# Iterative methdos 

Zecheng Zhang

April 10, 2023

## 1 Eigenvalue problem

We will consider symmetric matrix $A \in \mathbb{R}^{m \times m}$. We define the Rayleigh Quotient,

$$
\begin{equation*}
r(x)=\frac{x^{t} A x}{x^{t} x} . \tag{1}
\end{equation*}
$$

Note that if $x$ is an eigenvector of $A, r(x)=\lambda$ is its eigenvalue.
One way to understand this formula is: given $x$, what is the scale $\alpha$ which acts almost like an eigenvalue of $x$ in the sense that $A x-\alpha x$ is minimized? This is a least square problem, but $x$ is the matrix $\alpha$ is the unknown vector, and $A x$ is the right-hand side $b$ vector. We can see that $\alpha=r(x)$ if we consider the normal equation.
Take the derivative of $r(x)$ with respect to all component $x_{j}$ of $x$, we can easily derive that,

$$
\begin{equation*}
\nabla r(x)=\frac{2}{x^{t} x}(A x-r(x) x) \tag{2}
\end{equation*}
$$

We can see that when $x$ is the eigenvector, the gradient vanishes. Conversely, if the gradient is trivial with $x \neq 0, x$ is an eigenvector with eigenvalue $r(x)$.
Theorem 1.1. Let $q_{j}$ be an eigenvector of $A$, we have

$$
\begin{equation*}
r(x)-q_{j}=\mathcal{O}\left(\left\|x-q_{j}\right\|^{2}\right) \tag{3}
\end{equation*}
$$

as $x \rightarrow q_{j}$.
The Power iteration is expected to return an eigenvector corresponding to the largest eigenvalues.

```
Algorithm 1: Power Iteration
Set \(v_{0}\) with \(\left\|v_{0}\right\|=1\).
for \(k=1\) to ... do
    \(w=A v^{k}\)
    \(v^{k}=w /\|w\|\)
    \(\lambda^{k}=\left(v^{k}\right)^{T} A v^{k}\)
```

Theorem 1.2. Suppose $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{m}\right| \geq 0$ and $q_{1}^{T} v^{0} \neq 0$. Then the algorithm satisfies,

$$
\begin{align*}
& \left\|v^{(k} L q_{1}\right\|=\mathcal{O}\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right),  \tag{4}\\
& \left|\lambda^{k}-\lambda_{1}\right|=\mathcal{O}\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2 k}\right), \tag{5}
\end{align*}
$$

as $k \rightarrow \infty$

Rayleigh quotient of $A \in \mathbb{R}^{m \times m}$

$$
r(x)=\frac{x^{+} A x}{x^{+} x}, \quad x \in \mathbb{R}^{m}
$$

i. Suppose $(x, \lambda)$ is an eigen-pair of $A, A x=\lambda x$,

$$
\begin{gathered}
r(x)=\frac{x^{t} \lambda x}{x^{t} x}=\lambda \\
\text { ii. } \quad \nabla r(x)=\left(\begin{array}{c}
\frac{\partial r}{\partial x 1} \\
\cdots \\
\frac{\partial r}{\partial x_{m}}
\end{array}\right)=\frac{2}{x^{t} x}(A x-r(x) x)
\end{gathered}
$$

when $x$ is an eigenvector of $A$,

$$
\Rightarrow \quad \nabla r(x)=0
$$

when $\nabla H(x)=0, \Rightarrow x^{x^{0}}$ is an eigenvector of $A$

Tho 1.1.
Let $\left(q_{j}^{\prime}, \lambda^{\prime}\right)$ be an $e^{i}$ gen-pair of $A$,

$$
r(x)-\lambda_{j}=O\left(\left\|x-q_{j}\right\|^{\frac{2}{2}}\right) \text {, us } x \rightarrow q_{j}
$$

$\rightarrow$ Rayleigh quotient is quadratically accurate estimation of the eigenvalue.
$\rightarrow$ Given the approximation to $e \cdot v e c t o r$ we have an approximation of the and to the eigenvalue.

Power iteration.
(1) $k \rightarrow \infty$, we have the convergence,
set $v^{(0)},\left\|v_{0}\right\|=1$.
for $k=1, \ldots$,
$w=A V^{(k-1)}$
$V^{(k)}=w /\|w\|$
$\lambda^{(k)}=(\underbrace{\left.V^{(k)}\right)^{t} A\left(V^{(k)}\right.}_{\text {Rayleigh }})$ of $A$.
By thu $1.1, x^{(k)} \rightarrow \lambda_{1}$ (3) $A$ is symmetric, $\Rightarrow$ all eigenvalues of $A$ are real, eng., $\lambda_{1} \geq \lambda_{2} \geq \lambda_{m}$
\& Power iteration can find $\left(\lambda, v_{1}\right)$
(4) The convergence is linear, specifically, the algorithm will reduce the error by a factor $\left(\frac{x_{2}}{\lambda_{1}}\right)$ in each iteration.
(6) When eigen-gap is small the algo converges slowly.

Inverse iteration.

Motivation, we want to design an algorithm which can : identify any e.val \& e.vectors of $A$.

Suppose $\mu$ is not on eigenvalue of $A$.
suppose $(V, \alpha)$ is an e:gen-pair of $(A-\mu I)^{-1}$

$$
\begin{aligned}
(A-\mu I)^{-1} V & =\alpha V \\
V & =\alpha(A-\mu I) V \\
V & =\alpha A V-\alpha \mu V \\
\alpha A V & =(1+\alpha \mu) V \quad \text { (ass uni } \alpha \neq 0) \\
A V & =(1+\alpha \mu) / \alpha V
\end{aligned}
$$

$\Rightarrow \quad U$ is also an ei.yenvector of $A$.

Now let $A V_{i}=\lambda_{i} V_{i}$

$$
\Rightarrow \alpha=\frac{1}{\lambda_{i}-\mu}
$$

( $e^{-} \cdot$ gen value of $\left.(A-\mu I)^{-1}\right)$
Here, if $\mu \rightarrow \lambda_{i}, \Rightarrow \alpha$ is huge, $\alpha$ should be larger than the $e$ 'genvalues of $(A-\mu I)^{-1}$
$\Rightarrow$ we can use the power iteration to identify e'gem-puir $(\alpha, v)$ of $(A-\mu I)^{-1}$.
$\Rightarrow$ we can get the eigen-vector of $A$.

Rake, why is this called the inverse iteration? approximation $\mu$ to $\lambda_{i} \longrightarrow$ e'jenvectors of $A$.

Inverse iteration

$$
\begin{aligned}
& v^{(0)},\left\|v^{(0)}\right\|=1 \\
& \text { For } k=1, \text { to } \infty
\end{aligned}
$$

solve $(A-\mu I) w=U^{(k-1)}$ for $w$.

$$
\begin{aligned}
& v^{(k)}=w /\|w\| \\
& \lambda^{(k)}=\left(v^{(k)}\right)^{t} A v^{(k)}
\end{aligned}
$$

eigenual of $A$. shave the eigenvectors.

Remark 1. Power iteration has some limitations.

1. It can only find the largest eigenvectors corresponding to the largest eigenvalues.
2. The convergence is linear, i.e., the algorithm reduces the error by a factor $\left.\left\lvert\, \frac{\lambda_{2}}{\lambda_{1}}\right.\right)$ in every iteration.
3. The quality of the convergence depends on the quotient. If there is no huge eigen-gap, the convergence is slow.

### 1.1 Inverse Iteration

Let $\mu$ be a number which is not an eigenvalue of $A$, the eigenvectors of $(A-\mu I)^{-1}$ are the same as the eigenvectors of $A$, and the coresponding eigenvalues are $\left(\lambda_{j}-\mu\right)^{-1}$, where $\left\{\lambda_{j}\right\}$ are the eigenvalues of $A$.

This motivates us to design an algorithm to identify $\lambda_{j}$ and the corresponding eigenvectors of $A$. Suppose we know any estimate of $\lambda_{j}$ and denote it as $\mu .\left(\mu-\lambda_{j}\right)^{-1}$ will be very large. According to the Remark, the power iteration can identify $q_{j}$, which are the eigenvectors of $(A-\mu I)^{-1}$ (also the eigenvectors of $A$ ). This idea is called the inverse iteration.

```
Algorithm 2: Inverse iteration
\(v^{0}=\) some vectors with norm 1
for \(k=1\) to ... do
    Solve \((A-\mu I) w=v^{k-1}\) for \(w\)
    \(v^{k}=w /\|w\|\)
    \(\lambda^{k}=\left(v^{k}\right)^{T} A v^{k}\).
```

Rayleigh quotient is one method to estimate eigenvalues from an eigenvector estimation. Inverse iteration is an estimate of eigenvector from the eigenvalues.

```
Algorithm 3: RQ iteration
\(v^{0}=\) some vectors with norm 1
\(\lambda^{0}=v^{0} A v^{0}=\) coresponding Rayleigh quotient. for \(k=1\) to \(\ldots\) do
    Solve \(\left(A-\lambda^{k-1} I\right) w=v^{k-1}\) for \(w\)
    \(v^{k}=w /\|w\|\)
    \(\lambda^{k}=\left(v^{k}\right)^{T} A v^{k}\).
```

Without proof, the Rayleigh Quotient iteration has cubic convergence.

## 2 Iterative methods

In this section, let us consider matrix $A \in \mathbb{R}^{m \times m}$. Broadly speaking, the idea of iterative methods is to:

1. Gradually refine the solution iteratively.
2. Each iteration should be (a lot) cheaper than direct methods.
