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This section will discuss singular value decomposition (SVD) of a matrix A ∈ Rm×n.

1 Construction

The first singular value is defined as:

σ1 = sup
∥v∥=1

∥Av∥.

Remark 1. The first singular value is well defined, i.e., such a v1 ∈ Rn always exists. Non-
rigorous argument: the function : v → ∥Av∥ is continuous and with a compact domain.

Now one can find u1 ∈ Rm with ∥u1∥ = 1 such that Av1 = σ1u1.

One can follow the definition of the first singular value and define the second singular value as,

σ2 = sup
∥v∥=1,v⊥v1

∥Av∥.

The remark 1 implies that such a v2 always exists and let us denote it as v2. In addition, we
can find u2 ∈ Rm with ∥u2∥ = 1 such that Av2 = σ2u2.

Remark 2. σ2 ≤ σ1 because v2 is taken from a smaller subspace {v1}⊥ ⊂ Rn.

Theorem 1.1. u1 and u2 which are defined above are orthogonal.

The theorem implies that u1 ⊥ u2. Repeat the process, one can find a unit vector v3 ∈ W2 =
{v1, v2}⊥ such that it admits

σ3 = sup
∥v∥=1,v∈V2

∥Av∥.

In addition, one can find a unit vector u3 such that Av3 = σ3u3. One can show that {u1, u2, u3}
are orthogonal.

Remark 3. Let us define Wp = {v1, v2, ..., vp}⊥. If supv∈Wp
∥Av∥ = 0, or, Avp+1 = 0, we can

make up+1 (nonzero if possible) to be any vector which is orthogonal to {u1, ..., up}. If up+1 has
to be zero, span{u1, ..., up} = Rm

Repeat the process for n times (why is n the maximum step of the process?), we then can
construct an orthonormal matrix V = [v1, ..., vn] ∈ Rn×n, another matrix with orthonormal
columns U = [u1, ..., un] ∈ Rm×n up to some 0 columns, and a diagonal matrix Σ ∈ Rn×n with
diagonal entries being σ1, ..., σn (up to some 0). Recall the matrix multiplication we have,

AV = UΣ.
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Theorem 1.2. rank(A) equals to the number of nonzero singular values.

Proof. Let us assume {σ1, ..., σp} are all nonzero singular values but σp+1 = 0. Let Vp =
{v1, ..., vp} be the singular vector corresponding to σ1, ...σp. We claim that Vp ⊂ row(A). We
have AV = UΣ, or UTA = ΣV T . The i− th row (i ≤ p) of the right-hand side is σiv

t
i . The i−th

row on the left-hand side is (ui)
tA, it follows that vti =

1
σi
(ui)

tA. This implies that Vp ⊂ row(A).

By theorem in the last section (Complement theorem), null(A) = row(A)⊥ ⊂ V ⊥
p . Now,

for v ∈ V ⊥
p , we have Av = 0, otherwise contradicts with the definition of Vp. As a result,

V ⊥
p ⊂ null(A) = row(A)⊥, or, row(A) ⊂ Vp. It follows that Vp = row(A). We then have

dim(Vp) = rank(A).

As a corollary, Vp = row(A). We summarize the results in the following theorem.

Theorem 1.3. Assume {σ1, ..., σp} are all nonzero singular values, {v1, ..., vp} and {u1, ..., up}
are right and left singular vectors respectively, we denote the space spanned by them as Vp and
Up. The followings are true:

Vp = row(A),

Up = col(A).

Proof. The first one is proved in the last theorem and let us prove Up = col(A). Since V
is unitary, for any y ∈ Rn, there exists ci, u = 1, ..., n such that y =

∑n
i=1 civi. It follows

that Ay =
∑n

i=1 ciAvi =
∑p

i=1 ciσiui. This implies that col(A) ⊂ span{u1, ..., up}. However,
ui =

1
σi
Avi, this implies that ui ∈ col(A).

Full SVD: make U matrix orthonormal when m > n. One can append an additional m − n
orthonormal columns to fulfill this goal. Σ should change as well so that the product AV = UΣ
still holds. To do this, one can append m − n zero rows to the bottom of Σ. As a result, we
have AV = UΣ where V ∈ Rn×n, U ∈ Rm×m and Σ ∈ Rm×n. Since V is orthonormal, we have:

A = UΣV −1.

2 Revisit SVD

2.1 From SVD

Let A ∈ Rm×n. Suppose A admits an SVD A = UΣV t, where U ∈ Rm×n (U is orthogonal if
this is the full SVD), V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is a diagonal matrix.
Let us now consider AAt ∈m×m and AtA ∈ Rn×n, which are symmetric matrices.

AtA = V ΣtU tUΣV t = V ΣtΣV t,

AAt = UΣV tV ΣtU t = UΣΣtU t.

ΣΣ2 and Σ2Σ are still diagonal, and nonzero entries of these two matrices are indeed singular
values squared.

In addition, since U and V are orthogonal (U is orthogonal only when the SVD is full), this
implies that V ΣtΣV t and UΣΣtU t are the eigenvalue decomposition (diagonalization) of AtA
and AAt.
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2.2 From eigenvalue decompostion

Let us recall the Spectral theorem.

Theorem 2.1 (Spectral Theorem). Let A ∈ Cn×n. Then A is Hermitian if and only if there is
a unitary matrix U ∈ Cn×n and a real diagonal matrix D ∈ Rn×n such that A = UDU∗.

AtA is symmetric, and by the Spectral theorem, let {vi}ni=1 be the orthonormal eigenvectors of
AtA corresponding to eigenvalue λ1 ≥ λ2... ≥ λn. We first claim that λ1 ≥ λ2... ≥ λn ≥ 0. We
have,

∥Avi∥2 = (Avi)
tAvi = vtiA

tAvi = λi∥v∥2 ≥ 0,

it implies that λi ≥ 0.

Let σ1 =
√
λ1 for all i. We want to find {uk}k, which are orthonormal, such that,

Avk = σkuk.

When σk ̸= 0, one can define uk = 1
σk
Avk. Let us claim all uk are orthonormal. Let ui, uj be

nonzero and defined as before. We have,

utiuj =
1

σiσj
vtiA

tAvj = vtivj = δij .

The claim is proved. When λp = 0, for some 1 ≤ p ≤ n, we can construct up which is orthogonal
to u1, u2, ..., up−1. If {u1, ..., up−1} have formed a basis for Rm, then set up = 0. Now we can
construct an orthonormal matrix V = [v1, ..., vn] ∈ Rn×n, another matrix with orthonormal
columns U = [u1, ..., un] ∈ Rm×n up to some 0 columns, and a diagonal matrix Σ ∈ Rn×n with
diagonal entries being σ1, ..., σn. The SVD follows: AV = UΣ. One can apply the same trick as
before to make U a square matrix and obtain the full SVD.

Remark 4. Nonzero uk constructed before are eigenvectors of AAt. The proof is simple.

AAtuk = AAt 1

σk
Avk = A

1

σk
AtAvk = Aσkvk = σ2

kuk.

Definition 2.2. L2 norm of a matrix A ∈ Rm×n is defined as:

∥A∥2 = max
x∈Rn,∥x∥=1

∥Ax∥ = max
x∈Rn,x ̸=0

∥Ax∥
∥x∥

= σ1.

In the rest of the notes, we sometimes write ∥ · ∥2 as ∥ · ∥ for simplicity.

Remark 5. For any x ∈ Rn and x ̸= 0, we have, ∥Ax∥
∥x∥ ≤ ∥A∥2. This implies that ∥Ax∥ ≤

∥A∥∥x∥.

Definition 2.3. The Frobenius norm of A ∈ Rm×n is:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2ij .

Theorem 2.4. Frobenius norm can be calculated in the following way,

∥A∥2F =
∑
i

σ2
i .
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Proof. Let the SVD be A = UΣV t. We have ∥A∥2F = trace(AtA), it follows that,

∥A∥2F = trace(V ΣtU tUΣV t) = trace(V ΣtΣV t) = trace(ΣΣt) =
∑
i

σ2
i ,

where we use trace(MN) = trace(NM) in the last equality, where M and N are two matrices
of the proper size.

Theorem 2.5 (Courant Fisher min max). For A ∈ Rm×n, the singular value σi of A satisfy:

σk = max
V⊂Rn,dim(V )=k

min
v∈V,∥v∥=1

∥Av∥,

σk+1 = min
V⊂Rn,dimV=n−k

max
v∈v,∥v∥=1

∥Av∥.

Proof. Let us prove the first one first. Let V be any k− dimensional space. Since dim(span{vk, ..., vn}) =
n − k + 1, V intersects span{vk, ..., vn} nontrivially. Let v be a unit vector in the intersection,
i.e., there exist ck, ..., cn such that, v =

∑n
i=k civi. Moreover, ∥v∥ =

∑n
i=k |ci| = 1. We have,

Av =
∑n

i=k ciσiui, it follows that, ∥Av∥ =
∑n

i=k |ci|σi∥ui∥ ≤ σk. This implies that for any
V of dimension k, there exists v such that ∥Av∥ ≤ σk, i.e., minv∈V,∥v∥=1 ∥Av∥ ≤ σk. Now we
need to find a V such that the equality sign holds, i.e., ∥Av∥ = σk. We claim that V can be
span{v1, ..., vk}, i.e., V ∩span{vk, ..., vn} = span{vk}. Now let v = vk, it follows that ∥Av∥ = σk.
The claim is proved, i.e., maximizing over all V , we can obtain the equal sign.

The second one can be derived similarly. Let V be any (n − k)− dimensional subspace of
Rn, it intersects Vk+1 := span{v1, ..., vk+1} nontrivially, i.e., there exists unit vector v in the
intersection. It follows that, there exist c1, ..., ck+1 such that v =

∑k+1
i=1 civi. We have Av =∑k+1

i=1 ciσiui, it follows that, ∥Av∥ ≥ σk+1. This implies that for any V of dimension n − k,
there exists v such that ∥Av∥ ≥ σk+1, i.e., maxv∈V,∥v∥=1 ∥Av∥ ≥ σk+1. The equality holds when
V = span{vk+1, ..., vn} and v = vk+1.

Theorem 2.6. Every matrix A has an SVD. Furthermore, the singular values are unique. If
A is square and all σi are distinct, the left and right singular vectors are unique up to complex
scalar signs (complex scalar factors of absolute value 1).

Remark 6. If A = UΣV t, where U has orthonormal columns, V is orthogonal, and Σ is diagonal
and has non-negative diagonal entries, then this is an SVD of A.

Proof. ATA = V ΣtΣV T , it is then very easy to see the column of V are the eigenvectors of
ATA, or they are singular vectors of A. Similarly, ΣtΣ diagonal entries are eigenvalues of ATA,
and their positve square roots are singular values of A.

3 Rank k approximation

Let us consider the SVD of A ∈ Rm×n, i.e., A = UΣV t. Recall the matrix multiplication, we
have a decomposition for A as,

A =

n∑
i=1

σiuiv
t
i =

r∑
i=1

σiuiv
t
i ,
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where {σi}ri=1 are all nonzero singular values of A. Let us define an approximation Ak to A as:

Ak =
k∑

i=1

σiuiv
t
i ,

where k ≤ r. It is easy to check rank(Ak) = k. We then can show Ak is the best approximation
to A; the result is summarized in the following theorem.

3.1 Eckart-Young theorem

Theorem 3.1 (Eckart-Young). Suppose A,B ∈ Rm×n and rank(B) = k ≤ rank(A) = r. We
then have:

∥A−B∥ ≥ ∥A−Ak∥ = σk+1.

That is Ak is the best rank k approximation to A in the L2 sense.

Proof. We first prove that ∥A−Ak∥ = σk+1. We have,

A−Ak =

n∑
i=k+1

σiuiv
t
i =

n−k∑
i=1

σi+kui+kv
t
i+k +

n∑
i=n−k+1

σ̃iũiṽ
t
i ,

where σ̃i = 0, ũi are orthonormal to all ui+k, and ṽi are also orthonormal to all vi+k. The
summation is then an SVD of A−Ak. Since ∥A−Ak∥ is equal to the first singular value of its
SVD, we have ∥A−Ak∥ = σk+1.

Assume not, i.e., assume there is B ∈ Rm×n with rank(B) = k such that ∥A−B∥ < ∥A−Ak∥ =
σk+1. For any w ∈ Rn, we have ∥(A − B)w∥ < σk+1∥w∥. It follows that, for any w ∈ null(B),
we have,

∥(A−B)w∥ = ∥Aw∥ < σk+1∥w∥. (1)

Now for any w ∈ Vk+1 = span{v1, v2, ..., vk+1}, we claim that ∥Aw∥ ≥ σk+1∥w∥. Since w ∈ Vk+1,
there exist c1, ..., ck+1, such that w =

∑k+1
i=1 civi. It follows that

∥Aw∥ = ∥
k+1∑
i=1

ciAvi∥ =

k+1∑
i=1

|ci|σi ≥ σk+1∥w∥, (2)

where the last inequality is due to the orthogonality of vi and σ1 ≥ ... ≥ σk+1.

The Rank theorem indicates that dim(null(B)) = n− k, however dim(Vk+1) = k + 1. We then
have dim(null(B)) + dim(Vk+1) > n. Since null(B) and Vk+1 both are subspace of Rn, this
implies that there exists w ̸= 0 such that w ∈ null(B) ∩ Vk+1. However, 1 and 2 cannot hold
simultaneously, which is the contradiction.

Corollary 3.1.1. Suppose A,B ∈ Rm×n and rank(B) ≤ k ≤ rank(A) = r. We then have:

∥A−B∥ ≥ ∥A−Ak∥ = σk+1.

Proof. Let rank(B) = k − j, 0 ≤ j ≤ k, by Eckart-Young, we have ∥A − B∥ ≥ ∥A − Ak−j∥ =
σk−j+1 ≥ σk+1 = ∥A−Ak∥.
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3.2 Eckart-Young theorem (Frobenius)

Corollary 3.1.2. Let the SVD of A be A = UΣV t, and U = [u1, ..., un], V = [v1, ..., vn], and
the diagonal entries of Σ are σ1, ..., σn. Let Ak =

∑k
i=1 σiuiv

t
i , we have,

∥A−Ak∥2F =

n∑
i=k+1

σ2
i .

Proof. Following the proof of the last theorem, we have,

A−Ak =
n∑

i=k+1

σiuiv
t
i =

n−k∑
i=1

σi+kui+kv
t
i+k +

n∑
i=n−k+1

σ̃iũiṽ
t
i ,

where σ̃i = 0, ũi are orthonormal to all ui+k, and ṽi are also orthonormal to all vi+k. We hence
have the SVD of A−Ak. By one theorem in this section,

∥A−AF ∥22 =
n∑

i=k+1

σ2
i +

n∑
i=n−k+1

σ̃2
i =

n∑
i=k+1

σ2
i .

Theorem 3.2 (Weyl). Let A,B ∈ Rm×n, and denote the singular values as σi(A) and σi(B).
We then have:

σi+j−1(A+B) ≤ σi(A) + σj(B). (3)

Proof. Let VA, and VB be the subspace of Rn of dimensions n−k and n− l, which are orthogonal
to the first k and l right singular vectors of A and B respectively. Let W = VA ∩ VB, we have
dim(W ) ≥ n− k − l. It follows that,

max
v∈W,∥v∥=1

∥Av +Bv∥ ≤ max
v∈W,∥v∥=1

∥Av∥+ ∥Bv∥ ≤ σk+1 + σl+1.

By Courant-Fisher,

σk+l+1(A+B) = min
V⊂Rn,dimV=n−k−l

max
v∈v,∥v∥=1

∥Av +Bv∥ ≤ max
v∈W,∥v∥=1

∥Av +Bv∥ = σk+1 + σl+1.

Weyl’s inequality will help us prove the Eckart-Young for the Frobenius norm.

Theorem 3.3 (Eckart-Young Frobenius). SupposeA,B ∈ Rm×n and rank(B) = k ≤ rank(A) =
r. We then have:

∥A−B∥2F ≥ ∥A−Ak∥2F =
∑

i=k+1

σ2
i .

That is Ak is the best rank k approximation to A in the Frobenius sense.
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Proof. Let X = A−B and Y = B and apply Weyl’s inequality 3.2,

σi+k(A) ≤ σi(A−B) + σk+1(B) = σi(A−B),

where is last equal sign is due to rank(B) = k. Apply Corollary 3.1.2, it follows that,

∥A−Ak∥2F

=
r∑

i=k+1

σi(A)2 =
r−k∑
i=1

σ2
i+k(A) ≤

r−k∑
i=1

σ2
i (A−B) ≤

min(m,n)∑
i=1

σ2
i (A−B) = ∥A−B∥2F .

A direct consequence of the Eckart-Young for the Frobenius norm is the proper orthogonal
decomposition (POD).

3.3 Proper orthogonal decomposition (POD)

Given A = [y1, y2, ..., yn] ∈ Rm×n, and a set of orthonormal vectors Q = [x1, ..., xk] ∈ Rm×k, one
wants to solve the following problem:

min
Q

n∑
i=1

∥yi −
k∑

j=1

< yi, xj > xj∥2. (4)

We claim that the equation 4 is equivalent to the matrix form,

n∑
i=1

∥yi −
k∑

j=1

< yi, xj > xj∥2 = ∥A−QQtA∥2F . (5)

Denote the matrix as columns, i.e., ∥A − QQtA∥F = ∥[y1 − QQT y1, ..., yn − QQtyn]∥F ; and
denote yi −QQT yi as zi ∈ Rm, it follows that,

∥[y1 −QQT y1, ..., yn −QQtyn]∥2F =
n∑

i=1

m∑
j=1

z2ji =
n∑

i=1

∥zi∥2 =
n∑

i=1

∥yi −QQtyi∥2.

It is not hard to see QQtyi =
∑k

j=1 < yi, xj > xj . The claim is proved. Apply the Eckart-Young
theorem for the Frobenius norm; we then have the POD theorem.

Theorem 3.4. Given A = [y1, y2, ..., yn] ∈ Rm×n with rank r. For any k ≤ r, we consider,

min
Q

n∑
i=1

∥yi −
k∑

j=1

< yi, xj > xj∥2, (6)

where Q = [x1, ..., xk] ∈ Rm×k is a set of orthonormal vectors. The minimum is given by the
left singular vectors of A, which are also called proper orthogonal modes. Denote the singular
values of A as σi, the minimum is equal to

∑r
i=k+1 σ

2
i .

Proof. The only statement left to prove is QQTA = Ak if Q = [u1, ..., uk] and uk are the singular
vectors. We have,

QQTA = [u1, u2, ..., uk][u1, u2, ..., uk]
tA =

k∑
i=1

uiu
t
iA.
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We have Avi = σiui or A
TAvi = σiA

tui. Take transpose, vtiA
TA = σiu

t
iA. Substitute back, we

have

QQTA =
k∑

i=1

uiu
t
iA =

k∑
i=1

ui
1

σi
vtiA

tA.

However, the definition of the singular values: is AtAvi = σ2
i vi. It follows that

QQTA =
k∑

i=1

uiu
t
iA =

k∑
i=1

ui
1

σi
vtiA

tA =
k∑

i=1

σiuiv
t
i = Ak. (7)
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