must also converge. In fact, q itself

fully determines the random distributions of qσ for all σ. In what follows, qσ will be a

randomly chosen mapping from Aσ to R based on the limit distribution. Any mapping

qσ from support of the limit distribution is a homomorphism from Aσ to R.

Let us now have a closer look at the relation between q and qσ . The ‘averaging’ operator

�·�σ : Aσ → A is a linear operator defined on the elements of F
σ by �H�σ := p · H ′, where

H ′ is the (unlabelled) tricoloured graph in F corresponding to H and p is the probability

that a random injective mapping from V (σ) to V (H ′) is an embedding of σ in H ′ yielding

H . The key relation between q and qσ is the following:

for all H ∈ Aσ, q(�H�σ) =

∫
qσ(H), (2.1)

where the integration is over the probability space given by the limit random distribution

of qσ . We immediately conclude that if qσ(H) � 0 almost surely, then q(�H�σ) � 0. In

particular,

for all H ∈ Aσ, q(�H2�σ) � 0. (2.2)

2.1. Particular notation used in our proof

We use the seven elements σ1, . . . , σ7 out of the 15 elements of F4 that are depicted in

Figure 2. For i ∈ {1, . . . , 7} and a quadruple d ∈ {1, 2, 3}4, let Fi
d be the element of F

σi
5 such

that the unlabelled vertex of Fi
d is joined by an edge of colour dj to the jth vertex of σi

for j ∈ {1, 2, 3, 4}. If i ∈ {1, . . . , 7} and c ∈ {1, 2, 3}, then Fi
(c) is the element of Aσi that is

the sum of all the five-vertex σi-flags Fi
d such that the unlabelled vertex is joined by an

edge of colour c to at least one of the vertices of σi, i.e., at least one of the entries of

d is c.

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2 by contradiction: in a series of lemmas, we shall

prove some properties of a counterexample which eventually allow us to establish the
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Table 1. The values εc(σi) for i ∈ {1, . . . , 7} and c ∈ {1, 2, 3}.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

c = 1 −1/3 0 −1/3 −1/3 0 0 0

c = 2 1/2 0 1/6 −1/3 −1/3 −1/3 0

c = 3 1/2 1/2 1/2 1/2 1/2 0 0

non-existence of counterexamples. Specifically, we first find a number of flag inequalities

by hand and then we combine them with appropriate coefficients to obtain a contradiction.

The coefficients are found with the help of a computer.

Let G be a tricoloured complete graph. For a vertex v of G, let Av be the set of

colours of the edges incident with v. Consider a sequence of graphs (Gk)k∈N, obtained

from G by replacing each vertex v of G with a complete graph of order k with edges

coloured uniformly at random with colours in Av; the colours of the edges between the

complete graphs corresponding to the vertices v and v′ of G are assigned the colour of

the edge vv′. This sequence of graphs converges asymptotically almost surely; let qG be

the corresponding homomorphism from A to R.

Let n � 2. We define a counterexample to be a tricoloured graph with n vertices such

that for every colour c ∈ {1, 2, 3}, each set W of at most four vertices strongly c-dominates

less than 2n/3 vertices of G. A counterexample readily satisfies the following property.

Observation 3.1. If G is a counterexample, then every vertex is incident with edges of at

least two different colours.

In the next lemma, we establish an inequality that qG satisfies if G is a counterexample.

To do so, define the quantity εc(σi) for i ∈ {1, . . . , 7} and c ∈ {1, 2, 3} to be 1/2 if σi contains

a single edge with colour c, −1/3 if each vertex of σi is incident with an edge coloured

c, 1/6 if σi contains at least two edges with colour c and a vertex incident with edges of

a single colour different from c, and 0, otherwise. These values are gathered in Table 1.

Let us underline that, unlike in most of the previous applications of flag algebras, we do

need to deal with second-order terms (specifically, O(1/n) terms) in our flag inequalities

to establish Theorem 1.2.

Lemma 3.2. Let G be a counterexample with n vertices. For every i ∈ {1, . . . , 7} and c ∈
{1, 2, 3}, a homomorphism qσiG from Aσi to R almost surely satisfies the inequality

qσiG (Fi
(c)) � 2

3
+

εc(σi)

n
.

Proof. Fix i ∈ {1, . . . , 7} and c ∈ {1, 2, 3}. Consider the graph Gk for sufficiently large

k. Let (w1, w2, w3, w4) be a randomly selected quadruple of vertices of Gk inducing a

subgraph isomorphic to σi. Further, let W be the set of vertices strongly c-dominated by
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{w1, . . . , w4}. We show that

|W | � 2nk

3
+ εc(σi)k + o(k)

with probability tending to one as k tends to infinity. This will establish the inequality

stated in the lemma. Indeed, it implies that for every η > 0, there exists kη such that if

k > kη , then

qσiGk
(Fi

(c)) � 2

3
+

εc(σi)

n
+ η

with probability at least 1 − η. As qσiGk
(Fi

(c)) tends to qσiG (Fi
(c)) as k tends to infinity, we

obtain the stated inequality with probability 1.

For i ∈ {1, 2, 3, 4}, let vi be the vertex of G corresponding to the clique Wi of Gk

containing wi. Let V be the set of vertices of G that are strongly c-dominated by

{v1, . . . , v4}. Since G is a counterexample, |V | < 2n/3, and hence, |V | � 2n/3 − 1/3. If wj

and wj′ are joined by an edge of colour c and, furthermore, vj = vj′ , then vj is added to

V as well. Since V is still strongly c-dominated by a quadruple of vertices in G (replace

vj′ by any of its c-neighbours), it follows that |V | � 2n/3 − 1/3.

The set W can contain the |V |k vertices of the cliques corresponding to the vertices

in V , and, potentially, it also contains some additional vertices if wi has no c-neighbours

among w1, . . . , w4. In this case, the additional vertices in W are the c-neighbours of wi in

Wi. With high probability, there are at most k/3 + o(k) such vertices if vi is incident with

edges of all three colours in G, and at most k/2 + o(k) if vi is incident with edges of only

two colours in G.

If εc(σi) = −1/3, then all the vertices w1, . . . , w4 have a c-neighbour among w1, . . . , w4

and thus W contains only vertices of the cliques corresponding to the vertices V . We

conclude that

|W | � (2n − 1)k

3
+ o(k),

as required.

If εc(σi) = 0, then all but one of the vertices w1, . . . , w4 have a c-neighbour among

w1, . . . , w4 and the vertex wj that has none is incident in σi with edges of the two colours

different from c. In particular, either wj has no c-neighbours inside Wj or vj is incident

with edges of three distinct colours in G. This implies that

|W | � (2n − 1)k

3
+ o(k)

in the former case and

|W | � 2nk

3
+ o(k)

in the latter case. So, the bound holds.

If εc(σi) = 1/6, then all but one of the vertices among w1, . . . , w4 have a c-neighbour

among w1, . . . , w4. Let wj be the exceptional vertex. Since wj has at most k/2 + o(k)
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c-neighbours in Wj , it follows that

|W | � 2nk

3
+

k

6
+ o(k).

Finally, if εc(σi) = 1/2, then two vertices wj and wj′ among w1, . . . , w4 have no c-

neighbours in {w1, . . . , w4}. The vertices wj and wj′ have at most k/2 + o(k) c-neighbours

each in Wj and Wj′ , respectively. Moreover, since σi contains edges of all three colours,

one of wj and wj′ is incident in σi with edges of the two colours different from c. Hence,

this vertex has at most k/3 + o(k) c-neighbours in Wj . We conclude that the set W

contains at most

|V |k + 5k/6 + o(k) � 2nk

3
+

k

2
+ o(k)

vertices.

As a consequence of (2.1), we have the following corollary of Lemma 3.2.

Lemma 3.3. Let G be a counterexample with n vertices. For every i ∈ {1, . . . , 7} and c ∈
{1, 2, 3} such that εc(σi) � 0, it holds that

qG
(
�2σi/3 − Fi

(c)�σi
)

� 0.

We now prove that in a counterexample, at most two colours are used to colour

the edges incident with any given vertex. As we shall see, this structural property of

counterexamples directly implies their non-existence, thereby proving Theorem 1.2.

Lemma 3.4. No counterexample contains a vertex incident with edges of all three colours.

Proof. We present only an overview of the proof here. The version of this article available

on arXiv [18] contains all the particular numerical details and definitions of the specific

flags used (see Section 2.1, Proof of Lemma 6 and Appendix B).

Let G be a counterexample and let w3 ∈ RF5 be the sum of all elements of F5 that

contain a vertex incident with at least three colours. By the definition of qG, the graph

G has a vertex incident with edges of all three colours if and only if qG(w3) > 0. Let

H1, . . . , H14 be the elements �2σi/3 − Fi
(c)�σi of RF5 for those choices of i ∈ {1, . . . , 7} and

c ∈ {1, 2, 3} with εc(σi) � 0. By Lemma 3.3, qG(Hi) � 0 for i ∈ {1, . . . , 14}. Next, let H15

and H16 be �s2�σB and �t2�σB , respectively, for suitably chosen elements s and t in RF
σB
4 ,

where σB is as in Figure 1. Finally, let H17 and H18 be �u2�σC and �v2�σC , respectively, for

suitably chosen elements u and v in RF
σC
4 , where σC is as in Figure 2. Note that H15, H16,

H17 and H18 can be expressed as elements of RF5. By (2.2), it also holds that qG(Hi) � 0

for i ∈ {15, . . . , 18}.
However, there exist non-negative coefficients ξ1, . . . , ξ18 such that for every H ∈ F5, the

coefficient of H in w0 := −
∑18

i=1 ξi · Hi is at least the coefficient of H in w3. In particular,

the difference w0 − w3, which belongs to RF5, has only non-negative coefficients. We now

view both w0 and w3 as elements of A and use that qG is a homomorphism from A to R.
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First of all, qG(w0 − w3) � 0. So, we derive that qG(w3) � qG(w0). The inequalities qG(Hi) �
0 and ξi � 0 for i ∈ {1, . . . , 18} yield that qG(w0) � 0. This implies that qG(w3) � 0, which

is equivalent to the fact that G has no vertex incident with edges of all three colours.

We are now in a position to prove Theorem 1.2, whose statement is recalled below.

Theorem 1.2. Let n � 2. Every tricoloured graph with n vertices contains a subset of at

most four vertices that strongly c-dominates at least 2n/3 vertices for some colour c.

Proof. Suppose, on the contrary, that there exists a counterexample G. Recall that

Av is the set of colours that appear on the edges incident to the vertex v. Now, by

Observation 3.1 and Lemma 3.4, it holds that |Av| = 2 for every vertex v of G. Hence,

V (G) can be partitioned into three sets V1, V2 and V3, where v ∈ Vi if and only if i /∈ Av .

Without loss of generality, assume that |V1| � |V2| � |V3|. Pick u ∈ V1 and v ∈ V2. As

Au ∩ Aw = {3} for all w ∈ V2, we observe that V2 is 3-dominated by {u}. Similarly, V1 is

3-dominated by {v}. Therefore, the set {u, v} strongly 3-dominates V1 ∪ V2, which has size

at least 2n/3.

4. Concluding remarks

It is natural to ask what bound can be proved for domination with three vertices. Here,

it does not seem that the trick we used in this paper helps. We can prove only that

every tricoloured graph with n vertices contains a subset of at most three vertices that

c-dominates at least 0.66117n vertices for some colour c.

We believe the difficulty we face is caused by the following phenomenon. The average

number of vertices dominated by a triple isomorphic to σA or σB (see Figure 1 for notation)

is bounded away from 2/3 in the graphs (Gk)k∈N, which are described at the beginning of

Section 3, when G is the rainbow triangle. So, if any of these two configurations is used, a

tight bound cannot be proved since the inequalities analogous to that in Lemma 3.3 are

not tight and no triple of vertices dominates more than 2/3 of the vertices in (Gk)k∈N to

compensate this deficiency.

We see that if we aim to prove a tight result, we can only average over rainbow triangles

(which are isomorphic to σC ). Now consider the following graph G: start from the disjoint

union of a large clique of order 2m with all edges coloured 1 and a rainbow triangle.

For i ∈ {1, 2}, join exactly m vertices of the clique to all three vertices of the rainbow

triangle by edges coloured i. The obtained simple complete graph has exactly one rainbow

triangle, which dominates about half of the vertices. Thus, the average proportion of

vertices dominated by triples isomorphic to σC in the graphs (Gk)k∈N is close to 1/2. This

phenomenon does not occur for quadruples of vertices.
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[7] Erdős, P., Faudree, R., Gyárfás, A. and Schelp, R. H. (1989) Domination in colored complete

graphs. J. Graph Theory 13 713–718.

[8] Erdős, P., Faudree, R. J., Gould, R. J., Gyárfás, A., Rousseau, C. and Schelp, R. H.

(1990) Monochromatic coverings in colored complete graphs. In Proc. Twentieth Southeastern

Conference on Combinatorics, Graph Theory, and Computing. Congr. Numer. 71 29–38.
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