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We show that any n-vertex complete graph with edges coloured with three colours contains
a set of at most four vertices such that the number of the neighbours of these vertices in
one of the colours is at least 2n/3. The previous best value, proved by Erdds, Faudree,
Gould, Gyarfas, Rousseau and Schelp in 1989, is 22. It is conjectured that three vertices
suffice.
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1. Introduction

Erd6s and Hajnal [9] made the observation that for a fixed positive integer t, a positive real
€, and a graph G on n > ng vertices, there is a set of ¢ vertices that have a neighbourhood
of size at least (1 — (1 + €)(2/3)")n in either G or its complement. They further enquired
whether 2/3 may be replaced by 1/2. This was answered in the affirmative by Erdds,
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Faudree, Gyarfas and Schelp [7], who not only proved the result but also dispensed with
the (1 + €) factor. They also phrased the question as a problem of vertex domination in
a multicoloured graph.

Given a colour ¢ in an r-colouring of the edges of the complete graph, a subset 4 of the
vertex set c-dominates another subset B if, for every y € B\ 4, there exists a vertex x € 4
such that the edge xy is coloured c. The subset A strongly c-dominates B if, in addition,
for every y € B N A, there exists a vertex x € 4 such that xy is coloured c. (Thus, the two
notions coincide when 4 N B = ().) The result of Erd&s et al. [7] may then be stated as
follows.

Theorem 1.1. For any fixed positive integer t and any 2-colouring of the edges of the
complete graph K, on n vertices, there exist a colour ¢ and a subset X of size at most
t such that all but at most n/2" vertices of K, are c-dominated by X.

In a more general form, they asked: Given positive integers r, t, and n along with an
r-colouring of the edges of the complete graph K, on n vertices, what is the largest subset
B of the vertices of K, necessarily monochromatically dominated by some t-element
subset of K,,? However, in the same paper [7], the authors presented a 3-colouring of the
edges of K,, — attributed to Kierstead — which shows that if r > 3, then it is not possible to
monochromatically dominate all but a small fraction of the vertices with any fixed number
t of vertices. This 3-colouring is defined as follows. The vertices of K,, are partitioned into
three sets V1, V>, V3 of equal sizes and an edge xy with x € V; and y € V; is coloured i if
1<i<j<3and j—i<1, while edges between V| and V3 are coloured 3. Observe that,
if t is fixed, then at most 2n/3 vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper of Erdds, Faudree, Gould,
Gyarfas, Rousseau and Schelp [8] that if ¢ > 22, then, indeed, at least 2n/3 vertices are
monochromatically dominated in any 3-colouring of the edges of K,. The authors then
ask if 22 might be replaced by a smaller number (specifically, 3). We prove here that t > 4
is sufficient.

Theorem 1.2. For any 3-colouring of the edges of K,, where n > 2, there exist a colour ¢
and a subset A of at most four vertices of K, such that A strongly c-dominates at least 2n/3
vertices of K.

In Kierstead’s colouring, the number of colours appearing on the edges incident with
any given vertex is precisely 2. As we shall see later on, this property plays a central role
in our arguments. In this regard, our proof seems to suggest that Kierstead’s colouring
is somehow extremal, giving more credence to the conjecture that three vertices would
suffice to monochromatically dominate a set of size 2n/3 in any 3-colouring of the edges
of K,,.

We note that there exist 3-colourings of the edges of K, such that no pair of vertices
monochromatically dominate 2n/3 4+ O(1) vertices. This can be seen by realizing that in a
random 3-colouring, the probability that an arbitrary pair of vertices monochromatically
dominate more than 51n/9 + o(n) vertices is o(1) by Chernoff’s bound.
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Figure 1. The elements of F3. The edges of colour 1, 2 and 3 are represented by solid, dashed
and dotted lines, respectively.

Our proof of Theorem 1.2 utilizes the flag algebra theory introduced by Razborov,
which has recently led to numerous results in extremal graph and hypergraph theory. In
the following section, we present a brief introduction to the flag algebra framework. The
proof of Theorem 1.2 is presented in Section 3.

We end this introduction by pointing out another interesting question: What happens
when one increases r, the number of colours? Constructions in the vein of that of
Kierstead — for example, partitioning K, into s parts and using r = (;) colours — show
that the size of dominated sets decreases with increasing r. While it may be difficult to
determine the minimum value of t dominating a certain proportion of the vertices, it
would be interesting to find out whether such constructions do, in fact, give the correct
bounds.

2. Flag algebras

Flag algebras were introduced by Razborov [24] as a tool based on the graph limit theory
of Lovasz and Szegedy [21] and Borgs et al. [5] to approach problems pertaining to
extremal graph theory. This tool has been successfully applied to various topics, such as
Turan-type problems [26], super-saturation questions [25], jumps in hypergraphs [2], the
Caccetta—Haggkvist conjecture [17], the chromatic number of common graphs [15] and
the number of pentagons in triangle-free graphs [12, 14]. This list is far from exhaustive
and results keep coming [1, 3, 4, 6, 11, 10, 13, 16, 19, 20, 22, 23].

Let us now introduce the terminology related to flag algebras needed in this paper. Since
we deal with 3-colourings of the edges of complete graphs, we restrict our attention to this
particular case. Let us define a tricoloured graph to be a complete graph whose edges are
coloured with 3 colours. If G is a tricoloured graph, then V(G) is its vertex set and |G| is
the number of vertices of G. Let F, be the set of non-isomorphic tricoloured graphs with
¢ vertices, where two tricoloured graphs are considered to be isomorphic if they differ by
a permutation of the vertices and a permutation of the edge colours. (Therefore, which
specific colour is used for each edge is irrelevant: what matters is whether or not pairs of
edges are assigned the same colour.) The elements of F3 are shown in Figure 1. We set
F = UsenF,. Given a tricoloured graph o, we define F to be the set of tricoloured graphs
F on ¢ vertices with a fixed embedding of o, that is, an injective mapping v from V(¢) to
V(F) such that Im(v) induces in F a subgraph that differs from ¢ only by a permutation
of the edge colours. The elements of F¢ are usually called o-flags within the flag algebras
framework. We set F? = U;enNIFY.
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The central notions are factor algebras of F and F’ equipped with addition and
multiplication. Let us start with the simpler case of F. If H € F and H' € F;4, then
p(H,H’) is the probability that a randomly chosen subset of |H| vertices of H' induces
a subgraph isomorphic to H. For a set F, we define RF to be the set of all formal
linear combinations of elements of F with real coefficients. Let A := RF and let F be A
factorized by the subspace of RF generated by all combinations of the form

H— Y pHH)H.

H'€F 141

Next, we define the multiplication on A based on the elements of F as follows. If H;
and H, are two elements of F and H € F g, 4n,, then p(H;, H,; H) is the probability that
two randomly chosen disjoint subsets of vertices of H with sizes |H;| and |H,| induce
subgraphs isomorphic to H; and H;, respectively. We set

Hy-Hy= % p(HiHyH)H.

HEF |, j41my)

The multiplication is linearly extended to RF. Standard elementary probability compu-
tations [24, Lemma 2.4] show that this multiplication in RF gives rise to a well-defined
multiplication in the factor algebra A.

The definition of A’ follows the same lines. Let H and H' be two tricoloured graphs
in F° with embeddings v and v’ of ¢. Informally, we consider the copy of ¢ in H’
and we extend it into an element of Fy, by randomly choosing additional vertices in
H’'. We are interested in the probability that this random extension is isomorphic to H
and the isomorphism preserves the embeddings of ¢. Formally, we let p(H,H’) be the
probability that v/(V (o)) together with a randomly chosen subset of |H| — |o| vertices in
V(H')\ v'(V(0)) induce a subgraph that is isomorphic to H through an isomorphism f
that preserves the embeddings, that is, v/ = f ov. The set A’ is composed of all formal
real linear combinations of elements of RF? factorized by the subspace of RF’ generated
by all combinations of the form

H— Y pHH)H.

! g
H'eFly

Similarly, p(Hy, H,; H) is the probability that v(V (o)) together with two randomly chosen
disjoint subsets of |H;| — |¢| and |H;| — |a| vertices in V(H) \ v(V (o)) induce subgraphs
isomorphic to H; and Hj, respectively, with the isomorphisms preserving the embeddings
of o. The definition of the product is then analogous to that in A.

Consider an infinite sequence (G;);en of tricoloured graphs with an increasing number
of vertices. Recall that if H € F, then p(H, G;) is the probability that a randomly chosen
subset of |H| vertices of G; induces a subgraph isomorphic to H. The sequence (G;)ien 1S
convergent if p(H, G;) has a limit for every H € F. A standard argument (using Tychonoff’s
theorem [27]) yields that every infinite sequence of tricoloured graphs has a convergent
(infinite) subsequence.

The results presented in this and the next paragraph were established by Razborov [24].
Now fix a convergent sequence (G;);en of tricoloured graphs. We set g(H) = lim;_,, p(H, G;)
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Figure 2. The elements o1,...,07 of F4. The edges of colour 1, 2 and 3 are represented by solid,
dashed and dotted lines, respectively.

for every H € F, and we linearly extend g to .A. The obtained mapping g is a homo-
morphism from A to R. Moreover, for ¢ € F and an embedding v of ¢ in G;, define
p/(H) = p(H,G;). Picking v at random thus gives rise to a random distribution of
mappings from A° to R, for each i € N. Since p(H, G;) converges (as i tends to infinity)
for every H € IF, the sequence of these distributions must also converge. In fact, ¢ itself
fully determines the random distributions of ¢° for all ¢. In what follows, ¢° will be a
randomly chosen mapping from A’ to R based on the limit distribution. Any mapping
q° from support of the limit distribution is a homomorphism from .47 to R.

Let us now have a closer look at the relation between g and ¢g°. The ‘averaging’ operator
[[]s: A° — A is a linear operator defined on the elements of F’ by [H], := p- H', where
H' is the (unlabelled) tricoloured graph in F corresponding to H and p is the probability
that a random injective mapping from V(o) to V(H’) is an embedding of ¢ in H' yielding
H. The key relation between g and ¢° is the following:

forall H € A°, q([H],) = /q“(H), (2.1)

where the integration is over the probability space given by the limit random distribution
of ¢°. We immediately conclude that if ¢g°(H) > 0 almost surely, then g([H],) > 0. In
particular,

for all H € A°, q([H*],) > 0. (2.2)

2.1. Particular notation used in our proof

We use the seven elements oy,...,07 out of the 15 elements of F4 that are depicted in
Figure 2. Fori € {1,...,7} and a quadruple d € {1,2,3}%, let F} be the element of F{' such
that the unlabelled vertex of F) is joined by an edge of colour d; to the jth vertex of o;
for je{1,2,3,4}. If i€ {1,...,7} and ¢ € {1,2,3}, then F, is the element of A” that is
the sum of all the five-vertex g;-flags F) such that the unlabelled vertex is joined by an
edge of colour ¢ to at least one of the vertices of oy, i.e., at least one of the entries of
dis c.

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2 by contradiction: in a series of lemmas, we shall
prove some properties of a counterexample which eventually allow us to establish the
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Table 1. The values e.(o;) fori e {1,..., 7} and ¢ € {1,2,3}.

i=1 i=2 i=3 i=4 i=5 i=6 i=7

e=1 —-1/3 0 —1/3 —1/3 0 0 0
c=2 1/2 0 1/6 —1/3 —1/3 —1/3 0
e=3 1/2 1/2 1)2 1/2 1/2 0 0

non-existence of counterexamples. Specifically, we first find a number of flag inequalities
by hand and then we combine them with appropriate coefficients to obtain a contradiction.
The coefficients are found with the help of a computer.

Let G be a tricoloured complete graph. For a vertex v of G, let 4, be the set of
colours of the edges incident with v. Consider a sequence of graphs (Gy)ren, obtained
from G by replacing each vertex v of G with a complete graph of order k with edges
coloured uniformly at random with colours in 4,; the colours of the edges between the
complete graphs corresponding to the vertices v and v' of G are assigned the colour of
the edge vv'. This sequence of graphs converges asymptotically almost surely; let gg be
the corresponding homomorphism from A to R.

Let n > 2. We define a counterexample to be a tricoloured graph with n vertices such
that for every colour ¢ € {1,2,3}, each set W of at most four vertices strongly c-dominates
less than 2n/3 vertices of G. A counterexample readily satisfies the following property.

Observation 3.1. If G is a counterexample, then every vertex is incident with edges of at
least two different colours.

In the next lemma, we establish an inequality that g¢ satisfies if G is a counterexample.
To do so, define the quantity e.(o;) fori € {1,...,7} and ¢ € {1,2,3} to be 1/2 if o; contains
a single edge with colour ¢, —1/3 if each vertex of ¢; is incident with an edge coloured
¢, 1/6 if o; contains at least two edges with colour ¢ and a vertex incident with edges of
a single colour different from ¢, and 0, otherwise. These values are gathered in Table 1.
Let us underline that, unlike in most of the previous applications of flag algebras, we do
need to deal with second-order terms (specifically, O(1/n) terms) in our flag inequalities
to establish Theorem 1.2.

Lemma 3.2. Let G be a counterexample with n vertices. For every i € {1,...,7} and ¢ €
{1,2,3}, a homomorphism q¢; from A% to R almost surely satisfies the inequality

Sc(o-i)
P

aj i 2
g (F(y)) < 3 +

Proof. Fix i€ {1,...,7} and c € {1,2,3}. Consider the graph Gj for sufficiently large
k. Let (wy,wy, w3, wg) be a randomly selected quadruple of vertices of Gy inducing a
subgraph isomorphic to ;. Further, let W be the set of vertices strongly c-dominated by
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{wi,...,ws}. We show that

W] < % + e.(oi)k + o(k)
with probability tending to one as k tends to infinity. This will establish the inequality
stated in the lemma. Indeed, it implies that for every 5 > 0, there exists k, such that if
k > k,, then

46, (Fip) < % + @ +n
with probability at least 1 —#. As q”Gik(F(ic)) tends to qUG’(F(i(,)) as k tends to infinity, we
obtain the stated inequality with probability 1.

For i€ {1,2,3,4}, let v; be the vertex of G corresponding to the clique W; of Gy
containing w;. Let V' be the set of vertices of G that are strongly c-dominated by
{v1,...,v4}. Since G is a counterexample, |V| < 2n/3, and hence, |V| < 2n/3 —1/3. If w;
and w; are joined by an edge of colour ¢ and, furthermore, v; = v;, then v; is added to
V as well. Since V is still strongly c-dominated by a quadruple of vertices in G (replace
vy by any of its c-neighbours), it follows that |V| < 2n/3 —1/3.

The set W can contain the |V |k vertices of the cliques corresponding to the vertices
in V, and, potentially, it also contains some additional vertices if w; has no c-neighbours
among wy,...,ws. In this case, the additional vertices in W are the c-neighbours of w; in
W;. With high probability, there are at most k/3 + o(k) such vertices if v; is incident with
edges of all three colours in G, and at most k/2 + o(k) if v; is incident with edges of only
two colours in G.

If ¢.(o;) = —1/3, then all the vertices wy,...,ws have a c-neighbour among wy,...,wy
and thus W contains only vertices of the cliques corresponding to the vertices V. We
conclude that

2n— 1)k
W] < % + o(k),
as required.
If e.(0;) =0, then all but one of the vertices wy,...,ws have a c-neighbour among
wi,...,ws and the vertex w; that has none is incident in ¢; with edges of the two colours

different from c. In particular, either w; has no c-neighbours inside W; or v; is incident
with edges of three distinct colours in G. This implies that

(2n— Dk

Wi <
W] <

+ o(k)

in the former case and

2nk
W] < 5= +oll)

in the latter case. So, the bound holds.
If &.(o;) = 1/6, then all but one of the vertices among wy,...,ws have a c-neighbour
among wi,...,ws. Let w; be the exceptional vertex. Since w; has at most k/2 + o(k)
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c-neighbours in W;, it follows that

2nk  k

Wi<—+- k).

W| < =5+ 2 +olk)
Finally, if e.(0;) = 1/2, then two vertices w; and wy among wi,...,ws have no c-

neighbours in {wy,...,ws}. The vertices w; and wj have at most k/2 + o(k) c-neighbours

each in W; and W, respectively. Moreover, since g; contains edges of all three colours,
one of w; and wy is incident in ¢; with edges of the two colours different from c. Hence,
this vertex has at most k/3 4+ o(k) c-neighbours in W;. We conclude that the set W
contains at most

WV Ik + 5k/6 + o(k) < % + g + o(k)

vertices. O
As a consequence of (2.1), we have the following corollary of Lemma 3.2.

Lemma 3.3. Let G be a counterexample with n vertices. For every i € {1,...,7} and ¢ €
{1,2,3} such that ¢.(a;) <0, it holds that

46([201/3 = Figl,,) > 0.

We now prove that in a counterexample, at most two colours are used to colour
the edges incident with any given vertex. As we shall see, this structural property of
counterexamples directly implies their non-existence, thereby proving Theorem 1.2.

Lemma 3.4. No counterexample contains a vertex incident with edges of all three colours.

Proof. We present only an overview of the proof here. The version of this article available
on arXiv [18] contains all the particular numerical details and definitions of the specific
flags used (see Section 2.1, Proof of Lemma 6 and Appendix B).

Let G be a counterexample and let ws € RF5 be the sum of all elements of Fs that
contain a vertex incident with at least three colours. By the definition of g¢, the graph
G has a vertex incident with edges of all three colours if and only if gg(ws) > 0. Let
Hiy,...,Hy4 be the elements [20;/3 — F("c)]]g[ of RFs for those choices of i € {1,...,7} and
c € {1,2,3} with ¢(0;) < 0. By Lemma 3.3, qg(H;) > 0 for i € {1,...,14}. Next, let H;s
and His be [s°],, and [t*],,, respectively, for suitably chosen elements s and t in RF{?,
where o3 is as in Figure 1. Finally, let Hy; and Hjg be [u*],. and [v?],., respectively, for
suitably chosen elements u and v in RF;¢, where o¢ is as in Figure 2. Note that His, His,
Hy7 and Hig can be expressed as elements of RFs. By (2.2), it also holds that gg(H;) > 0
forie {15,...,18}.

However, there exist non-negative coefficients &, ..., &g such that for every H € Fs, the
coefficient of H in wy = — 221 & - H; is at least the coefficient of H in ws. In particular,
the difference wy — w3, which belongs to RFs, has only non-negative coefficients. We now
view both wy and wj as elements of 4 and use that g is a homomorphism from A4 to R.
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First of all, gg(wo — w3) > 0. So, we derive that gg(ws3) < gg(wo). The inequalities qg(H;) >
0and & >0 forie{l,...,18} yield that gg(wo) < 0. This implies that g¢(w3) < 0, which
is equivalent to the fact that G has no vertex incident with edges of all three colours. []

We are now in a position to prove Theorem 1.2, whose statement is recalled below.

Theorem 1.2. Let n > 2. Every tricoloured graph with n vertices contains a subset of at
most four vertices that strongly c-dominates at least 2n/3 vertices for some colour c.

Proof. Suppose, on the contrary, that there exists a counterexample G. Recall that
A, is the set of colours that appear on the edges incident to the vertex v. Now, by
Observation 3.1 and Lemma 3.4, it holds that |4,| = 2 for every vertex v of G. Hence,
V(G) can be partitioned into three sets Vi, V, and V3, where v € V; if and only if i ¢ A4,.
Without loss of generality, assume that |Vi| > |V,| > |V3|. Pick u € V; and v € V5. As
Ay N A, = {3} for all w € V>, we observe that V, is 3-dominated by {u}. Similarly, V; is
3-dominated by {v}. Therefore, the set {u,v} strongly 3-dominates V; U V,, which has size
at least 2n/3. ]

4. Concluding remarks

It is natural to ask what bound can be proved for domination with three vertices. Here,
it does not seem that the trick we used in this paper helps. We can prove only that
every tricoloured graph with n vertices contains a subset of at most three vertices that
c-dominates at least 0.66117n vertices for some colour c.

We believe the difficulty we face is caused by the following phenomenon. The average
number of vertices dominated by a triple isomorphic to o4 or g (see Figure 1 for notation)
is bounded away from 2/3 in the graphs (Gy)ren, which are described at the beginning of
Section 3, when G is the rainbow triangle. So, if any of these two configurations is used, a
tight bound cannot be proved since the inequalities analogous to that in Lemma 3.3 are
not tight and no triple of vertices dominates more than 2/3 of the vertices in (Gy)ren to
compensate this deficiency.

We see that if we aim to prove a tight result, we can only average over rainbow triangles
(which are isomorphic to o¢). Now consider the following graph G: start from the disjoint
union of a large clique of order 2m with all edges coloured 1 and a rainbow triangle.
For i € {1,2}, join exactly m vertices of the clique to all three vertices of the rainbow
triangle by edges coloured i. The obtained simple complete graph has exactly one rainbow
triangle, which dominates about half of the vertices. Thus, the average proportion of
vertices dominated by triples isomorphic to ¢ in the graphs (Gy)ken is close to 1/2. This
phenomenon does not occur for quadruples of vertices.
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