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1 Eigenvalue problem

We will consider symmetric matrix A € R™*™. We define the Rayleigh Quotient,

2t Ax

r(z) =

Note that if = is an eigenvector of A, r(z) = X is its eigenvalue.

(1)

xle

One way to understand this formula is: given x, what is the scale a which acts almost like an
eigenvalue of x in the sense that Az — ax is minimized? This is a least square problem, but z
is the matrix a is the unknown vector, and Ax is the right-hand side b vector. We can see that
a = r(x) if we consider the normal equation.

Take the derivative of 7(x) with respect to all component z; of z, we can easily derive that,
2
v = —(Ax — . 2
() = —(Az — r(z)a) 2)

We can see that when «x is the eigenvector, the gradient vanishes. Conversely, if the gradient is
trivial with « # 0, x is an eigenvector with eigenvalue r(x).

Theorem 1.1. Let g; be an eigenvector of A, we have

r(@) =g = Oz — g%, (3)

as T — qj.

The Power iteration is expected to return an eigenvector corresponding to the largest eigenvalues.

Algorithm 1: Power Iteration

Set vg with |lvg|| = 1.
for k=1 to ... do

w = AvF

ok = w/|w]|

N = (vF)T AvF

Theorem 1.2. Suppose |A1| > |A2| > ... > [A\n| > 0 and g7 v° # 0. Then the algorithm satisfies,

A2 (k
[o* —arll = 0( 1), (4)
1
A2 |2k
A== O ), (5)
1

as k — oo
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Remark 1. Power iteration has some limitations.

1. It can only find the largest eigenvectors corresponding to the largest eigenvalues.

2. The convergence is linear, i.e., the algorithm reduces the error by a factor \i—f) in every
iteration.

3. The quality of the convergence depends on the quotient. If there is no huge eigen-gap, the
convergence is slow.

1.1 Inverse Iteration

Let 1 be a number which is not an eigenvalue of A, the eigenvectors of (4 — uI)~! are the same
as the eigenvectors of A, and the coresponding eigenvalues are (A\; — )%, where {\;} are the
eigenvalues of A.

This motivates us to design an algorithm to identify A\; and the corresponding eigenvectors of A.
Suppose we know any estimate of \; and denote it as p. (p— )\j)_l will be very large. According
to the Remark, the power iteration can identify ¢;, which are the eigenvectors of (A — pul )1
(also the eigenvectors of A). This idea is called the inverse iteration.

Algorithm 2: Inverse iteration

1% = some vectors with norm 1
for k=1 to...do
Solve (A — ul)w = v*=! for w
ok = w/|w]|

Mo = (vM)T Avk,

Rayleigh quotient is one method to estimate eigenvalues from an eigenvector estimation. Inverse
iteration is an estimate of the eigenvector from the eigenvalues.

Algorithm 3: RQ iteration

vY = some vectors with norm 1

A0 = 09400 = coresponding Rayleigh quotient. for k =1 to ... do
Solve (A — A\=11)w = vF=1 for w
vt = w/||w|

M= (vM)T Avk,

Without proof, the Rayleigh Quotient iteration has cubic convergence.

2 Reduction to Hessenberg form

Schur factorization returns A = QT'Q*, where T' is a triangular matrix, i.e., we would like to
apply unitary similarity transformation to introduce zeros below the diagonal. The natural first
idea is to use the Householder.

The first Householder reflector Q7 multiplied on the left of A would introduce zeros below the
diagonal in the first column, and the Householder reflector will change all rows of A. This is
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good up to now; however, if we complete the process of multiplying ()1 on the right, all zeros
previously introduced are destroyed. We will verify this in class.

The good idea in step 1 is to choose a unitary matrix ()7 that will leave the first row unchanged.
It will change the second row to the last row and introduce zeros below the second entry in the
first column. It can be verified that the right multiplication by (1 will not change the zeros
introduced by Q7. After repeating this process for m — 2 times, the resulting matrix is in the
Hessenberg form, denoted as H.

Algorithm 4: Reduction to Hessenberg
for k=1tom—2do
€T = Ak+1:m,k
v = (sign(z1))||x]|2e1 +
v = v/ || vk
AkJrl:m,k:m = Ak+1:m,k:m - 2kaZAk+1:m,k:m
Al:m,k+1:m = Al:mk—l—l:m - 2A1:m,k+1:mvkvz

When A is Hermitian, H is symmetric, then H is a tridiagonal matrix.
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