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1 Eigenvalue problem

We will consider symmetric matrix A 2 Rm⇥m. We define the Rayleigh Quotient,

r(x) =
x
t
Ax

xtx
. (1)

Note that if x is an eigenvector of A, r(x) = � is its eigenvalue.

One way to understand this formula is: given x, what is the scale ↵ which acts almost like an
eigenvalue of x in the sense that Ax � ↵x is minimized? This is a least square problem, but x
is the matrix ↵ is the unknown vector, and Ax is the right-hand side b vector. We can see that
↵ = r(x) if we consider the normal equation.

Take the derivative of r(x) with respect to all component xj of x, we can easily derive that,

rr(x) =
2

xtx
(Ax� r(x)x). (2)

We can see that when x is the eigenvector, the gradient vanishes. Conversely, if the gradient is
trivial with x 6= 0, x is an eigenvector with eigenvalue r(x).

Theorem 1.1. Let qj be an eigenvector of A, we have

r(x)� qj = O(kx� qjk
2), (3)

as x ! qj .

The Power iteration is expected to return an eigenvector corresponding to the largest eigenvalues.

Algorithm 1: Power Iteration

1 Set v0 with kv0k = 1.
2 for k = 1 to ... do
3 w = Av

k

4 v
k = w/kwk

5 �
k = (vk)TAvk

Theorem 1.2. Suppose |�1| > |�2| � ... � |�m| � 0 and q
T
1 v

0
6= 0. Then the algorithm satisfies,

kv
k
� q1k = O(

���2

�1

��k), (4)

|�
k
� �1| = O(

���2

�1

��2k), (5)

as k ! 1
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Remark 1. Power iteration has some limitations.

1. It can only find the largest eigenvectors corresponding to the largest eigenvalues.

2. The convergence is linear, i.e., the algorithm reduces the error by a factor |
�2
�1
) in every

iteration.

3. The quality of the convergence depends on the quotient. If there is no huge eigen-gap, the
convergence is slow.

1.1 Inverse Iteration

Let µ be a number which is not an eigenvalue of A, the eigenvectors of (A�µI)�1 are the same
as the eigenvectors of A, and the coresponding eigenvalues are (�j � µ)�1, where {�j} are the
eigenvalues of A.

This motivates us to design an algorithm to identify �j and the corresponding eigenvectors of A.
Suppose we know any estimate of �j and denote it as µ. (µ��j)�1 will be very large. According
to the Remark, the power iteration can identify qj , which are the eigenvectors of (A � µI)�1

(also the eigenvectors of A). This idea is called the inverse iteration.

Algorithm 2: Inverse iteration

1 v
0 = some vectors with norm 1

2 for k = 1 to ... do
3 Solve (A� µI)w = v

k�1 for w

4 v
k = w/kwk

5 �
k = (vk)TAvk.

Rayleigh quotient is one method to estimate eigenvalues from an eigenvector estimation. Inverse
iteration is an estimate of the eigenvector from the eigenvalues.

Algorithm 3: RQ iteration

1 v
0 = some vectors with norm 1

2 �
0 = v

0
Av

0 = coresponding Rayleigh quotient. for k = 1 to ... do
3 Solve (A� �

k�1
I)w = v

k�1 for w

4 v
k = w/kwk

5 �
k = (vk)TAvk.

Without proof, the Rayleigh Quotient iteration has cubic convergence.

2 Reduction to Hessenberg form

Schur factorization returns A = QTQ
⇤, where T is a triangular matrix, i.e., we would like to

apply unitary similarity transformation to introduce zeros below the diagonal. The natural first
idea is to use the Householder.

The first Householder reflector Q⇤
1 multiplied on the left of A would introduce zeros below the

diagonal in the first column, and the Householder reflector will change all rows of A. This is
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Inverse iteration is also linear.

Rayleigh quotient
Power iteration: approximation of approximation

->
of the eigenvalue

the eigenvector Thalil

Inverse iteration: approximation of ->approximation of

the eigen
value the eigenvector.

(M)

Algorith Rayleigh quotientiteration.

Wol, (v(0)11 =
1

4) =(v10)*A Vol (Rayleigh quotient)

for R =1,2,--.

Solve (A-x-I(w
=v) for wo

wikl - w/Iwil

x) =(VM) +Avin) Rayleigh quotient



Rayleigh quotientiteration
has acid order

convergence.

11 vik- Ej11
=0 (luM-1;)



good up to now; however, if we complete the process of multiplying Q1 on the right, all zeros
previously introduced are destroyed. We will verify this in class.

The good idea in step 1 is to choose a unitary matrix Q
⇤
1 that will leave the first row unchanged.

It will change the second row to the last row and introduce zeros below the second entry in the
first column. It can be verified that the right multiplication by Q1 will not change the zeros
introduced by Q

⇤
1. After repeating this process for m � 2 times, the resulting matrix is in the

Hessenberg form, denoted as H.

Algorithm 4: Reduction to Hessenberg

1 for k = 1 to m� 2 do
2 x = Ak+1:m,k

3 vk = (sign(x1))kxk2e1 + x

4 vk = vk/kvkk

5 Ak+1:m,k:m = Ak+1:m,k:m � 2vkv⇤kAk+1:m,k:m

6 A1:m,k+1:m = A1:m,k+1:m � 2A1:m,k+1:mvkv
⇤
k

When A is Hermitian, H is symmetric, then H is a tridiagonal matrix.

3

Schur factorization.

A GIRM, A=QTQ*,

&is unitary, T is upper triangular

diagonal entries of T are

equals of
A.



** AQ =T

Everytime, we can
introduce some zeros below

the diagonal entries of
A.

AtStep 1,
xxx x

I
X xx

X

I 0 X x X

x
xxYrecover. O x X X I

X
x X

0 X x X

X X X X reflector

④,
*

A
A

Q.
*can be the Householder reflector

however all lows will be modified.



Now Q A Q., whatis the structure of

②*AQ,?

consider the

To study this,
letus consider [transpose of I

Q.*AQ target

a(*a)

X 00
0

I areIX x X
->

O
XI x xx

* i *
X

X x X X

** (QYA)*
(QA)

*

Finally, iftranspose,

O

aa= I ④



Hessenbergform

Atstep
1

X xx X

X X X X

I X X X X I Q I X X X X Ix

--
⑧ X x X

- x X Householder
x X

X X X X reflector 0
X

↳-3 rows will be Q*A.
A

modified butthe 1st row

is unchanged.

Study (Q4A Q)
*

X
⑮ 0 X x 0 O

Q
X x X X

I xxxx I - I X X IX X X O
X

xxX 0
-> only row 234

0 xX X

Y

will↓ be modified,
(a,*a Qi)

*

(G,*Al*mm



Take the transpose,

x x X

I
X

xxx

I**A =

I X
X X

0 x xx

At step 2.

val
-Y

Hessenberg form

al



A =
is symmetric.

A FIRMM

I total
iteration =
m-2.

Qu... QQYAQ,Qs ... Qmz
=H
-

Q* Q

** =(QAR* =G*AQ =H

=>It is symmetric (Hermitian:G")

=(X)8) - tridiagonal matrix.


