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1 Eigenvalue problem

We will consider symmetric matrix A 2 Rm⇥m. We define the Rayleigh Quotient,

r(x) =
x
t
Ax

xtx
. (1)

Note that if x is an eigenvector of A, r(x) = � is its eigenvalue.

One way to understand this formula is: given x, what is the scale ↵ which acts almost like an
eigenvalue of x in the sense that Ax � ↵x is minimized? This is a least square problem, but x
is the matrix ↵ is the unknown vector, and Ax is the right-hand side b vector. We can see that
↵ = r(x) if we consider the normal equation.

Take the derivative of r(x) with respect to all component xj of x, we can easily derive that,

rr(x) =
2

xtx
(Ax� r(x)x). (2)

We can see that when x is the eigenvector, the gradient vanishes. Conversely, if the gradient is
trivial with x 6= 0, x is an eigenvector with eigenvalue r(x).

Theorem 1.1. Let qj be an eigenvector of A, we have

r(x)� qj = O(kx� qjk
2), (3)

as x ! qj .

The Power iteration is expected to return an eigenvector corresponding to the largest eigenvalues.

Algorithm 1: Power Iteration

1 Set v0 with kv0k = 1.
2 for k = 1 to ... do
3 w = Av

k

4 v
k = w/kwk

5 �
k = (vk)TAvk

Theorem 1.2. Suppose |�1| > |�2| � ... � |�m| � 0 and q
T
1 v

0
6= 0. Then the algorithm satisfies,

kv
k
� q1k = O(

���2

�1

��k), (4)

|�
k
� �1| = O(

���2

�1

��2k), (5)

as k ! 1
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Remark 1. Power iteration has some limitations.

1. It can only find the largest eigenvectors corresponding to the largest eigenvalues.

2. The convergence is linear, i.e., the algorithm reduces the error by a factor |
�2
�1
) in every

iteration.

3. The quality of the convergence depends on the quotient. If there is no huge eigen-gap, the
convergence is slow.

1.1 Inverse Iteration

Let µ be a number which is not an eigenvalue of A, the eigenvectors of (A�µI)�1 are the same
as the eigenvectors of A, and the coresponding eigenvalues are (�j � µ)�1, where {�j} are the
eigenvalues of A.

This motivates us to design an algorithm to identify �j and the corresponding eigenvectors of A.
Suppose we know any estimate of �j and denote it as µ. (µ��j)�1 will be very large. According
to the Remark, the power iteration can identify qj , which are the eigenvectors of (A � µI)�1

(also the eigenvectors of A). This idea is called the inverse iteration.

Algorithm 2: Inverse iteration

1 v
0 = some vectors with norm 1

2 for k = 1 to ... do
3 Solve (A� µI)w = v

k�1 for w

4 v
k = w/kwk

5 �
k = (vk)TAvk.

Rayleigh quotient is one method to estimate eigenvalues from an eigenvector estimation. Inverse
iteration is an estimate of the eigenvector from the eigenvalues.

Algorithm 3: RQ iteration

1 v
0 = some vectors with norm 1

2 �
0 = v

0
Av

0 = coresponding Rayleigh quotient.
3 for k = 1 to ... do
4 Solve (A� �

k�1
I)w = v

k�1 for w

5 v
k = w/kwk

6 �
k = (vk)TAvk.

Without proof, the Rayleigh Quotient iteration has cubic convergence.

2 Reduction to Hessenberg form

Schur factorization returns A = QTQ
⇤, where T is a triangular matrix, i.e., we would like to

apply unitary similarity transformation to introduce zeros below the diagonal. The natural first
idea is to use the Householder.
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The first Householder reflector Q⇤
1 multiplied on the left of A would introduce zeros below the

diagonal in the first column, and the Householder reflector will change all rows of A. This is
good up to now; however, if we complete the process of multiplying Q1 on the right, all zeros
previously introduced are destroyed. We will verify this in class.

The good idea in step 1 is to choose a unitary matrix Q
⇤
1 that will leave the first row unchanged.

It will change the second row to the last row and introduce zeros below the second entry in the
first column. It can be verified that the right multiplication by Q1 will not change the zeros
introduced by Q

⇤
1. After repeating this process for m � 2 times, the resulting matrix is in the

Hessenberg form, denoted as H.

Algorithm 4: Reduction to Hessenberg

1 for k = 1 to m� 2 do
2 x = Ak+1:m,k

3 vk = (sign(x1))kxk2e1 + x

4 vk = vk/kvkk

5 Ak+1:m,k:m = Ak+1:m,k:m � 2vkv⇤kAk+1:m,k:m

6 A1:m,k+1:m = A1:m,k+1:m � 2A1:m,k+1:mvkv
⇤
k

When A is Hermitian, H is symmetric, then H is a tridiagonal matrix.

3 QR Algorithm

Algorithm 5: QR Algorithm

1 A1 = A

2 for k = 1 to ... do
3 QkRk = Ak

4 Ak+1 = RkQk.

The algorithm converges to the Schur form of the matrix A. Specifically, suppose A admits the
Schur decomposition A = UTU

T , then Ak converges to T .

Remark 2. Some properties regarding the algorithm.

1. Ak+1 = RkQk, since Ak = QkRk, Rk = Q
t
kAk, this implies that Ak+1 = Q

t
kAkQk. That

is, all Ak are unitarily similar to each other, i.e., eigenvalues of all Ak and A are the same.
Since A

k converges to T , we have the eigenvalues of A.

2. Let us define Q
(k) = Q1Q2...Qk and R

(k) = RkRk�1...R1, we have the following theorem.

Property 3.0.1. (a) Ak+1 = (Q(k))tAQ(k).

(b) A
k = Q

(k)
R

(k).

Proof. The property (a) is trivial to prove and let us the property (b). Let us prove by
induction. k = 1 case is trivial. Suppose A

k�1 = Q
(k�1)

R
(k�1) is true. By the property

(a) and the algorithm definition, we have,

Ak = (Q(k�1))tAQ(k�1) = QkRk. (6)
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Algorithm 4 Reduction to Hessenberg A GIRMM

For k =1 tO m-2

I
X x X

I->xX X X

x
=Ak+:m, k

->*X
-

VR = - IX e, +X ⑦ x x

Um =Vm/lNall

Q4A- Aptlim, Kim =Aptiom, kim-2 UrUp Antin, him

QuAQR Alim, Rttim = Alimsktlim - 2 Alimcht/imUrUn

an[Ia*A*]

Q1:Whatis the computational cost?

Household: 0 (m)

Total cost: 20 (m)

&2. The algo is b/w stable.

A =RAGY. Lt&I be the outputof the algo,
in



3. QR for eigenvalue.

A z1RM. symmetric
I Al

=A

2 for k = 1, to,---

3 QmRn=AR, (QR of AR).

4 Akt1 =RRGR

output:Apt

Apt-> Schur form of A.

A GIR**, A:NTN*, T:schur form of A.
↑

schur factorization.

P.P. AbH =RRQk. -> line 4.

Line 3 =>RR =Qp* AR
-- QRRR

=AR

Antl =Rp ARQR, Abel is unitarily similar to AR.

=>Ants & Ar have the same

e. vals.

P.P. (a) GM =Q,G... QR /
R=RmRn----R,



AR+=(Q)
*

A QM W

(b) A
=
aR')

pf:letus prove by the mathematical induction.

Step 1:This
is true for At

Assume
AP* =G'*R(-)

Step 2,

Step 3.

An P(a), a*))+ A Q
'*
le QRRn

AG=&*QRRR
I

AR =A. Akt
assumption A.q(b),

(h+)
I

- 2. QpRRR

-
&(k) pIR).

B

The algo provides us a way to calculatethe QR of

AP



Relation w/ power iteration.

the cols of AR are
dominanted by the leading-

e:genvectors of A ( eig-vector corresponding to
-

the largesteig-value)



Multiplying both sides by Q
(k�1), it follows that AQ(k�1) = Q

(k�1)
QkRk. Substitute into

the assumption,

A
k = AA

k�1 = AQ
(k�1)

R
(k�1) = Q

(k�1)
QkRkR

(k�1) = Q
(k)

R
(k)

. (7)

The property provides us with one way to compute the QR factorization of matrix power.
It can be shown that, this algorithm is stable.

We now intuitively explain the connection between QR and the Power iteration. It can be shown
that columns of Ak are dominated by the “leading” eigenvector x1 of A, i.e., Ax1 = �1x1. Let
us consider A

k
e1 = Q

(k)
R

(k)
e1 = cq1, where q1 is the first column of Q(k) scaled by constant

c. This implies that the leading eigenvector of A is related to q1. Property (a) shows that
Ak+1 = (Q(k))tAQ(k) and Ak+1 is the Schur form of A, this indicates that q1 is the eigenvector
of A and Ak+1[1, 1] is the corresponding eigenvalue.
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