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a b s t r a c t

In this note, we determine the maximum number of edges of a k-uniform hypergraph,
k ≥ 3, with a unique perfect matching. This settles a conjecture proposed by Snevily.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let H = (V , E), E ⊆


V
k


, be a k-uniform hypergraph (or k-graph) on km vertices for m ∈ N. A perfect matching in

H is a collection of edges {M1,M2, . . . ,Mm} ⊆ E such that Mi ∩ Mj = ∅ for all i ≠ j and


i Mi = V . In this note we
are interested in the maximum number of edges of a hypergraph H with a unique perfect matching. Hetyei observed (see,
e.g., [1–3]) that for ordinary graphs (i.e. k = 2), this number cannot exceedm2. To see this, note that at most two edges may
join any pair of edges from the matching. Thus the number of edges is bounded from above bym+ 2

m
2


= m2. Hetyei also

provides a unique graph satisfying the above conditions. His construction can be easily generalized to uniform hypergraphs
(see Section 2 for details). Snevily [4] anticipated that such generalization is optimal. Here we present our main result.

Theorem 1.1. For integers k ≥ 2 and m ≥ 1 let

f (k,m) = m + bk,2
m
2


+ bk,3

m
3


+ · · · + bk,k

m
k


,

where

bk,ℓ =
ℓ − 1

ℓ

ℓ−1−
i=0

(−1)i


ℓ

i

 
k(ℓ − i)

k


.

Let H = (V , E) be a k-graph of order km with a unique perfect matching. Then

|E | ≤ f (k,m). (1.1)

Moreover, (1.1) is tight.
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In particular, if H = (V , E) is a 3-uniform hypergraph of order 3m with a unique perfect matching, then

|E | ≤ f (3,m) = m + 9
m
2


+ 18

m
3


=

5m
2

−
9m2

2
+ 3m3.

2. Construction

In this section, we provide a recursive construction of a hypergraph H∗
m of order kmwith a unique perfect matching and

containing exactly f (k,m) edges.
Let H∗

1 be a k-graph on k vertices with exactly one edge. Trivially, this graph has a unique perfect matching. Suppose we
already constructed a k-graph H∗

m−1 on k(m−1) vertices with a unique perfect matching. To construct the graph H∗
m on km

vertices, add k − 1 new vertices to H∗

m−1 and add all edges containing at least one of these new vertices. Then, add another
new vertex and draw the edge containing the k new vertices. Formally, let

Mi = {k(i − 1) + 1, . . . , ki} for i = 1, . . . ,m. (2.1)

Let H∗
m = (Vm, Em), m ≥ 1, be a k-graph on km vertices with the vertex set

Vm = {1, . . . , km} =

m
i=1

Mi

and the edge set (defined recursively)

Em = Em−1 ∪


E ∈


Vm

k


: E ∩ Mm ≠ ∅, km ∉ E


∪ {Mm} ,

where E0 = ∅.
Note that H∗

m has a unique perfect matching, namely, Mm = {M1,M2, . . . ,Mm}. To see this, observe that the vertex km
is only included in edgeMm. Hence, any matching must includeMm. Removing all vertices inMm, we see thatMm−1 must be
also included and so on. We call the elements of Mm, matching edges.

Claim 2.1. The k-graph H∗
m = (Vm, Em) satisfies |Em| = f (k,m).

Proof. For ℓ = 1, 2, . . . , k, let Bℓ be the set of edges that intersect exactly ℓ matching edges, i.e.,

Bℓ =


E ∈ Em :

m−
i=1

1E∩Mi≠∅ = ℓ


.

Note that Em =


ℓ Bℓ. Clearly, |B1| = |{M1, . . . ,Mm}| = m, giving us the first term in f (k,m). Now we show that
|Bℓ| = bk,ℓ

m
ℓ


for ℓ = 2, . . . , k. Let L =


Mi1 ,Mi2 . . . ,Miℓ


⊆ Mm be any set of ℓ matching edges with 1 ≤ i1 < i2 <

· · · < iℓ ≤ m. Let G be the collection of k-sets on the vertex set of L which intersect all of Mi1 , . . . ,Miℓ . The principle of
inclusion and exclusion (conditioning on the number of k-sets that do not intersect a given subset of matching edges) yields
that

|G| =

ℓ−1−
i=0

(−1)i


ℓ

i

 
k(ℓ − i)

k


.

Now note that due to the symmetry of the roles of the vertices in G, each vertex belongs to the same number of edges of
G, say η. Consequently, the number of pairs (x, E), x ∈ E ∈ G equals kℓη. On the other hand, since every edge of G consists
of k vertices we get that the number of pairs is equal to |G|k, implying that η = |G|/ℓ.

By construction, E ∈ G implies E ∈ Bℓ unless vertex kiℓ is in E. As

|{E ∈ G : kiℓ ∈ E}| = η = |G|/ℓ,

the number of edges of Bℓ on the vertex set of L equals

ℓ − 1
ℓ

|G| = bk,ℓ. (2.2)

As this argument applies to any choice of ℓ matching edges, we have |Bℓ| = bk,ℓ
m

ℓ


, thus proving the claim. �

Corollary 2.2. For all integers k ≥ 2 and m ≥ 1,

f (k,m) = m +

m−1−
i=1

[
k(i + 1) − 1

k


−


ki
k

]
.
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Proof. We prove this by counting the edges of H∗
m = (Vm, Em) in a different way. Let am = |Em|, m ≥ 1. Then it is easy to

see that the following recurrence relation holds: a1 = 1 and

am = am−1 +


km − 1

k


−


k(m − 1)

k


+ 1 for m ≥ 2, (2.3)

where the first binomial coefficient counts all the edges that do not contain vertex km; the second coefficient counts all
the edges which do not intersect the matching edge Mm (cf. (2.1)); and the term 1 stands for Mm itself. Summing (2.3) over
m,m − 1, . . . , 2 gives the desired formula. �

Note that H∗
m proves that (1.1) is tight. However, in contrast to the case of k = 2, there are hypergraphs on km vertices

containing a unique perfect matching and f (k,m) edges which are not isomorphic to H∗
m. For example, if m = 2, consider

an edge E ∈ H∗

2 , E ≠ M1,M2. Let Ē be the complement of E, i.e., Ē = {1, . . . , 2k} \ E. Then, the hypergraph obtained from
H∗

2 by replacing E with Ē provides a non-isomorphic example for the tightness of (1.1).

3. Proof of Theorem 1.1

We start with some definitions. We use the terms ‘‘edge’’ and ‘‘k-set’’ interchangeably.

Definition 3.1. Given any collection of 2 ≤ ℓ ≤ k disjoint edges L = {M1, . . . ,Mℓ}, we call a collection of edges
C = {C1, . . . , Cℓ} a covering of L if

• Ci ∩ Mj ≠ ∅ for all i, j ∈ {1, . . . , ℓ}, and
•


i Ci =


i Mi.

Note that the second condition forces the edges in a covering to be disjoint.

Definition 3.2. Let L be as in Definition 3.1, let C be a covering of L and let C ∈ C. We say C is of type a⃗ if

• a⃗ = (a1, . . . , aℓ) ∈ Nℓ,
∑

i ai = k and a1 ≥ a2 ≥ · · · ≥ aℓ ≥ 1, and
• there exists a permutation σ of {1, 2, . . . , ℓ} such that |C ∩ Mσ(i)| = ai for each 1 ≤ i ≤ ℓ.

Let Ak,ℓ = {a⃗ = (a1, . . . , aℓ) ∈ Nℓ
: a1 ≥ a2 ≥ · · · ≥ aℓ ≥ 1 and a1 + · · · + aℓ = k}.

Given a vector a⃗ ∈ Ak,ℓ, letCa⃗ be the collection of all coveringsC ofL such that every C ∈ C is of type a⃗. In otherwords,Ca⃗
consists of coverings using only edges of type a⃗. We claim thatCa⃗ is not empty for every a⃗ ∈ Ak,ℓ. Indeed, for i = 0, . . . , ℓ−1
let σi be a permutation of {1, 2, . . . , ℓ} (clockwise rotation) obtained by a cyclic shift by i, i.e., σi(j) = j+ i (mod ℓ). We form
Ci by picking aσi(j) items from Mj for each 1 ≤ j ≤ ℓ. As

∑
i aσi(j) = k, we may pick the ℓ edges Ci to be disjoint, thereby

obtaining a covering.

Proof of Theorem 1.1. Let H = (V , E) be a k-graph of order kmwith the unique perfect matching M = {M1, . . . ,Mm}. We
show that |E | ≤ f (k,m).

We partition the edges into collections of edges which intersect exactly ℓ of thematching edges. That is, for ℓ = 1, . . . , k,
we set

Bℓ =


E ∈ E :

m−
i=1

1E∩Mi≠∅ = ℓ


.

Clearly, |E | =
∑k

ℓ=1 |Bℓ|. Once again, |B1| = m. We will show, by contradiction, that |Bℓ| ≤ bk,ℓ
m

ℓ


for all 2 ≤ ℓ ≤ k.

Suppose that |Bℓ| > bk,ℓ
m

ℓ


for some 2 ≤ ℓ ≤ k. Then, by the pigeonhole principle, there exists some set of ℓ matching

edges, say, without loss of generality, L = {M1, . . . ,Mℓ} such that

|Bℓ ∩ H[L]| ≥ bk,ℓ + 1, (3.1)

where H[L] denotes the sub-hypergraph of H spanned by the vertices in
ℓ

i=1 Mi. Let G be the collection of all k-sets on
i Mi that intersect everyMi ∈ L. That is

G =


A : |A| = k, A ∩ Mi ≠ ∅ for each 1 ≤ i ≤ ℓ and A ⊆


i

Mi


.

As in (2.2), we have

bk,ℓ =
ℓ − 1

ℓ
|G| =

ℓ − 1
ℓ

−
a⃗∈Ak,ℓ

|Ga⃗|,
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where Ga⃗ is the collection of k-sets of type a⃗. Hence, by Eq. (3.1) we get

|Bℓ ∩ H[L]| ≥
ℓ − 1

ℓ

−
a⃗∈Ak,ℓ

|Ga⃗| + 1,

and consequently, there exists some type a⃗ such that

|Bℓ ∩ Ga⃗| ≥
ℓ − 1

ℓ
|Ga⃗| + 1. (3.2)

Recall that |C| = ℓ and that Ca⃗ is the nonempty collection of all coverings C of L such that every C ∈ C is of type a⃗. By
symmetry, every k-set A ∈ Ga⃗ belongs to exactly

|Ca⃗|ℓ

|Ga⃗|

coverings C ∈ Ca⃗. Since no C ∈ Ca⃗ is contained in H (otherwise we could replace L by C to obtain a different perfect
matching, contradicting the uniqueness of M), the number of k-sets in Ga⃗ that are not in Bℓ is at least

|Ca⃗|


|Ca⃗|ℓ

|Ga⃗|
=

|Ga⃗|

ℓ
.

That means,

|Bℓ ∩ Ga⃗| ≤
ℓ − 1

ℓ
|Ga⃗|

which contradicts (3.2). Thus, |Bℓ| ≤ bk,ℓ
m

ℓ


, as required. �
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