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Abstract. A Polish group is said to be locally Roelcke precompact if there is a neigh-
borhood of the identity element that is totally bounded in the Roelcke (or lower)
group uniformity. These form a subclass of the locally bounded groups, while
generalizing the Roelcke precompact and locally compact Polish groups.

We characterize these groups in terms of their geometric structure as those
locally bounded groups whose coarsely bounded sets are all Roelcke precompact,
and in terms of their uniform structure as those groups whose completions in the
Roelcke uniformity are locally compact. We also assess the conditions underwhich
this locally compact space carries the structure of a semi-topological semigroup.

1. Introduction

The investigation undertaken in the present note sits at the nexus of two active
areas of research into the structure of topological groups. The first of these is the
topological dynamics of those groups—such as the full symmetric group on N,
the unitary group of `2, or the automorphism group of the measure algebra of a
standard Lebesgue space—that, while not necessarily compact or locally compact,
are totally bounded in the Roelcke uniformity. This feature and the connection it
engenders between such groups themselves and those spaces upon which they
act have been studied extensively, for example in [1, 2, 8, 11, 18, 22, 24–26]. The
second follows the discovery of C. Rosendal that topological groups carry an
intrinsic large-scale geometry. An early theory of this structure can be found in
the preprints [19, 20], which have been collected into and elaborated upon in the
manuscript [16], and has also been explored in the papers [4, 9, 12, 27].

So a natural question goes, what does the study of the coarse geometry of
topological groups have to say about these Roelcke precompact groups? The first
answer is nothing. All Roelcke precompact groups are coarsely bounded, and
therefore have trivial coarse geometry. A second answer is subject of this paper:
many of the features of the Roelcke precompact groups can be seen in a wider class
of groups, one that contains both the Roelcke precompact and the locally compact
groups, and for these groups those features are also reflected in their large-scale
geometry.

A Polish group is locally Roelcke precompact if some open set is totally bounded
in the Roelcke uniformity. All Roelcke precompact and all locally compact Polish
groups are locally Roelcke precompact. So too are the isometry groups of certain
unbounded ultrahomogeneous metric spaces that behave locally like those with
Roelcke precompact isometry groups (e.g., the isometry group of the Urysohn
space, see Theorem 7).
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The central result of this paper characterizes such groups in terms of both their
uniform structure and their coarse geometry.
Theorem (below as Theorems 14 and 16). Suppose G is a Polish group and X is its
completion in the Roelcke uniformity. The following are equivalent:

• G is locally Roelcke precompact.
• G is locally bounded, and every coarsely bounded subset of G is a Roelcke precom-

pact set.
• X is locally compact.

Moreover, if X is obtained as the metric completion of a metric, d∧, compatible
with the Roelcke uniformity and computed from a coarsely proper left-invariant
metric, then the extension of d∧ is a proper metric on X.

The paper is outlined as follows: In Section 2we recall the necessary background
material on the four canonical uniform structures on a topological group and on
the coarse geometry of topological groups. In Section 3 we introduce the main
definitions of this paper, while Section 4 is devoted to examples of locally Roelcke
precompact groups. Section 5 considers the properties of the Roelcke precompact
subsets of a group. Here it is seen that for locally Roelcke precompact groups,
such sets are closed under taking products. This is the key fact needed for the
material of Section 6, where we prove the central result above. Finally, in Section 7
we consider when multiplication on G can be extended to a separately continuous
operation on its Roelcke completion.

2. Bases and metrics for the four canonical uniformities and coarse structures

Let us recall here some facts about the canonical uniformities on a topological
group and of the coarse structures determined by the ideal of coarsely bounded
sets. Most information in this section is found in [2, 13, 15, 16, 18, 25]. We also
note some facts about bases and metrics for these coarse structures that are dual
to the related results about uniformities, and are immediate, but not mentioned
elsewhere. This will be used to describe the structure of the Roelcke completion of
a locally Roelcke precompact Polish group in Section 6.

2.1. The four uniformities on a group determined by a compatible topology.
The left uniformity of a topological group is generated by the entourages {( f , 1) ∈
G2 | f ∈ 1V} as V varies over the neighborhoods of 1G in G. That these sets indeed
form a basis for this uniformity follows from the compatibility of the topologywith
the group operations: that the identity neighborhoods are closed under inverses (V
a neighborhood implies V−1 a neighborhood) and square roots (V a neighborhood
implies W2 ⊆ V for some neighborhood W). The right uniformity similarly has a
basis of entourages of the form {( f , 1) ∈ G2 | f ∈ V1}.

One uniform structure on a set is said to be finer than those it contains—as
a family of subsets of G2—and coarser than those that contain it, and this par-
tial order of containment determines a lattice structure. The join of the left and
right uniformities, called the two-sided uniformity, is generated by sets of the form
{( f , 1) ∈ G2 | f ∈ (1V ∩ V1)}. This is the coarsest uniform structure finer than
both the left and right uniformities. The meet of the two (the finest uniformity
coarser than both), called the Roelcke uniformity, is generated by sets of the form
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{( f , 1) ∈ G2 | f ∈ V1V}. That in each case above the generating sets form bases for
their respective uniformities follows again from the compatibility of the topology
and the group operations. Moreover, the topology determined by each of the four
uniformities agrees with the original topology on G.

In the case where the topology of G is metrizable, each one of the above uni-
form structures has a countable base and is therefore also metrizable. Specifically,
G has a left-invariant metric, d, and all left-invariant metrics induce the left uni-
form structure. Fixing such a d, compatible metrics for the right, two-sided, and
Roelcke uniformities can be computed as d( f −1 , 1−1), d( f , 1) + d( f −1 , 1−1), and
infh∈G max{d( f , h), d(h−1 , 1−1)}, respectively. As the groups considered in what
follows are all Polish, they are—in particular—metrizable, and so uniform notions
(like completion or total boundedness) can be substituted with the corresponding
metric notions if one prefers, and we will utilize this whenever it simplifies the
exposition.

2.2. The four coarse structures on a group determined by a compatible ideal.
The situation for coarse structures on a group G is entirely dual to the above.
Suppose a group, G, is equipped with an ideal—viewed as the bounded subsets of
the group—compatible with the group operations in the sense that if A and B are
bounded, then so areA−1 and the product, AB. Then the entourages of the diagonal
given by left translation {( f , 1) ∈ G2 | f ∈ 1A} generate a coarse structure on G
whose bounded sets are the original ideal, and because the ideal and the group
operations are compatible, these generating sets are a basis [13].

The key insight of [16] is in identifying a canonical, compatible ideal of bounded
sets possessed by every topological group.

Definition (Rosendal [16]). A subset, A, of a topological group, G, is coarsely
bounded if it is assigned finite diameter by every continuous left-invariant pseudo-
metric on G.

These coarsely bounded sets and their associated coarse structure, the left-coarse
structure, both possess equivalent and natural intrinsic definitions, and have a
nascent theory directly generalizing the geometric group theory of countable dis-
crete (or more generally, locally compact) groups with coarse structure determined
by the ideal of finite (respectively, compact) sets.

Akin to the situation for uniform structures, a coarse structure is the bounded
coarse structure associated to some metric if and only if it has a countable basis.
Therefore, the left-coarse structure on a group G is metrizable (and therefore by
some left-invariant metric) if and only if there is a countable, cofinal family of
coarsely bounded sets. In a Polish group, the Baire category theorem then implies
that there is a coarsely bounded identity neighborhood, and hence a Z-chain of
coarsely bounded open sets whose union is G and whose intersection is {1G}. Ap-
plying the metrization theorems to the corresponding chain of entourages results
in a left-invariant metric, compatible with the topology of G, whose bounded sets
are precisely the coarsely bounded sets [16, Theorem 2.28]. Such groups are called
locally bounded, and such ametric, compatible with both the left uniformity and the
left-coarse structure, is called coarsely proper.
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Now the right-coarse structure can be defined analogously, generated by en-
tourages of the form {( f , 1) ∈ G2 | f ∈ A1} and compatiblewith the right-invariant
metric d( f −1 , 1−1) if d is a left-invariant coarsely proper metric. Some attention is
paid to this structure in [16, Chapter 3 Section 4], and particular to those groups,
dual to the SIN groups, for which the left- and right-coarse structures coincide. As
with the uniform structures, the coarse structures on a set also form a lattice under
containment, where one is considered finer than the another if it is contained in
it [6]. Let us here use the convention that the lattice order is reverse containment.
Then in direct analogy to the situation with the uniform structures, the join of the
left- and right-coarse structure the coarsest coarse structure finer than both, while
themeet is the finest coarse structure coarser than both. We collect here several facts
about these coarse structures that are immediate, but have not appeared elsewhere.

Proposition 1. The join of the left- and right-coarse structures has as a basis the sets of
the form {( f , 1) ∈ G2 | f ∈ (1A ∩ A1)} as A varies over the coarsely bounded sets, while
the meet has the sets {( f , 1) ∈ G2 | f ∈ A1A} as a basis. The bounded sets in all four
coarse structures coincide with the coarsely bounded sets. Moreover, if dL is a compatible,
left-invariant, coarsely proper metric on G, then d∨( f , 1) � dL( f , 1) + dL( f −1 , 1−1)
induces the two-sided (join) uniformity and the join-coarse structure, while d∧( f , 1) �
infh∈G max{dL( f , h), dL(h−1 , 1−1)} induces the Roelcke (meet) uniformity and the meet-
coarse structure.

Proof. Let EL and ER denote the left- and right-coarse structures, respectively, and
for A ⊆ G, let

EL
A � {( f , 1) ∈ G2 | f ∈ 1A}

ER
A � {( f , 1) ∈ G2 | f ∈ A1}

E∨A � {( f , 1) ∈ G2 | f ∈ (1A ∩ A1)}
E∧A � {( f , 1) ∈ G2 | f ∈ A1A}.

The join, E∨ , is EL ∨ ER � EL ∩ ER (see, e.g. [6], recalling our convention of
reversing the lattice order). Therefore E ∈ E∨ if and only if there are coarsely
bounded A, B ⊆ G with E ⊆ EL

A ∩ ER
B , that is, for all ( f , 1) ∈ E, f ∈ 1A ∩ B1. Then

f ∈ 1(A ∪ B) ∩ (A ∪ B)1, so ( f , 1) ∈ E∨A∪B . Meanwhile, a quick calculation shows
that ∆G � E∨1G

, E∨A ∪ E∨B ⊆ E∨A∪B , (E
∨
A)−1 � E∨A−1 , and E∨A ◦ E∨B ⊆ E∨AB∪BA. So the sets

E∨A form a basis for E∨ as A ranges over the coarsely bounded sets.
The meet, E∧ � EL ∧ ER is generated by sets of the form

EL
A ◦ ER

B ◦ EL
A ◦ ER

B ◦ · · · ◦ EL
A ◦ ER

B .

First note that ( f , 1) ∈ EL
A ◦ ER

B if and only if f ∈ hA and h ∈ B1 for some h ∈ G,
if and only if f ∈ B1A. Therefore, if F � {( f , 1) ∈ G2 | f ∈ Bm1Am}, then
( f , 1) ∈ F ◦ EL

A ◦ ER
B if and only if there is h ∈ G so that f ∈ Bm hAm and h ∈ B1A if

and only if f ∈ Bm+11Am+1. So by induction, a compositionwith n blocks of EL
A◦ER

B
is contained in E∧An∪Bn . Another calculation shows that ∆G � E∧1G

, E∧A ∪ E∧B ⊆ E∧A∪B ,
(E∧A)−1 � E∧A−1 , and E∧A ◦ E∧B ⊆ E∧AB∪BA. So the sets E∧A form a basis for E∨.

The sections above 1 ∈ G in the entourage corresponding to A in each of the four
coarse structures are 1A, A1, (1A ∩ A1) and A1A, and the coarsely bounded sets
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are an ideal closed under products, so the bounded sets in each coarse structure
coincide with the coarsely bounded sets.

If dL is a compatible, left-invariant, coarsely proper metric, and A a coarsely
bounded set, let r ∈ R be such that A ⊆ BdL (1G , r). Then if ( f , 1) ∈ E∨A, then
f ∈ 1A, so dL( f , 1) < r and f ∈ A1, so dL( f −1 , 1−1) < r. Therefore d∨( f , 1) < 2r.
On the other hand d∨( f , 1) < r implies ( f , 1) ∈ E∨BdL (1G ,r). Similarly, if ( f , 1) ∈ E∨A,
there are a , b ∈ A so that f � a1b, Then f ∈ a1A and a1 ∈ A1, so

d∧( f , 1) � inf
h∈G

max{dL( f , h), dL(h−1 , 1−1)} 6 max{dL( f , a1), dL((a1)−1 , 1−1)} < r.

And if d∧( f , 1) < r there is h ∈ G so that dL( f , h) < r and dL(h−1 , 1−1), so then
f ∈ h(BdL (1G , r)) and h ∈ (BdL (1G , r))1, so f ∈ (BdL (1G , r))1(BdL (1G , r)).

That the above metrics are compatible with the two-sided and Roelcke unifor-
mities is well-known. �

Note that the above proof goes through just as well when the coarsely bounded
sets are replaced by any other ideal that contains all the singletons and is stable
under inverses andproducts. Or, in a closer analogy to the correspondencebetween
group topologies and group uniformities, a single ideal of bounded sets can be
replaced with an assignment 1 7→ A1 of ideals to points. (This generalizes ∞-
metric spaces, where some points may be at infinite distance from each other.)

3. Roelcke precompact sets

Herewe consider another ideal in a Polish group, that of the Roelcke precompact
sets. This ideal need not be compatible in the sense of the previous section, though
we will see later that it will be in several important circumstances.

Definition 2. A subset, A ⊆ G, of a Polish group is Roelcke precompact if for every
neighborhood, V ⊆ G, of the identity there is a finite set F ⊆ G so that A ⊆ VFV .

Remark. Every Polish group has a countable basis at the identity of symmetric open
neighborhoods. Therefore, the above definition is equivalent to one where the V
ranges only over a family of neighborhoods containing such a basis.

There is another seemingly stronger, but in fact equivalent, formulation of Def-
inition 2.

Proposition 3. The above Definition 2 is equivalent to one that requires F to be a subset
of A.

Proof. Suppose V is a neighborhood of 1G. Let W be a symmetric neighborhood of
1G with W2 ⊆ V and F′ ⊆ G with A ⊆ WF′W . Let F′′ � { f ∈ F′ | A ∩W f W , ∅},
and observe that A ⊆ WF′′W . For each f ∈ F′′, choose an a f ∈ A and v f , w f ∈ W
so that a f � v f f w f . Then set F � {a f ∈ A | f ∈ F′′}.

Thus if b ∈ A, there is an f ∈ F′′ so that

b ∈ W f W � Wv−1
f a f w−1

f W ⊆ W2FW2 ⊆ VFV.

�
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Thus, Definition 2 says precisely that A is a precompact set in G with respect to
the Roelcke uniformity, i.e., that its closure in the completion of G is compact [15,
Proposition 9.4].

In a Polish group, G, a subset A ⊆ G is coarsely bounded if and only if for every
identity neighborhood, V , there is a finite F ⊆ G and n ∈ N so that A ⊆ (FV)n [16].
Therefore every Roelcke precompact set is coarsely bounded. Recall that a group
is locally bounded when there is a coarsely bounded identity neighborhood, and
coarsely bounded (as a group) if every subset is coarsely bounded. So the following
definitions describe classes of groups that may be considered as special cases of
these:

Definition 4. A Polish group, G, is locally Roelcke precompact if there is an open
Roelcke precompact subset U ⊆ G.

Definition 5. A Polish group, G, is Roelcke precompact if G is a Roelcke precompact
subset of itself.

Note. Definition 5 coincides with the established usage of the term. Take care that
a subgroup, H < G, may be a Roelcke precompact subset of G without being a
Roelcke precompact group itself. On the other hand, a Roelcke precompact group
is a Roelcke precompact subset of any group inwhich it is continuously embedded.

4. Examples of locally Roelcke precompact Polish groups

Clearly every Roelcke precompact group is locally Roelcke precompact. More-
over, every compact subset A ⊆ G is Roelcke precompact (cover A with the open
sets V1V for 1 ∈ A and take a finite subcover), and so every locally compact group
is locally Roelcke precompact.

We can also describe the countable homogeneous structures, M, for which
Aut(M) is locally Roelcke precompact. Recall that in such a group, the stabilizers,
Stab(ā), are clopen subgroups and form a basis at the identity. If V � Stab(ā), then
for f , 1 ∈ Aut(M), f ∈ V1V if and only if tp(ā , f ā) � tp(ā , 1 ā). This is because
f ∈ V1V if and only if f v1−1 ∈ V for some v ∈ V , that is, if some element of
Aut(M) fixes ā and moves 1 ā to f ā. The homogeneity ofM simply allows this to
be translated into the language of types.

Thus Aut(M) is Roelcke precompact if and only if for every n-type, p, there
are only finitely-many 2n-types that project to p in the first and last n variables.
From there we see two possibilities: in the first caseM has finitely-many 1-types,
hence the above constrains it to have finitely many n-types for all n, Aut(M)
acts oligomorphically, and the theory ofM is ω-categorical by the Engeler-Ryll–
Nardzewski-Svenonius theorem. In the second case M has infinitely many n-
types for each n by virtue of having infinitely many 1-types. The automorphism
groups of such structures are the inverse limits of oligomorphic groups by [22],
and are referred to as pro-oligomorphic in [1], who observe that they are still the
automorphismgroups ofω-categorical structures, but in a languagewith infinitely-
many sorts.

Then the locally Roelcke precompact groups arise when this pheneomenon is
localized to the stabilizer of a finite tuple. That is, for countable homogeneousM,
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Aut(M) is locally Roelcke precompact if and only if there is a finite subset B ⊆ M
so that for all ā ∈ Mn there are c̄1 , . . . , c̄k |� tp(ā/B) so that for all d̄ |� tp(ā/B),

tp(ad/B) � tp(aci/B)

for some i 6 k. Or equivalently, if the conditions in the previous paragraph apply
to the expansion ofM by some finite tuple (though note that then by the Engeler-
Ryll–Nardzewski-Svenonius theorem, if the resulting group is oligomorphic, then
Aut(M) already was).

Much of this also transfers to the language of continuous model theory, where
counterparts to many statements from classical model theory hold, and for which
the automorphism groups of separable structures are exactly the Polish groups.
However, we next see that certain types of metric spaces (without any additional
structure) already provide a wealth of examples of locally Roelcke precompact
groups, and describes the Roelcke precompact subsets in such groups. The next
definition should be viewed as analogous to the above condition on types.

Definition 6. A metric space, (X, d) is pair-propinquitous if for every finite metric
space, A, and every ε > 0 there is a δ > 0 so that if i1 , i2 , j1 , j2 are isometric
embeddings A ↪→ X with

|d(i1(a), i2(b)) − d( j1(a), j2(b))| < δ for every a , b ∈ A,

then there are isometric embeddings j′1 , j′2 : A ↪→ X satisfying, for all a , b ∈ A,

d( j1(a), j2(b)) � d( j′1(a), j′2(b)),
d(i1(a), j′1(a)) < ε, and
d(i2(a), j′2(a)) < ε.

The isometry group of the Urysohn sphere, U1, was shown to be Roelcke pre-
compact in [26] and [17] andbothproofs, despite their differing approaches, involve
verifying that U1 possesses a stronger property: for every n ∈ N and every ε > 0
there is a δ > 0 so that whenever any two enumerated n-point subsets, b1 , . . . , bn
and c1 , . . . , cn inU1 agree ondistances up to δ (i.e.,maxi , j6n |d(bi , b j)−d(ci , c j)| < δ)
there is an isometric copy of one, c′1 , . . . , c

′
n , pointwise within ε of the other

(maxi6n d(bi , c′i) < ε). Maybe this property should be called propinquity, but re-
gardless, the definition here weakens it by requiring a particular δ not to work for
all metric spaces of a given size, but only those comprised of a pair of isometric
copies of a fixed finite subset.

Recall that a metric space, (X, d), is ultrahomogeneous if every isometry between
finite subsets extends to an isometry of X and approximately ultrahomogeneous if,
for every ε > 0 and every isometry, f , between finite subsets, there is a global
isometry that agrees with f up to ε. Clearly every ultrahomogeneous metric space
is approximately ultrahomogeneous. If A ⊆fin X and r > 0,

VA,r � {∀a ∈ A d(a , f (a)) < r}

is a symmetric, open neighborhood of idX in Iso(X), and such sets form an identity
basis.
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Theorem 7. Suppose (X, d) is a separable, complete, pair-propinquitous, approximately
ultrahomogeneous metric space. Then for every x ∈ X and r ∈ R+, Vx ,r is a Roelcke
precompact subset of Iso(X). In particular, Iso(X) is locally Roelcke precompact.

Proof. Let W be an open neighborhood of Iso(X). By shrinking W , we may assume
that W � V{y0 ,...,yn },ε, where y0 � x and ε 6 r. Let δ be the value given by pair-
propinquity with respect to the finite metric space A � {y0 , . . . , yn} and the value
ε
2 .

Observe that for any isometry h ∈ Vx ,r and any i , j 6 n,

d(yk , h(yl)) 6 d(yk , x) + d(x , h(x)) + d(h(x), h(yl)) < r + 2 diam(A).
Let P be a partition of the interval [0, r + 2 diam(A)] into finitely-many subinter-
vals of length less than δ. For each s : {0, . . . , n}2 → P, fix fs ∈ Iso(X) satisfying
d(yk , fs(yl)) ∈ s(k , l) for all k , l 6 n, if one exists, and let F be the set of these isome-
tries. Note that F , ∅, as idX satsfies the conditions of fsid for sid : {0, . . . , n}2 → P,
where sid(k , l) is the unique interval containing d(yk , yl).

Then for any 1 ∈ Vx ,r , if s1 : {0, . . . , n}2 → P satisfies d(yk , 1(yl)) ∈ s1(k , l) for
all k , l 6 n, then the values d(yk , 1(yl)) and d(yk , fs1 (yl)) lie in the same piece,
s1(k , l), of the partition, P, and so

��d(yk , 1(yl)) − d(yk , fs1 (yl))
�� < δ. Thus by pair-

propinquity there is an isometric copy of A ∪ fs1 [A] located point-by-point within
ε
2 of A ∪ 1[A] and by approximate ultrahomogeneity, there is a global isometry,
u1 , that agrees with this partial isometry on A ∪ fs1 [A] with error at most ε

2 .
Thus, for all k 6 n, d(1(yk), u1 fs1 (yk)) < ε

2 +
ε
2 � ε and so d( f −1

s1 u−1
1 1(yk), yk) �

d(1(yk), u1 fs1 (yk)) < ε and f −1
s1 u−1

1 1 ∈ W .
Moreover, for all k 6 n, d(yk , u1(yk)) < ε

2 , and so u1 ∈ VA, ε2 ⊆ W . So as
f −1
s1 u−1

1 1 ∈ W , 1 ∈ u1 fs1W ⊆ W fs1W ⊆ WFW . So Vx ,r ⊆ WFW and as W was
arbitrary, Vx ,r is a Roelcke precompact subset of Iso(X). �

Note that if an ultrahomogeneous (X, d) has finite diameter, then Iso(X) � Vx ,r
for any x and sufficiently large r, and so if the other conditions of Theorem 7 are
met, then Iso(X) is Roelcke precompact. Many well-known examples of Roelcke
precompact groups can then be seen as instances of this theorem, for example
Iso(U1) as already mentioned, as well as S∞ ( [15], viewed as the isometry group
of a countable set with the discrete metric) Aut(R) (the random graph, as a metric
space with the graphmetric), and U(`2) ( [24], viewed as the isometry group of the
unit sphere of `2).

This also furnishes a number of examples of locally Roelcke precompact groups
that are not Roelcke precompact. For example, the isometry group, Iso(U) of
the Urysohn space, the (affine) isometry groups of `2 and the Gurarĳ space, and
Aut(T∞), the automorphism group of the (unrooted) countably-regular tree. For
this last example, note that T∞ is automatically pair-propinquitous by virtue of
having a uniformly discrete set of possible distances. So the same applies to
the automorphism group of any metrically homogeneous graph—a graph that is
ultrahomogeneous when viewed as a metric space with the graph metric.

Asmost familar examples of ultrahomogeneousmetric spaces are enumerated in
the examples above, it is worth observing that pair-propinquity is not a redundant
condition. As the next example shows, there are ultrahomogeneous metric spaces
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lacking this property, and whose isometry groups are indeed not locally Roelcke
precompact.

Example 8. Let S ⊆ R be S � N ∪ {1 +
1
n | n > 3}. Observe that 3 points with

an assignment of distances from S satisfy the triangle inequality if and only if the
same is true when the values of the form 1 +

1
n are replaced with value 1. Then as

the set N satisfies the 4-values condition of [5], so does S, and so by [21] there is a
countable ultrahomogeneous metric space, US, for which S � {d(x , y) | x , y ∈ US}
and containing a copy of every finite metric space whose distances come from S.
The spaceUS fails to have pair-propinquity aswitnessed by A � {x} (any singleton)
and ε �

1
2 . For any δ > 0, let n > 1

δ and by universality find embeddings with
d(i1(x), i2(x)) � 1 and d( j1(x), j2(x)) � 1 +

1
n . For any y , z ∈ US, d(y , z) < 1

2 implies
y � z, so there can be no j′1 and j′2 satisfying the conditions of Definition 6.

Let G � Iso(US); then G is not locally Roelcke precompact. For if U ⊆ G is an
identity neighborhood, then U contains an open neighborhood of the form VA,ε,
and so contains the stabilizer, VA, of A. Fix K ∈ N sufficiently large (at least twice
diam(A)) and let y ∈ US be a point for which d(a , y) � K for all a ∈ A. Now
consider the open neighborhood W � Vy , 1

2
(� Stab(y), as S contains no positive

values less than 1). Observe that if 1 ∈ W f W , there are u , v ∈ W with 1 � u f v
and so d(y , 1(y)) � d(y , u f v(y)) � d(u−1(y), f v(y)) � d(y , f (y)), as u−1 and v are
isometries fixing y. For anyfinite F ⊆ G, there is an M ≥ 3 so that d(y , f (y)) , 1+ 1

M
for any f ∈ F. By universality and ultrahomogeneity of US, there is a z so that
d(z , a) � K for all a ∈ A and d(y , z) � 1 +

1
M . Then by ultrahomogeneity again

there is a 1 ∈ G fixing A and sending y 7→ z. So as 1 ∈ U since it fixes A, but
d(y , 1(y)) � d(y , z) � 1 +

1
M , so 1 < WFW . So U * WFW , and since F was an

arbitrary finite subset of G, U is not Roelcke precompact.

5. The ideal of Roelcke precompact sets

Lemma 9. The family of Roelcke precompact subsets of G is closed under taking subsets,
inverses, finite unions, and left and right translations.

Proof. Suppose A and B are Roelcke precompact subsets of G and that V is a
neighborhood of the identity.

• If C ⊆ A, then there is an F ⊆fin G so that A ⊆ VFV , and consequently
C ⊆ VFV .
• There is a finite F with A ⊆ V−1FV−1, and so A−1 ⊆ VF−1V .
• Let FA and FB be finite sets with A ⊆ VFAV and B ⊆ VFBV . Then

A ∪ B ⊆ V(FA ∪ FB)V .
• Suppose 1 ∈ G and W � V ∩ 1−1V1 ∩ 1V1−1. If F ⊆fin G is such that

A ⊆ WFW , then

1A ⊆ 1WFW ⊆ 11−1V1FW � V(1F)W ⊆ V(1F)V

and

A1 ⊆ WFW1 ⊆ WF1V1−11 � W(F1)V ⊆ V(F1)V.

�
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For A, B ⊆ G let AB � {1h ∈ G | 1 ∈ A and h ∈ B}. In the next example, we
observe that AB needn’t be Roelcke precompact even when both A and B are.

Example 10. Let G � ZN o S∞ be the semidirect product given by the action of S∞
that permutes the coordinates of elements of ZN. As S∞ is a Roelcke precompact
group (in the sense of Definition 5) [15, Example 9.4], the subgroup A � {1ZN} × S∞
is a Roelcke precompact subset of G (in the sense of Definition 2). Letting 1 �

((1, 2, 3, . . . ), 1S∞), the coset 1A is also Roelcke precompact by Lemma 9.
However, A(1A) is not: note that for every m ∈ N, it contains an element of the

form (x , 1S∞) where x1 � m, specifically hm1hm where hm � (1ZN , (1 m)) is the
pair whose first coordinate is 1ZN and whose second coordinate is the permutation
that exchanges 1 and m. But if V � {(x , σ) ∈ G | x1 � 0 and σ(1) � 1}, then
A1A * VFV for any finite F, as

{m ∈ N | ∃(y , τ) ∈ VFV y1 � m} � {m ∈ N | ∃(y , τ) ∈ F y1 � m}.

An interesting feature of the group in the above example is that it is coarsely
bounded. In fact, for every identity neighborhood, V , there is an f ∈ G so that G �

V f V f −1V . To see this note that the group G can be viewed as the automorphism
group G � Aut(M), where M � (⊔n∈N Z, S) consists of countably-many copies
of Z equipped with a function for successor. Then Th(M) is ω-stable andM is
saturated, implying that G is coarsely bounded, but moreover the relation on finite
subsets, where A |̂ B holds when no element of A is in the same copy of Z as an
element of B, is an orbital independence relation, and so the coarse boundedness of G
takes the above form [16, Chapter 6]. In particular, G is locally bounded, and the
ideals of Roelcke precompact sets and of coarsely bounded sets do not coincide.

However, in some circumstances, the ideal of Roelcke precompact sets will be
stable under products.

Proposition 11. If G is Weil complete, the product of two Roelcke precompact subsets of
G is Roelcke precompact.

Proof. By [15, Theorem 11.4], if G is Weil complete (i.e., complete in the left uni-
formity) then it is also complete in the Roelcke uniformity. Thus every Roelcke
precompact subset is, in fact, compact and the product of two compact subsets is a
compact subset. �

Proposition 12. If G is locally Roelcke precompact, the product of two Roelcke precompact
subsets of G is Roelcke precompact.

Proof. Fix an open, Roelcke precompact subset U, which we may assume contains
1G by Lemma 9. Now suppose that A and B are also Roelcke precompact subsets
of G, and that V is an identity neighborhood in G. We will produce a finite F ⊆ G
with AB ⊆ VFV .

Choose an open neighborhood of the identity W satisfying W2 ⊆ V ∩ U. So
there are finite EA and EB so that A ⊆ WEAW and B ⊆ WEBW . Recall from
Lemma 9 that the collection of Roelcke precompact subsets of G is hereditary and
closed under left/right translations and finite unions. Thus W2 ⊆ U is Roelcke
precompact, as are W2EB �

⋃
f ∈EB W2 f and EAW2EB �

⋃
f ∈EA f W2EB . So there is
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a finite F ⊆ G with EAW2EB ⊆ WFW . Therefore,

AB ⊆ (WEAW)(WEBW) � W(EAW2EB)W ⊆ W(WFW)W � W2FW2 ⊆ VFV.

�

This fact will be key in characterizing locally Roelcke precompact groups below.

6. Equivalent characterizations of locally Roelcke precompact Polish groups

In this section, we let G denote an arbitrary a Polish group, and X its completion
in the Roelcke uniformity. Equivalently, X is the uniform structure associated to
the metric completion of (G, d∧), where d∧ is computed from any left-invariant
metric, dL, as d∧( f , 1) � infh∈G max{dL( f , h), dL(h−1 , 1−1)}. Since a subset of G
is Roelcke precompact if and only if its closure in the Roelcke completion of G
is compact and, specifically, G is a Roelcke precompact group if and only if X is
compact, one may then wonder if the completion of a locally Roelcke precompact
group must be locally compact.

Let us first observe that this is not an immediate parsing of definitions as it is for
Roelcke precompact groups. One definition says that every x ∈ X has a compact
neighborhood, while the other says this is true of every x in the comeagre subset
G ⊆ X. And there are certainly instances of non-locally compact spaces with
comeagre locally compact subsets, for instance {λek ∈ `2 | k ∈ N and λ ∈ [0, 1]}
becomes locally compact when ®0 is removed. And though X has a lot more
homogeneity than that example—as multiplication extends to an action G y X
with comeagre orbit G ⊆ X—it is not amatter of taking a compact neighborhood of
an element of G and pushing it around by this action, as the next example shows.

Example 13. Let G � Aut(T∞), which is locally Roelcke precompact by Theorem 7.
Fix any elements a , b ∈ T∞. If V � Stab(a , b), then as noted in Section 4, f ∈ V1V
if and only if (a , b , 1a , 1b) |� tp(a , b , f a , f b), and therefore d(a , f b) � d(a , 1b) in
the graph metric on T∞. So every Roelcke-Cauchy sequence, ( fn)n∈N, eventually
decides a value for d(a , fn b) and the function ∆ : G 7→ N taking 1 7→ d(a , 1b) is
uniformly continuous with respect to the Roelcke uniformity on G and the discrete
uniformity on N and therefore extends to a continuous function ∆ : X → N.

So if K is any compact subset of X, K sees only finitely many values in the
above function, say R � max∆[K] + 1. Fix any enumeration p0 , p1 , p2 , . . . of
T∞, and for each n ∈ N let fn ∈ G be an automorphism satisfying d(pi , fn p j) �
d(pi , p0) + R + d(p0 , p j) for all i , j 6 n. To find such a sequence of maps, fix two
points, q and r inT∞ at distance R from each other. Removing the vertices along the
path between q and r partitions the remaining space into countablymany subtrees,
each isometric to T∞; let Tq and Tr be the ones containing q and r, respectively, and
let h : T∞ → Tq and k : T∞ → Tr be isometries with h(p0) � q and k(p0) � r. By the
homogeneity of T∞ there are, for each n ∈ N, automorphisms hn and kn of T∞ that
agree with h and k on {p0 , . . . , pn}. Then ( fn)n∈N � (h−1

n kn)n∈N is Roelcke-Cauchy,
and y � limn fn ∈ X has the following property: for any 1 ∈ G,

∆(1 · y) � lim
n

d(1−1a , fn b) > R
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Therefore G · y ∩ K � ∅, or equivalently y ∩ G · K � ∅. So for any compact set in X
(and so also for any open set with compact closure) there is an element of X that
does not lie in any translate.

However, we will indeed show that the Roelcke completion of a locally Roel-
cke precompact group is locally compact. As it turns out, the example above is
characteristic of groups that do not have bounded geometry. Specifically, it is shown
in [16, Chapter 5] that in the action Gy X of a locally Roelcke precompact group
on its Roelcke completion that extends left multiplication, there is a compact set
whose G-saturation is X if and only if G has bounded geometry. He then obtains
a characterization of bounded geometry for all Polish groups in terms of certain
types of actions on locally compact spaces. This is done by embedding such a
group into Iso(U) and analyzing the action of G on a closed, invariant subspace of
the completion of Iso(U), which is locally compact by Theorem 16 below.

Our first characterization of the locally Roelcke precompact Polish groups is
geometric, identifying them among the locally bounded ones. Recall that every
Roelcke precompact subset of a Polish group is coarsely bounded, and so these
groups must, in particular, be locally bounded. In general, a Polish group may
contain coarsely bounded subsets that are not Roelcke precompact, for example
the group, ZNoS∞, of Example 10. However, the locally Roelcke precompact Polish
groups are precisely the locally bounded ones in which these two ideals coincide.

Theorem 14. A Polish group, G, is locally Roelcke precompact if and only if it is locally
bounded and every coarsely bounded subset is Roelcke precompact.

Proof. (⇐� ): As G is locally bounded, there is a coarsely-bounded neighborhood,
U. And as every coarsely bounded set is Roelcke precompact, so too is U.

( �⇒ ): Let U be a Roelcke precompact neighborhood. Then U is, in particular,
coarsely bounded, and so G is locally bounded. If A ⊆ G is any coarsely bounded
set, there is a finite F and a bound k ∈ N so that A ⊆ (FU)k . By Lemma 9, the
Roelcke precompact subsets are closed under finite unions and left translations.
Thus FU �

⋃
f ∈F f U is Roelcke precompact. Then by Proposition 12, (FU)k is

Roelcke precompact, and again by Lemma 9, so too is A. �

In particular, if a Polish group is coarsely bounded but not Roelcke precompact,
then it also fails to be locally Roelcke precompact.

Corollary 15. A Polish group is Roelcke precompact if and only if it is coarsely bounded
and locally Roelcke precompact.

Proof. If G is locally Roelcke precompact and coarsely bounded, then by Theorem
14, every coarsely bounded set—in particular, G itself—is Roelcke precompact. �

Since a locally Roelcke precompact Polish group, G, is locally bounded, it admits
a compatible, left-invariant, coarsely propermetric, dL. Specifically, such a metric dL
induces both the left uniformity and the left-coarse structure, and therefore it is
also compatiblewith the topology of G and assigns finite diameter to a subset if and
only if that subset is coarsely bounded. Fix such a metric, and form the associated
metric d∧( f , 1) � infh∈G max{dL( f , h), dL(h−1 , 1−1)}. Then by Proposition 1, d∧ is
compatible with the Roelcke uniformity and the meet-coarse structure. Therefore
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• the metric, d∧, is compatible with the topology on G,
• the metric completion, (X, d∧), of (G, d∧) is the Roelcke completion of G,

and
• the metric d∧ assigns finite diameter to a subset of G if and only if it is

coarsely bounded.
Though they always agree on the bounded sets, in general the spaces (G, dL)
and (G, d∧) are not coarsely equivalent. For example, (Aut(T∞), d∧) is coarsely
equivalent to its completion, which by the following theorem is a proper metric
space. But by Rosendal’s characterization of groups with bounded geometry,
(Aut(T∞), dL) cannot be coarsely equivalent to such a space.

Recall that a metric on a locally compact space is proper if it satisfies the Heine-
Borel theorem—that is, if closed, bounded subsets of the space are compact. Now
we see that the locally Roelcke precompact Polish groups are precisely those for
which the completion in the Roelcke uniformity is locally compact.

Theorem 16. APolish group, G, is locally Roelcke precompact if and only if its completion,
X, in the Roelcke uniformity is locally compact. In this case, if dL is a compatible, left-
invariant, coarsely-proper metric for G, then the extension of d∧ to X is a proper metric.

Proof. IfX is locally compact, the element 1G ∈ G ⊆ X has a compact neighborhood,
K ⊆ X, and so K ∩ G is a Roelcke precompact neighborhood of 1G in G.

Conversely, we suppose G is locally Roelcke precompact and that d∧ is computed
from a compatible, left-invariant, coarsely proper metric, dL, as described above.
Now suppose A is a closed, bounded subset of (X, d∧). Then A ⊆ B � B(X,d∧)(h , r)
for some h ∈ G ⊆ X and r > 0. Then B ∩ G � B(G,d∧)(h , r) is a coarsely bounded
subset of G, and so is Roelcke precompact by Theorem 14. Thus the closure in X,
B � B ∩ G, is compact, while A is a closed subset of B and so also compact. So
(X, d∧) is a proper metric space, and in particular X is locally compact. �

One consequence of the above is a restriction on properties of locally Roelcke
precompact groups. Recall that G is Weil complete if it is complete in the left
uniformity. For Polish groups this is equivalent to the existence of a complete, left-
invariantmetric, and so these groups are also calledCLI (“complete left invariant”).
For example, any solvable Polish group is Weil complete [10, Corollary 3.7], as is
any locally compact Polish group. These latter groups are the only Weil complete
locally Roelcke precompact Polish groups.

Corollary 17. A Polish group is locally compact if and only if it is Weil complete and
locally Roelcke precompact.

Proof. Every locally compact Polish group is complete in the left uniformity. And in
general, every compact set is Roelcke precompact, so every locally compact Polish
group is also locally Roelcke precompact.

Conversely, if G is Weil complete and Polish, then G is also complete in the
Roelcke uniformity [15, Proposition 11.4] and thus G coincides with its Roelcke
completion, and so is locally compact by Theorem 16. �

6.1. Closure properties.
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Theorem 18. Suppose G is Polish and H is an open subgroup of G. Then G is locally
Roelcke precompact if and only if H is.

Proof. Suppose U ⊆ G is an open Roelcke precompact identity neighborhood. By
Lemma 9, W � U∩H is a Roelcke precompact set in G. If V ⊆ H is open in H, then
it is also open in G. So there is a finite F ⊆ W (recall Proposition 3) with W ⊆ VFV .
Thus W is Roelcke precompact as a subset of H.

Conversely, suppose U ⊆ H is an open Roelcke precompact neighborhood in H.
Then U is also open in G. Moreover, if V ⊆ G is an open identity neigbhorhood,
there is a finite subset F ⊆ H with U ⊆ (V ∩ H)F(V ∩ H) ⊆ VFV . �

Note that this is not true in general for a closed subgroup of a Polish group.
For example, both Homeo([0, 1]N) and Iso(U1) are universal Polish groups [23,
26], thus each has a topologically isomorphic copy of the other embedded as a
closed subgroup. However, Iso(U1) is a Roelcke precompact group [17, 26], while
Homeo([0, 1]N) is coarsely bounded but not Roelcke precompact [17,18], so cannot
be locally Roelcke precompact by Corollary 15.

Theorem 19. If G is Polish locally Roelcke precompact and N is a closed normal subgroup,
then the quotient group, G/N , is locally Roelcke precompact.

Proof. Let π : G → G/N be the (continuous, open) quotient map. Suppose U ⊆ G
is an open Roelcke precompact identity neighborhood. Then π[U] is open in G/N ,
and if V is open in G/N , there is a finite F ⊆ G such that U ⊆ π−1[V]Fπ−1[V], and
so

π[U] ⊆ π[π−1[V]Fπ−1[V]] � (ππ−1[V])(π[F])(ππ−1[V]) � Vπ[F]V.
�

7. Semigroup operations extending multiplication

The results of this section are inspired by those of section 5 of [2], that for G the
(necessarily Roelcke precompact and Polish) automorphism group of a separably-
categorical metric structure, every Roelcke uniformly continuous function on G is
weakly almost periodic if and only if the theory of the structure is stable. It was
pointed out to the author by C. Rosendal that this is equivalent to multiplication
on G extending to a separately continuous semigroup operation its Roelcke com-
pletion. This can be seen directly, much in the manner of the proof of Theorem
21 below, or abstractly—as for Roelcke precompact groups, the Roelcke comple-
tion coincides with the compactification associated to the Roelcke uniformly con-
tinuous functions and factors onto the compactification associated to the weakly
almost periodic functions, which is the universal semi-topological semigroup com-
pactification of G. Therefore, the Roelcke completion and WAP-compactification
coincides when the corresponding function algebras do. The authors of [2] also
offer a model theoretic interpretation of this semigroup structure.

In general [15, Chapter 10], for X the Roelcke completion of G, there is amaximal
subset M ⊆ X×X that supports a jointly continuous operation extendingmultipli-
cation G×G→ X. There are natural embeddings of the left and right completions,
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ĜL and ĜR, of G into X making all diagrams commute, which satisfy

ĜL × ĜL , ĜR × ĜR , ĜR × X, X × ĜL ⊆ M.

Thusmultiplication onG extends to the above sets, giving ĜL and ĜR the structure
of topological semigroups, with jointly continuous actions ĜR y X and X x ĜL .
However, multiplication extends to a jointly continuous operation on all of X×X if
and only if the Roelcke completion of G coincides with the two-sided completion;
in the setting of Polish groups this occurs if and only if G � X, or equivalently if
G is Weil complete, which for locally Roelcke precompact groups means that G is
locally compact by Corollary 17.

So the best that can be hoped for in a general locally Roelcke precompact group is
the structure of a semi-topological semigroup (i.e., wheremultiplication is separately
continuous). The methods of [2] completely describe this for Roelcke precompact
Polish groups. Here we investigate the corresponding situation for the locally
Roelcke precompact ones. We first see that in such situations, the operation can be
further extended to the one-point compactification of X.

Proposition 20. Suppose G is locally Roelcke precompact but not Roelcke precompact, that
X is its Roelcke completion and X∗ is the one-point compactification of X. If multiplication
in G extends to a separately continuous semigroup operation on X then it further extends
to a separately continuous semigroup operation on X∗ with∞ defined to be a zero element.

Proof. The resulting structure on X∗ is always a semigroup; checking that the
extended multiplication is separately continuous amounts to checking that this is
still true at∞, that is, for every s ∈ X and compact K ⊆ X, the sets {x ∈ X | sx ∈ K}
and {x ∈ X | xs ∈ K} are compact [3, Example 1.3.3(d)]. By Theorem 16 there is a
sufficiently large d∧-ball, B, around 1G in G whose closure in X contains K. Let A
be any open set in G whose closure in X contains s in the interior, e.g. a d∧-ball of
radius 2 around any element of G of distance less than 1 from s. Suppose sx ∈ K.
Pick a sequence (1n)n from G with 1n → s. By separate continuity, 1n x → sx. So
there is N ∈ N so that 1N ∈ A and 1N x ∈ int(B) ⊆ X. Letting (hm)m be a sequence
in B tending to 1N x, by separate continuity

x � 1−1
N 1N x � 1−1

N lim
m

hm � lim
m
1−1

N hm ∈ A−1B.

Since A and B are Roelcke precompact in G so is A−1B by Proposition 12, and as
x was arbitrary, {x ∈ X | sx ∈ K} is a subset of the compact set A−1B. Being the
preimage of K under the map x 7→ sx, it is also closed, and therefore compact. �

Note that there is a clear converse to this result. In the above proposition, the
zero element,∞, of X∗ is removable in the sense that ab � ∞ if and only if a � ∞ or
b � ∞. And clearly if S is any semigroup with such an element, 0, then the subset
S \ {0} is a sub-semigroup. So multiplication in G extends to a semi-topological
semigroup operation on X if and only if it extends to a semi-topological semigroup
operation on X∗ with a removable zero at∞.

Recall that a function is uniformly continuouswith respect to the Roelcke unifor-
mity if and only if it is uniformly continuous in both the left- and right-uniformities.
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Let C′0(G) denote those functions on G that vanish off of the ideal of Roelcke pre-
compact sets:

C′0(G) �
{

f | ∀ε > 0
{
1 ∈ G |

�� f (1)
�� > ε} is a Roelcke precompact subset of G

}
.

The idea here is that the Roelcke uniformly continuous functions in C′0(G) are
precisely the restrictions of those in C0(X).

Theorem21. LetG be a locallyRoelcke precompact Polish group. The groupmultiplication
in G extends to a separately continous semigroup operation on the Roelcke completion, X,
if and only if every Roelcke uniformly continuous function in C′0(G) is weakly almost
periodic.

Proof. As mentioned above, this follows from [2] for Roelcke precompact groups.
And every locally compact Polish group is its own Roelcke completion, while in
that case every function in C′0(G) � C0(G) is weakly almost periodic [3, Corollary
4.2.13]. So assume that G is not in either of those classes.

Suppose multiplication extends to a separately continuous semigroup opera-
tion on X and let f be a Roelcke uniformly continuous function in C′0(G). Then by
Proposition 20, multiplication extends further to the one point compactification,
X∗. As f is Roelcke uniformly continuous on G, it extends to a uniformly contin-
uous function on X and since, for all ε > 0, the set

{
x ∈ X |

�� f (x)
�� > ε} is open, its

closure is equal to the closure of
{
1 ∈ G |

�� f (1)
�� > ε}, and so is compact. Therefore

f ∈ C0(X), and so extends to continuous function on X∗. Being a compact semi-
topological semigroup, every continuous function on X∗ is weakly almost periodic
and, moreover, the restriction of every weakly almost periodic function on X∗ is a
weakly almost periodic function on G [3, Corollary 4.2.9 and Theorem 4.2.10], so
f : G→ C is weakly almost periodic.

Conversely, suppose that every Roelcke uniformly continuous function tending
to 0 off the ideal of Roelcke precompact subsets is weakly almost periodic. Recall
that left (resp. right) multiplication on G extends to a jointly continuous left (resp.
right) action on X, and suppose x , y ∈ X and (1n), (hm) are sequences in G with
1n → x and hm → y. Then both sequences are d∧-bounded, and therefore there
are d∧-balls A and B around 1G of sufficient radius so that all terms 1n hm , 1n y
and xhm lie in the interior of the compact set AB ⊆ X. Then for any nonprincipal
ultrafiltersU ,V on N, the limits

lim
n→U

1n y and lim
m→V

xhm and lim
n→U

lim
m→V

1n hm and lim
m→V

lim
n→U

1n hm

all exist, and moreover by continuity of the actions,

lim
n→U

1n y � lim
n→U

1n( lim
m→V

hm) � lim
n→U

lim
m→V

1n hm

and likewise limm→V xhm � limm→V limn→U 1n hm . The above is true for any
locally Roelcke precompact Polish G, but under the above weak almost periodicity
assumption, we also see that limn→U limm→V 1n hm � limm→V limn→U 1n hm for
all x , y , (1n), (hm),U andV as above. For suppose a , b ∈ X with

a � lim
n→U

lim
m→V

1n hm , lim
m→V

lim
n→U

1n hm � b



LOCALLY ROELCKE PRECOMPACT POLISH GROUPS 17

and let f : G → C be the uniformly continuous function, f (1) � d∧(a , b) −
min{d∧(a , b), d∧(a , 1)}, (where the distances are computed in X, though note that
the unique extension to a uniformly continuous function on X is given by the same
formula). Then | f (1)| > 0 if and only if 1 is in the trace in G of the ball around a of
radius d∧(a , b), so f ∈ C′0(G).

So f is Roelcke uniformly continuous and in C′0(G), yet

lim
n→U

lim
m→V

f (1n hm) � f
(

lim
n→U

lim
m→V

1n hm

)
� f (a) , f (b) �

� f
(

lim
m→V

lim
n→U

1n hm

)
� lim

m→V
lim

n→U
f (1n hm)

and so f is not weakly almost periodic, a contradiction.
Thus for every 1n → x and hm → y and nonprincipal U and V, the values

limn→U limm→V 1n hm and limm→V limn→U 1n hm agree. But in fact, this is then
also independent of both the choice of sequences and of ultrafilters. For if also
1′n → x andU′ is some nonprincipal ultrafilter on N,

lim
m→V

lim
n→U

1n hm � lim
m→V

xhm � lim
m→V

lim
n→U′

1′n hm

and likewise limn→U limm→V 1n hm � limn→U limm→V′ 1n h′m for anyother hm → y
andV′.

Therefore we may define an operation X × X → X, where x · y is the common
value of limn→U limm→V 1n hm for any appropriate (1n), (hm),U andV. If 1n → x,
hm → y and ki → z then

(x · y) · z � lim
i→W

(
lim

n→U
1n y

)
ki � lim

i→W
lim

n→U
(1n y)ki � lim

i→W
lim

n→U
1n(yki)

� lim
n→U

lim
i→W

1n(yki) � lim
n→U

1n

(
lim

i→W
yki

)
� x · (y · z)

and so X with this operation is a semigroup. The constant sequences show that this
operation extends multiplication in G, and to see that multiplication is separately
continuous, note that a function, f : X → X, on the complete metric space, (X, d∧),
is continuous if and only if for every x ∈ X and (1n) ⊆ G with 1n → x, f (1n) →
f (x), and that the latter occurs if and only if limn→U f (1n) � f (x) for every non-
principal ultrafilter, U . Then apply these observations to the functions x 7→ x y
and x 7→ yx. �

Note however that unlike the situation for Roelcke precompact Polish groups,
where the Roelcke compactification coincides with the WAP compactification for
such groups supporting a separately continuous extension ofmultiplication, we do
not obtain adescription of theWAPcompactification in this setting. For example, as
a consequence of [7, Corollary 2.2], the WAP compactification of a locally compact
Polish SIN group must have cardinality 22ℵ0 .
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