
AN AUTOMORPHISM GROUP OF AN ω-STABLE STRUCTURE THAT IS
NOT LOCALLY (OB)

JOSEPH ZIELINSKI

Abstract. We observe that there is an example of an automorphism group of a
model of an ω-stable theory—in fact, the prime model of an uncountably categor-
ical theory—that is not locally (OB), answering a question of C. Rosendal.

1. Introduction

Towards extending the techniques of geometric group theory to all topological
groups, C. Rosendal, in [7], identifies, for a general topological group, the appro-
priate notion of “boundedness”. The sets with this property play the role of the
compact subsets of a locally compact group and norm-bounded subsets of (the
additive group of) a Banach space—and indeed, coincide with these examples for
the above classes of groups. Here, the sets with the relative property (OB) are those
that are inexorably bounded, in the sense that they take finite diameterwith respect
to every continuous, left-invariant pseudometric on the group.

Recall that a coarse structure on a set, X, is any family of subsets of X2 extending
the powerset of the diagonal and closed under subsets, unions, inverses, and
compositions of relations. For example, a coarse structure naturally arising from a
metric space, (X, d), consists of those sets E ⊆ X2 such that sup{d(x , y) | (x , y) ∈ E}
is finite (see [5]). The family of sets with the relative property (OB) forms an ideal,
stable under the group operations, and thereby induces a left-invariant coarse
structure on the group generated by the entourages, {(x , y) | x−1 y ∈ A}, as A
varies over relatively (OB) sets.

Associated to this concept are several attributes that a given topological group
may possess. A group is locally (OB) if there is an open neighborhood of the
identity element with the property (OB). For a broad class of topological groups,
this completely coincides with the situation where the above coarse structure may
be given by a metric. Additionally, the group simply has the property (OB) when
every subset has the relative property (OB) as above, i.e., when the group has finite
diameter with respect to every continuous, left-invariant pseudometric. These are
the groups for which the above coarse structure is trivial.

Much of the motivation for better understanding “large” topological groups is
that they often arise as transformations of important mathematical objects, e.g.,
homeomorphism groups of compact topological spaces, isometry groups of met-
ric spaces, diffeomorphism groups of manifolds, and automorphism groups of
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countable structures in model theory. The coarse geometry of the groups from this
latter class received a more thorough treatment in [6]. One of the main results of
that paper was,
Theorem 1 (Rosendal). If M is the countable, saturated model of an ω-stable theory,
then Aut(M) has the property (OB).

Recall that a theory is ω-stable when there are only countably-many complete
types over countable parameter sets, and that a countable model is saturatedwhen
it realizes all types over finite parameter sets. This theorem and its proof led to the
conjecture,

Question (Rosendal). IfM is any model of an ω-stable theory, must Aut(M) be
locally (OB)?

Here we answer this question in the negative, namely,
Theorem 2. There is a countable structure,M, for which Th(M) is uncountably cate-
gorical,M is its prime model, and Aut(M) is not locally (OB).

As uncountably categorical theories are, in particular, ω-stable ( [4] Theorem
3.8), such a group serves as a counterexample to the above question.

I am grateful to the anonymous referee for their helpful comments.

2. Preliminaries

The important notions for the coarse geometry of automorphism groups were
introduced above. Let us recall here, from [7], an important source of examples of
groups that are not locally (OB).
Lemma 3. A product of groups, G �

∏
i∈I Gi , is locally (OB) if and only if Gi has the

(full) property (OB) for all-but-finitely-many i ∈ I.

Proof. As it suffices for our needs here, we will show just (the contrapositive of)
the “only if” direction, and for metrizable G. A full proof is found in Proposition
13 of [7]. Let U ⊆ G be open. Then for some j ∈ I, the projection of U onto
the jth coordinate is all of G j , and G j does not have the property (OB). Let d
be a compatible, left-invariant metric on G j of infinite diameter, and let ρ be
any compatible, left-invariant metric on G. Then ρ((1i)i∈I , (hi)i∈I) + d(1 j , h j) is a
compatible, left-invariant metric on G assigning infinite diameter to U. Therefore,
U does not have the property (OB), and as it was an arbitrary open set, G is not
locally (OB). �

For the purposes here, “theory” will mean “full theory of an infinite structure
in a countable language”. Recall that, for an infinite cardinal, κ, a theory is κ-
categorical if it has exactly one model, up to isomorphism, of cardinality κ, and that
by a foundational result of M. Morley, a theory is categorical in one uncountable
cardinal if and only if it is categorical in all uncountable cardinals. Such theories
are then unambiguously termed uncountably categorical. If such a theory is also
ω-categorical, then it is said to be totally categorical.

Given a structure,M, and a tuple ā ∈ Mn , a formula ϕ(x , ā) is strongly minimal if
it defines an infinite set, and in every elementary extension ofM, every definable
subset of the set defined by ϕ is either finite or cofinite. Strongly minimal formulas
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(and the strongly minimal sets they define) play a fundamental role in the structure
theory of uncountably categorical theories.
Theorem 4 (Baldwin-Lachlan [1]). If a theory, T, is uncountably categorical, then there
is a strongly minimal ϕ(x , ā) (with parameters from the prime model), and models of T
are determined, up to isomorphism, by the minimal cardinality of a set, B ⊆ ϕ(M , ā) for
which ϕ(M , ā) ⊆ acl(ā ∪ B).

Here, ϕ(M , ā) is the set of points in M defined by ϕ(x , ā), and the algebraic closure
of a set, C ⊂ M, is acl(C) � ⋃{ϕ(M , c̄) | c̄ ⊆ C and |ϕ(M , c̄)| < ∞}, the union
of all finite sets definable with parameters from C. A theory is strongly minimal
if x � x is strongly minimal (i.e., every definable subset of every model is finite
or cofinite), and almost strongly minimal if every model is algebraic over a strongly
minimal set. Such theories are uncountably categorical.

Let us remark that the example in the following section has a theory that is
uncountably categorical, but not totally categorical, not almost strongly minimal,
and for whichM is not the saturatedmodel. In fact, for an uncountably categorical
structure to be a counterexample, these additional properties are necessary.
Proposition 5. Suppose M is a countable structure and T � Th(M) is uncountably
categorical. Then if T is totally categorical, or more generally if M is the countable,
saturated model of T, or if T is almost strongly minimal, then Aut(M) is locally (OB).

Proof. The case where Th(M) is ω-categorical is due to P. Cameron, and as men-
tioned above, was extended by Rosendal to saturated models of ω-stable theories.
In both cases Aut(M) has the property (OB). So suppose thatM is not saturated,
but that Th(M) is almost strongly minimal. Then there is a strongly minimal
formula, ϕ(x , ā), and M � acl(ϕ(M , ā)). AsM is not saturated, there is a finite
B ⊆ ϕ(M , ā) so that ϕ(M , ā) ⊆ acl(ā ∪ B), for it follows from [1] that the model for
which such a B must be infinite is saturated.

Therefore, M � acl(ā ∪ B). Let V ≤ Aut(M) be the stabilizer subgroup of ā ∪ B.
Then V is an open subgroup and asM is algebraic over ā ∪ B, every c ∈ M has a
finite V-orbit. As V naturally embeds as a closed subgroup of the compact group,∏

c∈M SV ·c , it too is compact (see also [3]), and so Aut(M) is locally compact, and
thus locally (OB). �

We remark that all natural and frequently-cited examples of uncountably cate-
gorical structures possess at least one of the aforementioned properties, contribut-
ing to the plausibility of the conjecture refuted here.

3. The example

The example here, of anuncountably categorical structurewhose automorphism
group is not locally (OB), is essentially that of section 4 of [1], with some modi-
fications. Therefore, in the proof of categoricity we will provide only an outline,
referring the reader to the above paper for more details on that aspect.

LetL � { f , R, 0, 1}, a languagewith a ternary function symbol, a binary relation
symbol, and two constants. Let M � Q ∪ Q2. Interpret the symbols 0 and 1 as the
corresponding elements of Q, and let RM � {(p , (q , r)) ∈ M2 | p � q}. We define
fM by cases:

• fM(p , q , r) � (q − p) + r for p , q , r ∈ Q
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• fM((s , p), (s , q), (s , r)) � (s , (q − p) + r) for p , q , r, s ∈ Q
• fM(p , (p , q), r) � (p , (q − p) + r) for p , q , r ∈ Q
• fM(a , b , c) � c if (a , b , c) is not one of the above forms

One should keep in mind the following picture ofM: It consists of a “parent”
copy of Q, and corresponding to each of its elements, a “child” copy of Q. The
elements 0 and 1 of the parent copy are distinguished, and the relation RM(a , b)
holds precisely when a is a member of the parent copy and b is a member of the
child copy associated to a.

The function fM is best considered not as a three-variable function, but as a
family of single-variable functions parameterized by pairs of elements ofM. That
is, fM(a , b , c) should be viewed as the value that c takes in the function determined
by (a , b). So the first condition says that if a and b are both in the parent copy of Q,
then fM(a , b , ·) acts as a translation of the parent copy by (b−a), and as the identity
on the child copies. Similarly if a and b are in the same child copy, then fM(a , b , ·)
translates that child copy. The third case is probably the least intuitive, but if c is in
the parent copy and RM(a , b), then fM(a , b , c) is best described as “where c would
go if the parent copy was laid on top of the child copy corresponding to a, in such
a way that a was made to line up with b”.
Proposition 6 (Baldwin-Lachlan [1]). Th(M) is uncountably categorical.

Proof. First, note that it suffices to show thatM′, the reduct ofM to the language
L′ � { f , R}, is uncountably categorical. Next,we see that the structure (Q, F)where
F(p , q , r) � (q−p)+ r is stronglyminimal. To see this, first verify, by induction, that
for every term t(x1 , . . . , xn) there are r1 , . . . , rn ∈ Z, summing to 1, so that (Q, F)
interprets t(a1 , . . . , an) as r1a1 + · · ·+ rn an for every choice of a1 , . . . , an . Therefore,
for every atomic formula ϕ(x1 , . . . , xn) there are r1 , . . . , rn ∈ Z, summing to 0, so
that (Q, F) |� ϕ(a1 , . . . , an) if and only if r1a1 + · · · + rn an � 0. Then by induction
on the construction of formulas, every ∅-definable relation in (Q, F) is a Boolean
combination of sets of the form

{(a1 , . . . , an) ∈ Qn | r1a1 + · · · + rn an � 0}

where the ri ’s sum to 0. So for every ϕ(x1 , . . . , xn), there is a kϕ ∈ N so that for
any a2 , . . . , an , either ϕ(x1 , a2 , . . . , an) or ¬ϕ(x1 , a2 , . . . , an) has at most kϕ solu-
tions. This fact is expressible in a first-order manner, and so in every model of
Th(Q, F), every set defined by ϕ with parameters is either of size less than kϕ or
has complement with this bound. Therefore, Th(Q, F) is strongly minimal.

Hence, ψ(x) � ∃yR(x , y) is a strongly minimal formula in Th(M′). Suppose
N1 and N2 are ℵ1-models of Th(M′). In M, for every a and b with RM(a , b),
the restriction of fM(a , b , ·) to ψ(M) is one-to-one and onto R(a ,M)—in fact, it
is an isomorphism of { f }-structures. This is expressible in L′, and is therefore
known to Th(M), and consequently for each i � 1, 2, |ψ(Ni)| � ℵ1—otherwise,
as each R(a ,Ni) is in bĳection with ψ(Ni), Ni would be a countable union of
countable sets. Therefore, as the ψ(Ni)’s are models of the uncountably categorical
theory, Th(Q, F), there is an { f }-isomorphism 1 : ψ(N1) → ψ(N2). Extend 1
to all of N1 by choosing, for each a ∈ ψ(N1), a point ca with RN1(a , ca), and
likewise for each element of ψ(N2). Then if d ∈ N1 \ ψ(N1), say if RN1(a , d),
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let 1(d) � fN2(1(a), c1(a) , 1(( fN1)−1(a , ca , d))), where ( fN1)−1(a , ca , d) denotes the
(unique) element, b, of ψ(N1), for which fN1(a , ca , b) � d. One then verifies that
this extension of 1 is an L′-isomorphism.

For this, first note a few points that are clear from the construction. Namely, that
it preserves R, that for a , b , c ∈ ψ(N1) it extends a map respecting f , and similarly
for b , c , d ∈ R(a ,N1), as it is a composition of the { f }-isomorphisms ( fN1)−1(a , ca , ·),
1 � ψ(N1), and fN2(1(a), c1(a) , ·). For the situation where N1 |� R(a , d) ∧ ψ(b),
observe that in the special case of d � ca ,

1( fN1(a , ca , b)) � fN2(1(a), c1(a) , 1(( fN1)−1(a , ca , fN1(a , ca , b)))) � fN2(1(a), c1(a) , 1(b)),
and so for more general d ∈ R(a ,N1),

fN2(1(a), 1(d), 1(b)) � fN2(1(a), fN2(1(a), c1(a) , 1(( fN1)−1(a , ca , d))), 1(b))
� fN2(1(a), c1(a) , fN2(1(a), 1(( fN1)−1(a , ca , d)), 1(b)))
� fN2(1(a), c1(a) , 1( fN1(a , ( fN1)−1(a , ca , d), b)))
� 1( fN1(a , ca , fN1(a , ( fN1)−1(a , ca , d), b)))
� 1( fN1(a , fN1(a , ca , ( fN1)−1(a , ca , d)), b))
� 1( fN1(a , d , b)),

where the second and second-to-last equalities follow from the fact that

M |� ∀x∀y∀z∀w (R(x , y)∧ψ(z)∧ψ(w)) −→ f (x , f (x , y , z), w) � f (x , y , f (x , z , w)).
Finally, the extension of 1 defined abovepreserves the cases used in thedefinition of
f , so 1( fN1(a , b , c)) � 1(c) � fN2(1(a), 1(b), 1(c)) in the remaining one. Therefore,
N1 andN2 are isomorphic. �

So Th(M) is uncountably categorical, and we will see below that every element
of ψ(M) is definable over ∅, soM is its prime model.
Proposition 7. Aut(M) is isomorphic, as a topological group, to QQ, and therefore is
not locally (OB). That is, the coarse structure associated to the relatively (OB) subsets of
Aut(M) cannot be given by a metric.

Proof. Observe that every element of the structure (Q, F) introduced in the proof
of Proposition 6 is definable over {0, 1}. For this, let F(a ,b) denote F(a , b , ·), and
observe that for n ∈ N,

n � Fn
(0,1)(0) and − n � Fn

(1,0)(0),

while k
n ∈ Q (n ≥ 1) is the unique x for which,

k � Fn
(0,x)(0).

Therefore, every automorphism of (Q, F) is determined by where it sends 0 and 1.
Now suppose 1 ∈ Aut(M). Then as every point in the strongly minimal set,

ψ(M), is definable over ∅ (recall L contains symbols for 0 and 1), 1 must fix ψ(M)
pointwise, and so for every a ∈ ψ(M), fixes R(a ,M) setwise. Let 1a : Q → Q
be the automorphism of (Q, F) induced by the action of 1 on R(a ,M), satisfying
1(a , b) � (a , 1a(b)).
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Recall that fM(p , (p , q), r) � (p , (q − p) + r). So for any x ∈ Q,
(a , 1a(x)) � 1(a , x)

� 1(a , (0 − a) + (x + a))
� 1( fM(a , (a , 0), x + a))
� fM(1(a), 1(a , 0), 1(x + a))
� fM(a , (a , 1a(0)), x + a) (since 1 � ψ(M) � id)
� (a , (1a(0) − a) + (x + a))
� (a , x + 1a(0))

and 1a is a translation by 1a(0).
So every 1 ∈ Aut(M) fixes ψ(M) and restricts to a translation on each R(a ,M).

In this way, it can be naturally identified with a point in QQ given by (1a(0))a∈Q.
Conversely, suppose h ∈ QQ. Let ĥ : M → M fix ψ(M) and send (p , q) 7→
(p , q + h(p)). Then ĥ is easily seen to respect R, 0, 1, and the first, second, and
fourth parts of the definition of f , while for the third,

ĥ( fM(p , (p , q), r)) � ĥ(p , (q − p) + r)
� (p , (q − p) + r + h(p))
� fM(p , (p , q + h(p)), r)

� fM(ĥ(p), ĥ(p , q), ĥ(r)),

and ĥ ∈ Aut(M). So Aut(M) can be identified with QQ, and as a basic open set in
Aut(M) is determined by its action on finitely-many points (i.e., fixes the values of
h(a) for finitely-many a), they are isomorphic as topological groups when the base
Q is given the discrete group topology.

Therefore, Aut(M) is an infinite product of groups that are not (OB), and so is
not locally (OB), by Lemma 3. �
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