
Iterative methdos

Zecheng Zhang

April 24, 2023

1 Eigenvalue problem

We will consider symmetric matrix A ∈ Rm×m. We define the Rayleigh Quotient,

r(x) =
xtAx

xtx
. (1)

Note that if x is an eigenvector of A, r(x) = λ is its eigenvalue.

One way to understand this formula is: given x, what is the scale α which acts almost like an
eigenvalue of x in the sense that Ax − αx is minimized? This is a least square problem, but x
is the matrix α is the unknown vector, and Ax is the right-hand side b vector. We can see that
α = r(x) if we consider the normal equation.

Take the derivative of r(x) with respect to all component xj of x, we can easily derive that,

∇r(x) =
2

xtx
(Ax− r(x)x). (2)

We can see that when x is the eigenvector, the gradient vanishes. Conversely, if the gradient is
trivial with x ̸= 0, x is an eigenvector with eigenvalue r(x).

Theorem 1.1. Let qj be an eigenvector of A, we have

r(x)− qj = O(∥x− qj∥2), (3)

as x → qj .

The Power iteration is expected to return an eigenvector corresponding to the largest eigenvalues.

Algorithm 1: Power Iteration

1 Set v0 with ∥v0∥ = 1.
2 for k = 1 to ... do
3 w = Avk

4 vk = w/∥w∥
5 λk = (vk)TAvk

Theorem 1.2. Suppose |λ1| > |λ2| ≥ ... ≥ |λm| ≥ 0 and qT1 v
0 ̸= 0. Then the algorithm satisfies,

∥vk − q1∥ = O(
∣∣λ2

λ1

∣∣k), (4)

|λk − λ1| = O(
∣∣λ2

λ1

∣∣2k), (5)

as k → ∞

1

Remark 1. Power iteration has some limitations.

1. It can only find the largest eigenvectors corresponding to the largest eigenvalues.

2. The convergence is linear, i.e., the algorithm reduces the error by a factor |λ2
λ1
) in every

iteration.

3. The quality of the convergence depends on the quotient. If there is no huge eigen-gap, the
convergence is slow.

1.1 Inverse Iteration

Let µ be a number which is not an eigenvalue of A, the eigenvectors of (A−µI)−1 are the same
as the eigenvectors of A, and the coresponding eigenvalues are (λj − µ)−1, where {λj} are the
eigenvalues of A.

This motivates us to design an algorithm to identify λj and the corresponding eigenvectors of A.
Suppose we know any estimate of λj and denote it as µ. (µ−λj)

−1 will be very large. According
to the Remark, the power iteration can identify qj , which are the eigenvectors of (A − µI)−1

(also the eigenvectors of A). This idea is called the inverse iteration.

Algorithm 2: Inverse iteration

1 v0 = some vectors with norm 1
2 for k = 1 to ... do
3 Solve (A− µI)w = vk−1 for w

4 vk = w/∥w∥
5 λk = (vk)TAvk.

Rayleigh quotient is one method to estimate eigenvalues from an eigenvector estimation. Inverse
iteration is an estimate of the eigenvector from the eigenvalues.

Algorithm 3: RQ iteration

1 v0 = some vectors with norm 1
2 λ0 = v0Av0 = coresponding Rayleigh quotient.
3 for k = 1 to ... do
4 Solve (A− λk−1I)w = vk−1 for w

5 vk = w/∥w∥
6 λk = (vk)TAvk.

Without proof, the Rayleigh Quotient iteration has cubic convergence.

2 Reduction to Hessenberg form

Schur factorization returns A = QTQ∗, where T is a triangular matrix, i.e., we would like to
apply unitary similarity transformation to introduce zeros below the diagonal. The natural first
idea is to use the Householder.

2

The first Householder reflector Q∗
1 multiplied on the left of A would introduce zeros below the

diagonal in the first column, and the Householder reflector will change all rows of A. This is
good up to now; however, if we complete the process of multiplying Q1 on the right, all zeros
previously introduced are destroyed. We will verify this in class.

The good idea in step 1 is to choose a unitary matrix Q∗
1 that will leave the first row unchanged.

It will change the second row to the last row and introduce zeros below the second entry in the
first column. It can be verified that the right multiplication by Q1 will not change the zeros
introduced by Q∗

1. After repeating this process for m − 2 times, the resulting matrix is in the
Hessenberg form, denoted as H.

Algorithm 4: Reduction to Hessenberg

1 for k = 1 to m− 2 do
2 x = Ak+1:m,k

3 vk = (sign(x1))∥x∥2e1 + x
4 vk = vk/∥vk∥
5 Ak+1:m,k:m = Ak+1:m,k:m − 2vkv

∗
kAk+1:m,k:m

6 A1:m,k+1:m = A1:m,k+1:m − 2A1:m,k+1:mvkv
∗
k

When A is Hermitian, H is symmetric, then H is a tridiagonal matrix.

3 QR Algorithm

Algorithm 5: QR Algorithm

1 A1 = A
2 for k = 1 to ... do
3 QkRk = Ak

4 Ak+1 = RkQk.

The algorithm converges to the Schur form of the matrix A. Specifically, suppose A admits the
Schur decomposition A = UTUT , then Ak converges to T .

Remark 2. Some properties regarding the algorithm.

1. Ak+1 = RkQk, since Ak = QkRk, Rk = Qt
kAk, this implies that Ak+1 = Qt

kAkQk. That
is, all Ak are unitarily similar to each other, i.e., eigenvalues of all Ak and A are the same.
Since Ak converges to T , we have the eigenvalues of A.

2. Let us define Q(k) = Q1Q2...Qk and R(k) = RkRk−1...R1, we have the following theorem.

Property 3.0.1. (a) Ak+1 = (Q(k))tAQ(k).

(b) Ak = Q(k)R(k).

Proof. The property (a) is trivial to prove and let us the property (b). Let us prove by
induction. k = 1 case is trivial. Suppose Ak−1 = Q(k−1)R(k−1) is true. By the property
(a) and the algorithm definition, we have,

Ak = (Q(k−1))tAQ(k−1) = QkRk. (6)

3

Multiplying both sides by Q(k−1), it follows that AQ(k−1) = Q(k−1)QkRk. Substitute into
the assumption,

Ak = AAk−1 = AQ(k−1)R(k−1) = Q(k−1)QkRkR
(k−1) = Q(k)R(k). (7)

The property provides us with one way to compute the QR factorization of matrix power.
It can be shown that, this algorithm is stable.

We now intuitively explain the connection between QR and the Power iteration. It can be shown
that columns of Ak are dominated by the “leading” eigenvector x1 of A, i.e., Ax1 = λ1x1. Let
us consider Ake1 = Q(k)R(k)e1 = cq1, where q1 is the first column of Q(k) scaled by constant
c. This implies that the leading eigenvector of A is related to q1. Property (a) shows that
Ak+1 = (Q(k))tAQ(k) and Ak+1 is the Schur form of A, this indicates that q1 is the eigenvector
of A and Ak+1[1, 1] is the corresponding eigenvalue.

3.1 Shifted QR

Algorithm 6: Shifted QR Algorithm

1 A1 = A
2 for k = 1 to ... do
3 QkRk = Ak − skI
4 Ak+1 = RkQk + skI.

If sk ∼ λn, then Ak+1[m,m] ∼ λm. It can be shown that (A − skI)(A − skI)...(A − skI) =
Q(k)R(k).

3.2 Preprocessing

For QR and shifted QR, we need to run Householder to QR the matrix Ak in each iteration.
The cost is m3 for one QR, this is very costly. It is important to find a good initial condition to
reduce the number of iterations.

As we have discussed before, Ak[m,m] converges to λm. Motivated by the inverse iteration,
the iterative algorithm will find it very fast if we choose sk closed to λm. We can choose
sk = Ak[m,m] or some number that is close to Ak[m,m].

One method that works well is to reduce the matrix A to the Hessenberg form. Hessenberg form
is different from the Schur form, but it is very close to the upper triangular form.

4 Iterative methods

In this section, let us consider matrix A ∈ Rm×m. The iterative methods has a structure
xn+1 = ϕ(xn), where xn is the output of n− step and ϕ is the algorithm. Broadly speaking, the
idea of iterative methods is to:

1. Gradually refine the solution iteratively.

4

2. Each iteration should be (a lot) cheaper than direct methods.

3. Iterative methods can be (but not always) much faster than direct methods.

4. Tends to be (slightly) less robust, nontrivial/problem-dependent analysis. After (n3) steps,
it often gets the exact solution (ignoring roundoff errors). But one would hope to get an
acceptably good solution long before that

The big idea behind Krylov subspace methods is to approximate the solution in terms of a
polynomial of the matrix times a vector. Namely, in Krylov subspace methods, we look for an
(approximate) solution of the form

pk−1(A)v, (8)

where pk−1 is a polynomial of degree at most k − 1, v is the initial vector. Here pk−1(A) =∑k−1
i=0 ciA

i for some coefficients ci ∈ R.
One example is the Power method. We represent the eigenvector of A as Ak−1v, which is a
special case of pk−1(A).

Now the goal is to find an approximation solution x̂ = pk−1(A)b in Krylov subspace

Kn(A, b) = span{b, Ab,A2b, ..., An−1b}. (9)

You would want to convince yourself that any vector in the Krylov subspace can be written as
a polynomial of A times the vector b. The claim can be verified very easily. let v ∈ Kn, i.e.,
v =

∑n−1
i=0 ciA

ib = b
∑n−1

i=0 ciA
i. Let p(z) =

∑n−1
i=0 ciz

i, we are done.

An important and non-trivial step towards finding a good solution is to form an orthonormal
basis for the Krylov subspace, or we want to find {q1, ..., qn} which is a set of orthonormal vectors
which span the same space as Kn.

Algorithm 7: Arnoldi Iteration

1 Set up b and q1 = b/∥b∥.
2 for n = 1 to ... do
3 v = Aqn.
4 for j = 1 to n do
5 hjn = qTj v,

6 v = v − hjnqj .

7 hn+1,n = ∥v∥,
8 qn+1 = v/hn+1,n.

We have remarks regarding the algorithm. Firstly, we can see that span{b, Ab,A2b, ..., Ak−1b} =
span{q1, ..., qk−1}. Secondly, at k−th step, we have

Aqn − h1nq1 − h2nq2 − ...− hnnqn = hn+1,nqn+1, (10)

or we have,

Aqn = h1nq1 + h2nq2 + ...+ hnnqn + hn+1,nqn+1. (11)

5

We can write it in the matrix form. Specifically, we have,

A[q1, ..., qn] = [q1, ..., qn+1]


h11 ... h1n
h21 ... h2n
...
0 hn,n−1 hnn
0 ... hn+1,n


︸ ︷︷ ︸

H̃n

. (12)

Here H̃n ∈ Rn+1,n ∈ R(n+1)×n, note that the upper section of this matrix is a Hessenberg matrix.
Let use further denote Qn = [q1, ..., qn] ∈ Rm×n and Qn+1 = [q1, ..., qn+1] ∈ Rm×(n+1).

hn+1,n may be equal to 0, this is called a breakdown of the Arnoldi iteration, but it is a breakdown
of a benigh sort. For the computaion of the eigenvalue and solving system of equations, the
breakdown means that convergence has happened, and iteration terminates. Alternatively, a
new orthonormal vector qn+1 could be selected at random.

We can write equation 11 in another form. Specifically,

AQn = Qn


h11 ... h1n
h21 ... h2n
... 0 hn−1,n

0 hn,n−1 hnn


︸ ︷︷ ︸

Hn

+[0, 0, ..., qn+1][0, ..., hn+1,nen+1] (13)

HereHn is a square matrix and is called the Hessenberg matrix. It is not hard to seeQt
n[0, ..., qn+1] =

0, this implies that Qt
nAQn = Hn. Consequently, if A is symmetric, Hn is a tri-diagonal matrix.

We have discussed that any vector in the Krylov subspace can be written as p(A)b for some
polynomial p, the ierative method can be analyzed as finding the polynomial of A. We here
define the Arnoldi approximation problem.

Definition 4.1. Find pn ∈ Pn such that,

∥pn(A)b∥ (14)

is minimized. Here Pn(·) is the monic polynomials of degree n.

Theorem 4.2. As long as Arnoldi iteration does not break down (Kn is of full rank), the
Arnoldi approximation problem has a unique solution pn, this polynomial is the characteristic
polynomial of Hn.

Proof. For p ∈ Pn, p(A)b ∈ Kn+1, consequently, p(A)b = Anb − Qny for some y. This turns
to be a least square problem: find y such that ∥An −Qny∥ is minimized, or, find points in Kn

closest to Anb. The solution satisfies that p(A)b be orthogonal with Qn, or, 0 = Q∗
np(A)b.

Let us now factor A = QHQ∗. At n−th step, we have computed the first n columns of Q and
H. There exist U ∈∈ Rm×(m−n) with orthonormal columns and satisfies Q∗

nU = 0 and some
other matrices X1, X2 with upper right entry equal to 0, and X3 such that,

Q = [Qn, U], (15)

and

H =

[
H1 X1

X2 X3

]
. (16)

6

It follows from the orthogonality condition that

Q∗
nQpn(H)Q∗b = 0 = Q∗

n[QnU]pn(H)Q∗b = [pn(H), 0]e1∥b∥ = 0. (17)

This amounts to the condition that the first n entries of pn(H) are zeros. Because of the
structure of H, pn(Hn) has the same structure. By the Cayley-Hamilton, theory, we can choose
the characteristic polynomial of Hn as one candidate polynomial. We now prove the uniqueness.
Suppose there is another polynomial pn which satisfies pn(A)b ⊥ Kn. Take the difference would
give a nonzero polynomial q of order n−1 with q(A)b = 0. This contradicts with the assumption
that Kn is of full rank.

7

	Eigenvalue problem
	Inverse Iteration

	Reduction to Hessenberg form
	QR Algorithm
	Shifted QR
	Preprocessing

	Iterative methods

