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Abstract. We determine the exact complexity of classifying compact metric

spaces up to homeomorphism. More precisely, the homeomorphism relation on
compact metric spaces is Borel bi-reducible with the complete orbit equivalence

relation of Polish group actions. Consequently, the same holds for the isomor-

phism relation between separable commutative C*-algebras and the isometry
relation between C(K)-spaces.

Introduction

In the present note, we address the following problem, namely, what is the com-
plexity of classifying compact metric spaces up to homeomorphism. While this is
a problem of some interest in general topology, its roots are really in operator al-
gebras. Indeed, by Gelfand duality, classifying compact metric spaces is essentially
the same as classifying separable commutative unital C*-algebras. Here we prove,
specifically, that this has the same complexity as the classification by affine homeo-
morphisms of metrizable Choquet simplexes. As a consequence of recent results of
M. Sabok, and earlier work of J. D. Clemens, S. Gao, A. S. Kechris, and the authors
of [EFP+13], this shares the same complexity as isometry of separable, complete
metric spaces, isomorphism of separable C*-algebras, and the most complicated of
the orbit equivalence relations of Polish group actions, in a manner that we now
make precise.

Presented with a family of mathematical objects, much of the challenge involved
in acquiring an understanding of the class and its members lies in determining when
two arbitrary objects are—or are not—isomorphic in an appropriate sense. That
is, the fundamental difficulty in understanding the objects in the family is often
in understanding this isomorphism relation itself. In the abstract, this becomes
a particular instance of a more general problem: Given an equivalence relation,
E, on a set, X, how difficult can it be to ascertain when two arbitrary points in
X are E-related? In the last few decades, there has been a great deal of work
done to apprehend this question by considering families of equivalence relations
and viewing the classification problem for a given relation relative to others from
the same collection.

In general, the family under consideration consists of equivalence relations de-
fined on Polish (separable, completely metrizable) spaces, typically for which the
relation is an analytic subset of the product space. Often, depending on the par-
ticular relation under consideration, one is interested in some subfamily to which
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it belongs, e.g., Borel equivalence relations, orbit equivalence relations, or relations
whose classes have countably-many members. In this framework, to understand an
equivalence relation relative to others is to determine where it is situated in the
preorder of “Borel reducibility” within its family.

Suppose E and F are equivalence relations on Polish spaces X and Y , respectively.
Write E 6B F (E is Borel reducible to F) when there is a Borel-measurable function
f : X → Y satisfying xEy ⇐⇒ f(x)Ff(y) for all x, y ∈ X. When also F 6B E,
they are Borel bi-reducible, written E ∼B F. The preorder, 6B , is itself immensely
complicated, even when restricted to the subfamilies mentioned above. For more
details on the general theory, see [Gao09] and [Hjo00].

Often, a “naturally-occurring” classification problem admits an analysis in this
framework. That is, there is a Polish space that can be viewed as representing a
class of mathematical objects, for which a natural notion of isomorphism in that
class is an analytic equivalence relation.

For example, it was shown in [GK03] and [Cle12] that the isometric classification
of Polish metric spaces is complete in the class of those relations reducible to the
orbit equivalence relation of a Polish group action (that is, it is a member of the
class, and 6B-above every other member). Later, J. Melleray in [Mel07] demon-
strated that the classification of separable Banach spaces by linear isometries is also
complete in this class. More recently, in [FTT14] and [EFP+13], the isomorphism
relation on separable C*-algebras was seen to be a member of this family as well,
and it too was proven to be complete in [Sab15].

Similarly, the homeomorphic classification of compact metric spaces has been
known to also be a member of the above, and, as shown in [Hjo00], is strictly 6B-
above any continuous action of the infinite symmetric group, which aside from the
complete relations, are the most complicated in the class for which there presently
are natural representatives of known complexity. However, it has remained an
open question as to whether homeomorphism of compact metric spaces is complete
(e.g., [GK03] Problem 10.3). The main result here is that it is indeed a complete
relation.

Theorem 1. Every orbit equivalence relation of a Polish group action is Borel
reducible to the homeomorphism relation on compact metric spaces.

The proofs below consist of a preliminary construction followed by a chain of
reductions, beginning with the relation of affine homeomorphism of Choquet sim-
plexes, and culminating in the homeomorphism relation for compact spaces. As
the former is a complete relation, it then follows that they are are bi-reducible.
Additionally, while we noted above that linear isometry of separable Banach spaces
and isomorphism of separable C*-algebras were shown to have the same complex-
ity as a complete orbit equivalence relation in [Mel07] and [Sab15], in the latter
case it was established that this complexity is achieved on the subclass of simple
AI algebras. Similarly, it will be a corollary of our result (as observed in [GK03]
Ch. 10, and [FTT14]) that these are still complete relations when restricted to the
respective subclasses of C(K)-spaces and commutative C*-algebras.

Acknowledgments. I am grateful to my advisor, Christian Rosendal, for many
enlightening conversations, and to Marcin Sabok, Julien Melleray, and Su Gao for
their helpful comments on earlier drafts of this paper.
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Preliminaries. For a Polish space, X, let K(X) = {A ⊆ X | A is compact}
denote the hyperspace of compact subsets of X. We endow K(X) with the Vietoris
topology, a Polish topology induced by the Hausdorff metric, in which K(X) is
compact whenever X is (see [Kec95] 4.F). Let Q = [0, 1]N denote the Hilbert cube.
Every separable metric space embeds homeomorphically into Q, so in particular Q
contains a homeomorphic copy of every compact metric space, and we view K(Q)
as the space of metrizable compact spaces.

We will, at a later stage, need the notion of a Z-set from infinite-dimensional
topology, specifically the Z-sets inQ. The Z-sets of a topological space form an ideal
of closed sets, and while we will not need a precise definition for what follows, we will
mention here some important features. First, one can embed Q into itself so that
it (and, consequently, its closed subsets) are Z-sets. Second, any homeomorphism
A → B between Z-sets extends to a homeomorphism Q → Q. These sets were
first described by R. D. Anderson, who also proved the extension property; for
more details, see chapter 5 of [vM01]. We note that it is a direct consequence of
these facts (originally observed by Kechris and S. Solecki) that the homeomorphism
relation for compact metric spaces Borel-reduces to an orbit equivalence relation of
a Polish group action. Indeed, the above embedding, θ, of Q as a Z-set in Q, induces
a map θ∗ : K(Q) → K(Q), which is a reduction of the homeomorphism relation
between compact subsets of Q to the orbit equivalence relation of the shift action
of Homeo(Q) on K(Q). Namely, two sets A and B are homeomorphic if and only if
their images, θ∗(A) and θ∗(B), are homeomorphic, which in turn occurs if and only
if—by the extension property—it can be witnessed by an autohomeomorphism of
Q.

It was shown in [BK96] that for any Polish group, G, there is a complete or-
bit equivalence relation for continuous actions of G, and that for universal Polish
groups this equivalence relation will, in fact, be complete in the entire class of
orbit equivalence relations of Polish group actions. We fix such a complete orbit
equivalence relation now, and denote it by Egrp.

Finally, for a homeomorphism f : X → Y , we let fn denote the map, fn =
(f × f × · · · × f) : Xn → Y n.

Homeomorphism of compact metric spaces

Suppose X is a compact metric space, and A a closed subset containing all
isolated points of X. Let I(X,A) ⊆ X × [0, 1] be constructed as follows: Let
(dn)n∈N enumerate, with infinite repetition, a countable dense subset of A. For
each n, set ãn = (dn,

1
n ), and set I(X,A) = (X × {0}) ∪ {ã1, ã2, ...}. Then I(X,A)

is a closed subset of X × [0, 1] and as such is compact, and we identify X with
X × {0}. We may view I(X,A) as the space X, together with a new sequence
of isolated points accumulating on A. In the sequel, whenever this construction
is invoked, we will denote these new isolated points with tildes as we have above.
There may appear to be an ambiguity, as the definition of the ãn—and therefore
of I(X,A)—requires making a choice in (dn)n∈N, our enumeration of a countable
dense subset of A. However, it will follow from the proof below that any two such
choices result in the same space, up to homeomorphism.

Proposition 1. Let X,Y be compact metric spaces, with A,B closed subsets so that
A (resp. B) contains all isolated points of X (resp. Y ). Let I(X,A) and I(Y,B)
be constructed as above. Then every homeomorphism g : X → Y with g[A] = B
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extends to a homeomorphism I(X,A) → I(Y,B). Conversely, if f : I(X,A) →
I(Y,B) is a homeomorphism, then f [X] = Y and f [A] = B.

Proof. Suppose f : I(X,A)→ I(Y,B) is a homeomorphism. Since we have assumed
that all isolated points of X are in A, they are now limits of the ãn, and are no
longer isolated. So as f must send isolated points to isolated points and non-
isolated points to non-isolated points, f restricts to a homeomorphism X → Y ,

and f [{ã1, ã2, ...}] = {b̃1, b̃2, ...}. So then

f [A ∪ {ã1, ã2, ...}] = f
[
{ã1, ã2, ...}

]
= {b̃1, b̃2, ...}

= B ∪ {b̃1, b̃2, ...}
and so f [A] = B.

Conversely, suppose g : X → Y is a homeomorphism with g[A] = B. We extend
g to f : I(X,A) → I(Y,B) via a back-and-forth construction. At odd stages k,
if a bijection has been constructed between finite subsets {ãn1 , ãn2 , ..., ãnk−1

} and

{b̃m1
, b̃m2

, ..., b̃mk−1
}, we extend the domain to include ãnk

, where nk is the least
number not already among the ni for which the bijection is defined. Recall that
each ãn is of the form (dn,

1
n ) for a countable dense subset (dn) of A. Likewise,

each b̃m has the form (em,
1
m ). So, choose b̃mk

to be the point with minimal index,

not already in the range of the bijection, and for which ρY (emk
, g(dnk

)) < 1
k , where

ρY is a fixed compatible metric for Y . At even stages, reverse the roles.
Now extend g to f : I(X,A) → I(Y,B) according to the above construction.

We now show that for any x ∈ I(X,A) and open neighborhood V of f(x), there is
an open neighborhood, U of x with f [U ] ⊆ V. We may assume x ∈ X, for if x is
among the ãn, the set U = {x} is as desired.

Pick M ∈ N so that the basic open set I(Y,B) ∩ [BY (g(x), 2
M ) × [0, 1

M )] ⊆ V.

Let W ⊆ X be W = g−1[BY (g(x), 1
M )] and let N ∈ N be large enough that

BX(x, 2
N ) ⊆W .

Set K1 to be the largest index n such that ãn 7→ b̃m for some m ≤ M , set K2

to be the largest n with ãn in the domain of the partial bijection constructed by
stage M , and set K3 to be the largest n with ãn in the domain by stage N . Let
K = max{K1,K2,K3}+1. We claim that if y ∈ U = I(X,A)∩ [BX(x, 1

N )× [0, 1
K )],

then f(y) ∈ V.

Case 1 (y ∈ X × {0}). If y ∈ X × {0} and y ∈ U , then y ∈ W × {0}, and so
f(y) ∈ f [W × {0}] = BY (g(x), 1

M )× {0} ⊆ V.

Case 2 (odd stages). Suppose y = ãn and f(y) = b̃m for some n,m, and that

moreover the assignment ãn 7→ b̃m was constructed at an odd stage of the back-

and-forth. We show b̃m = (em,
1
m ) ∈ BY (g(x), 2

M )×[0, 1
M ). Since ãn = (dn,

1
n ) ∈ U ,

1
n <

1
K , and so n > K. Now since dn ∈W , ρY (g(x), g(dn)) < 1

M , and since n > K2,

the assignment was constructed after stage M , and so ρY (em, g(dn)) < 1
M . Then

ρY (g(x), em) ≤ ρY (g(x), g(dn)) + ρY (g(dn), em) < 2
M . Also, since n > K1, m > M

and 1
m < 1

M . So b̃m ∈ V.

Case 3 (even stages). If y = ãn, f(y) = b̃m, and the construction was at an even
stage, then since n > K3, they were added to f at a stage greater thanN . Therefore,
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ρX(dn, g
−1(em)) < 1

N . So ρX(x, g−1(em)) ≤ ρX(x, dn) + ρX(dn, g
−1(em)) < 2

N .

Then g−1(em) ∈ W , and so em ∈ BY (g(x), 1
M ). On the other hand, since n > K1,

again 1
m < 1

M , so b̃m ∈ V.

So f is a continuous bijection between compact Hausdorff spaces, and so is a
homeomorphism. �

The proof of the above proposition is reminiscent of that of Proposition 9 of
[Lor81]. We are grateful to Ethan Akin for providing this reference.

It is worth observing that the requirement that A contains the isolated points
of X is satisfied trivially in the cases where X is perfect, or when X = A. But
in the first, “X has no isolated points” could easily be replaced by some other
topological feature, like, “X is path connected, and remains so with the removal of
a single point”. In this way, one can encode any finite or even countable ordered
sequence of subsets of X by embedding it as a Z-set into Q (which has the above
property), and marking it and its subsets off as limits of one-dimensional stars of
differing valence and vanishing diameter. We will forgo giving the details here, as
the simpler version above is sufficient for the constructions of Proposition 3 and
Theorem 1.

In what follows, it is a routine matter to check that the reductions at each stage
are Borel-measurable, and these verifications will be omitted. However, as an il-
lustration, let us show here how we may take the above function, I, to be a Borel
map from {(X,A) ∈ K(Q) ×K(Q) | A ⊆ X} into K(Q × [0, 1]). Fix h : N → N,
an enumeration with infinite repetition, and let {sn}n∈N be the Kuratowski-Ryll-
Nardzewski selector functions K(Q) → Q as in [Kec95], Theorem 12.13. Define
I(X,A) as before, taking dn = sh(n)(A). Then for any open U in Q × [0, 1],

I(X,A) ∩ U 6= ∅ if and only if ∃n, (sn(X), 0) ∈ U or ∃n, (sh(n)(A), 1
n ) ∈ U , a Borel

condition by the measurability of the selector functions.

Consider the space {(X,R) ∈ K(Q) × K(Q3) | R ⊆ X3}, and let ∼=(3) denote
the equivalence relation where (X,R) ∼=(3) (Y, S) if and only if there is a home-

omorphism f : X → Y with f3[R] = S (i.e., where (x, y, z) ∈ R exactly when
(f(x), f(y), f(z)) ∈ S, for all elements (x, y, z) of X3).

Proposition 2. Egrp 6B ∼=(3).

Proof. Recall that a metrizable, compact, convex subset of a locally convex space is
a metrizable Choquet simplex if every point is the barycenter of a unique probability
measure supported on the extreme boundary (for details, see [JL01], Ch. 15). Let
KChoq denote the convex subsets of Q that are Choquet simplexes. In Section 4
of [FTT14], KChoq is shown to be a Borel subset of K(Q), and may be taken to
be the standard Borel space of metrizable Choquet simplexes. In [Sab15], it is
shown that Egrp ∼B ≈a, the relation of affine homeomorphism on KChoq. Define
Γ : KChoq → K(Q3) by

Γ(S) = {(x, y, z) ∈ S3 | 1

2
x+

1

2
y = z}.

Then we claim S 7→ (S,Γ(S)) witnesses the reduction ≈a 6B ∼=(3). Clearly if

S ≈a T , and f : S → T is an affine homeomorphism, then 1
2x + 1

2y = z iff
1
2f(x) + 1

2f(y) = f(z), and so f3[Γ(S)] = Γ(T ), and so (S,Γ(S)) ∼=(3) (T,Γ(T )).
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Conversely, suppose f is a homeomorphism of S and T with f3[Γ(S)] = Γ(T ),
x, y ∈ S, and λ ∈ (0, 1). We must show that f(λx+(1−λ)y) = λf(x)+(1−λ)f(y).
The case where λ = 1

2 is already done, and by induction, so too are the cases where
λ has the form m

2n . For other λ, let λk be a sequence of dyadic rationals with
λk → λ. Then

λkx+ (1− λk)y → λx+ (1− λ)y

and by continuity,

λkf(x) + (1− λk)f(y) = f(λkx+ (1− λk)y)→ f(λx+ (1− λ)y)

while
λkf(x) + (1− λk)f(y)→ λf(x) + (1− λ)f(y)

so f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y). So f is an affine homeomorphism and
S ≈a T . �

Our main Theorem 1 is ultimately deduced, via Proposition 2 above, from
the completeness of the affine homeomorphism relation for Choquet simplexes
of [Sab15], which in turn relies on the associated result for isometry of separable
complete metric spaces in [GK03]. However, we should note that this dependence
can be avoided in the following manner ( [RZ]): Let G = Iso(U) denote the isometry
group of Urysohn’s universal metric space, acting by left translations on the stan-
dard Borel space, F (G), of its closed subsets, inducing a complete orbit equivalence
relation.

In [Sol05] (see also [MP98]), it is shown thatG is topologically 2-generated; let Ra
and Rb denote the graphs, in G2, of right translation by these elements, a and b. Fix
an embedding of G as a closed subgroup of the Roelcke-precompact group Iso(U1),
the isometries of the diameter-1 analogue of U ( [Usp08]). Let X denote the Roelcke
compactification of Iso(U1), and identify G with its fixed embedded copy in X.
Then the map associating C ∈ F (G) to the tuple (G,Ra, Rb, C) (where the closure
is taken in X) is a reduction to a relation akin to ∼=(3), but with homeomorphisms
preserving the structure of two binary relations and a unary predicate, rather than
a ternary relation. The reduction then proceeds as below after a minor modification
of the construction of Proposition 3.

Given ~A = (A1, A2, ...) and ~B = (B1, B2, ...) in K(Q)N, say that ~A ∼=perm
~B if

and only if there is an f ∈ Homeo(Q) and a permutation σ : N → N such that
f [An] = Bσ(n) for all n. Now, for a pair of compact sets (X,R), where R ⊆ X3,
define

X̃ = I(X,X) = X ∪ {ã1, ã2, ...}

Bn = {ãn} × X̃2

Cn = X̃ × {ãn} × X̃

Dn = X̃2 × {ãn}
En = Bn ∪ Cn
Fn = Bn ∩Dn

Let Ψ : (X,R) 7→ (X̃3, R,B1, C1, D1, E1, F1, B2, C2, ...). Fix an embedding, ı, of
(Q × [0, 1])3 into Q as a Z-set, and let (ı∗)N : K((Q × [0, 1])3)N → K(Q)N be the
induced map. Set Φ = (ı∗)N ◦Ψ, but for convenience identify a set in Φ(X,R) with
the corresponding set in Ψ(X,R).
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Proposition 3. Φ is a reduction from ∼=(3) to ∼=perm.

Proof. Suppose (X,R) ∼=(3) (Y, S), witnessed by f . To fix notation, let Ỹ = Y ∪
{b̃1, b̃2, ...}, and let Hm, Im, Jm,Km, and Lm denote Y ’s versions of Bn, Cn, Dn, En,

and Fn, respectively. First, extend f to a homeomorphism f̃ : X̃ → Ỹ as in

Proposition 1. Let τ : N → N be τ(n) = m iff ãn 7→ b̃m, and let σ : N → N be
σ(1) = 1, σ(2) = 2, and for k ∈ N and 0 ≤ j ≤ 4, σ(5k+ j − 2) = 5τ(k) + j − 2. In
words, σ fixes 1 and 2 and otherwise permutes quintuplets of integers according to
the back-and-forth.

Now f̃ determines a homeomorphism f̃3 : X̃3 → Ỹ 3, which by assumption

has f̃3[R] = f3[R] = S, and which by construction has f̃3[Bn] = f̃3[{ãn} × X̃2] =

{b̃τ(n)}×Ỹ 2 = Hτ(n) and similarly f̃3[Cn] = Iτ(n), f̃
3[Dn] = Jτ(n), f̃

3[En] = Kτ(n),

and f̃3[Fn] = Lτ(n). So as X̃3 and Ỹ 3 are embedded as Z-sets in Q, extend

f̃3 to some f̂ ∈ Homeo(Q). Then f̂ and σ witness (X̃3, R,B1, C1, ...) ∼=perm

(Ỹ 3, S,H1, I1, ...).
Conversely, assume Φ(X,R) ∼=perm Φ(Y, S) witnessed by f ∈ Homeo(Q) and

σ : N → N. For A,A′ ⊆ Q, A ⊆ A′ iff f [A] ⊆ f [A′], and consequently, we
may recover information about σ based on how many and which sets a given one
contains, or is contained in. First, since every other set in the enumeration of

Φ(X,R) is a proper subset of the first, X̃3, and this is also true of Φ(Y, S), we see

that f [X̃3] = Ỹ 3 (i.e., σ(1) = 1). Among the remaining sets in Φ(X,R), R is the
only one that is disjoint from every other, and so f [R] = S (σ(2) = 2).

X̃3

R E1

B1 C1

F1

D1

E2

B2 C2

F2

D2

...

...

...

Figure 1. Set containment in Φ(X,R)

So setting aside X̃3 and R, for each n, the sets with index n are distinguished
from each other in a similar fashion. For instance, Fn contains no set, and is
contained in three. Since f [Fn] must also possess this property, f [Fn] = Lm for
some m. Likewise, sets labeled with B are sent to sets labeled with H, C to I, D
to J , and E to K. Let τ denote the permutation given by f [Cn] = Iτ(n).

But Cn ⊆ En requires that Iτ(n) ⊆ f [En] and the latter, by the above, is labeled
with K. So f [En] = Kτ(n). Similar considerations show that f [Bn] = Hτ(n),
f [Fn] = Lτ(n), and f [Dn] = Jτ(n). So, as in the forward direction, σ fixes 1 and 2,
and otherwise permutes ordered blocks of five according to τ .

Now, for every n, (ãn, ãn, ãn) is the unique element of Bn ∩ Cn ∩ Dn, and so
f(ãn, ãn, ãn) is the unique element of Hτ(n) ∩ Iτ(n) ∩ Jτ(n), that is, f(ãn, ãn, ãn) =
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(̃bτ(n), b̃τ(n), b̃τ(n)). These points are dense in the diagonals of X̃3 and Ỹ 3, respec-

tively, and so f [∆X̃3 ] = f [{(ãn, ãn, ãn) | n ∈ N}] = {(̃bm, b̃m, b̃m) | m ∈ N} = ∆Ỹ 3 .

This determines a homeomorphism g : X̃ → Ỹ by g(x) = y iff f(x, x, x) = (y, y, y).

We claim that g3 = f � X̃3. Note for every n, g(ãn) = b̃τ(n), and each triple
(ãn, ãm, ãk) is the unique point in the singleton Bn ∩ Cm ∩Dk. So,

f [{(ãn, ãm, ãk)}] = f [Bn ∩ Cm ∩Dk] = Hτ(n) ∩ Iτ(m) ∩ Jτ(k)
= {(̃bτ(n), b̃τ(m), b̃τ(k))} = g3[{(ãn, ãm, ãk)}]

and f and g3 agree on a dense subset of X̃3, so are equal. Moreover, X̃ = I(X,X),
and so by Proposition 1, g restricts to a homeomorphism X → Y , and g3[R] =
f [R] = S. So g � X witnesses (X,R) ∼=(3) (Y, S). �

Consider the space whose members are triples of compact sets, (X,B,A), such
that X is perfect and A ⊆ B ⊆ X. Let ∼=(1,1) denote the equivalence relation where
(X,B,A) ∼=(1,1) (Y,D,C) if and only if there exists a homeomorphism f : X → Y
such that f [A] = C and f [B] = D.

Proposition 4. ∼=perm 6B ∼=(1,1).

Proof. Let X = {(x, y) ∈ Q2 | ∀m 6= n, ym = 0 ∨ yn = 0}. That is, X consists
of those points for which y has at most one nonzero coordinate. Identify Q with

Q×{~0}. For ~A = (A1, A2, ...) ∈ K(Q)N, let A = {(x, y) ∈ X | ∀n, yn = 0∨x ∈ An}.
Let Φ : ~A 7→ (X,A,Q).

Suppose ~A ∼=perm
~B via f and σ. Let hσ denote the homeomorphism of Q taking

(y1, y2, ...) 7→ (yσ(1), yσ(2), ...). Consider the homeomorphism f × hσ−1 : Q2 → Q2.
Since, for any (x, y), y has at most one nonzero coordinate iff hσ−1(y) has at most
one nonzero coordinate, we have that (f × hσ−1)[X] = X. Also,

(x, y) ∈ A iff ∀n, x ∈ An ∨ yn = 0

iff ∀n, f(x) ∈ f [An] = Bσ(n) ∨ (hσ−1(y))σ(n) = yn = 0

iff ∀m, f(x) ∈ Bm ∨ hσ−1(y)m = 0

iff (f × hσ−1)(x, y) ∈ B

showing (f ×hσ−1)[A] = B. Finally, since y = ~0 iff hσ−1(y) = ~0, (f ×hσ−1)[Q] = Q.
So the restriction (f × hσ−1) � X witnesses (X,A,Q) ∼=(1,1) (X,B,Q).

So suppose there is a homeomorphism g : X → X with g[A] = B and g[Q] = Q.
Since g fixes Q set-wise, it must also fix X \ Q set-wise. Now, we may write X \ Q
as the disjoint union of sets Xn = {(x, y) ∈ X | x ∈ Q and yn > 0}. Each Xn, being
homeomorphic to Q × (0, 1], is path-connected, but no path exists within X \ Q
connecting distinct Xn and Xm. Therefore, g induces a permutation σ, by σ(n) = m
iff g[Xn] = Xm. Let An = Xn∩A and Bn = Xn∩B. Then g[An] = Xσ(n)∩B = Bσ(n).

Now, An = {(x, y) | x ∈ An and yn > 0}. So since An is closed, if (xk, yk)k∈N is
a sequence of points in An converging to (x, y) ∈ X, then x ∈ An, yn ∈ [0, 1], and
ym = 0 for m 6= n. On the other hand, given x ∈ An, (x, (0, 0, ..., 0, 1k , 0, ...))k∈N is a

sequence in An converging to (x,~0). Therefore, An = An ∪ (An × {~0}). This holds

similarly for the Bn. Identifying An and Bn with their copies in Q = Q× {~0}, for
every n, g[An] = g[Q ∩ An] = g[Q] ∩ g[An] = Q ∩ Bσ(n) = Bσ(n). So g � Q and σ

witness ~A ∼=perm
~B. �
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Let ≈ denote the homeomorphism relation on compact metric spaces.

Proof of Theorem 1. By Propositions 2, 3, and 4, Egrp 6B ∼=(1,1), the latter de-
fined on the class of triples, (X,B,A), where X is perfect and A ⊆ B ⊆ X. Let
I2(X,B,A) = I(I(X,A), B ∪ {ã1, ã2, ...}). That is, I2(X,B,A) is obtained as in
Proposition 1 by first adding a set of isolated points,{ã1, ã2, ...}, to X marking off
A, and then adding new isolated points marking off B and the ãn’s. Note that
B ∪ {ã1, ã2, ...} is closed in I(X,A), since the limit points of the ãn are in A ⊆ B.
Furthermore, in both steps we have respected the restriction on isolated points im-
posed in the definition of I, in the first step because X is perfect, and in the second
because the only isolated points are the ãn. Therefore, by repeated applications of
Proposition 1:

If f : X → Y is a homeomorphism with f [A] = C and f [B] = D, then f extends
to a homeomorphism I(X,A) → I(Y,C). Since this must send isolated points to
isolated points, it must take B∪{ã1, ã2, ...} to D∪{c̃1, c̃2, ...}. Therefore it extends
to a homeomorphism I2(X,B,A)→ I2(Y,D,C).

Conversely, if g : I2(X,B,A) → I2(Y,D,C) is a homeomorphism, it restricts to
a homeomorphism I(X,A) → I(Y,C) with f [B ∪ {ã1, ã2, ...}] = D ∪ {c̃1, c̃2, ...}.
Further, this restricts to a homeomorphism X → Y taking f [A] = C. But then
f [B] = f [(B ∪ {ã1, ã2, ...}) ∩ X] = (D ∪ {c̃1, c̃2, ...}) ∩ Y = D, and therefore
(X,B,A) ∼=(1,1) (Y,D,C). So I2 is a reduction to ≈. �
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