Iterative methdos

Zecheng Zhang

April 10, 2023

1 Eigenvalue problem

We will consider symmetric matrix $A \in \mathbb{R}^{m \times m}$. We define the Rayleigh Quotient,

$$r(x) = \frac{x^t A x}{x^t x}.$$
(1)

Note that if x is an eigenvector of A, $r(x) = \lambda$ is its eigenvalue.

One way to understand this formula is: given x, what is the scale α which acts almost like an eigenvalue of x in the sense that $Ax - \alpha x$ is minimized? This is a least square problem, but x is the matrix α is the unknown vector, and Ax is the right-hand side b vector. We can see that $\alpha = r(x)$ if we consider the normal equation.

Take the derivative of r(x) with respect to all component x_j of x, we can easily derive that,

$$\nabla r(x) = \frac{2}{x^t x} (Ax - r(x)x). \tag{2}$$

We can see that when x is the eigenvector, the gradient vanishes. Conversely, if the gradient is trivial with $x \neq 0$, x is an eigenvector with eigenvalue r(x).

Theorem 1.1. Let q_j be an eigenvector of A, we have

$$r(x) - q_j = \mathcal{O}(\|x - q_j\|^2), \tag{3}$$

as $x \to q_j$.

The Power iteration is expected to return an eigenvector corresponding to the largest eigenvalues.

	Algorithm 1: Power Iteration
1	Set v_0 with $ v_0 = 1$.
2	for $k = 1$ to do
3	$w = Av^k$
4	$v^k = w/ w $
5	$ \lambda^k = (v^k)^T A v^k $

Theorem 1.2. Suppose $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_m| \ge 0$ and $q_1^T v^0 \ne 0$. Then the algorithm satisfies,

$$\|v^{k} - q_1\| = \mathcal{O}(\left|\frac{\lambda_2}{\lambda_1}\right|^k), \tag{4}$$

$$|\boldsymbol{\lambda}^{(k)} - \lambda_1| = \mathcal{O}(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}), \tag{5}$$

as $k \to \infty$

Royleigh quotient of
$$A \in \mathbb{R}^{m \times m}$$

 $r(x) = \frac{x^{t}Ax}{x^{t}x}, \quad x \in \mathbb{R}^{m}$
i. Suppose (x, λ) is on eigen-pair of A , $A := \lambda \times \lambda$
 $r(x) = \frac{x^{t}\lambda \times}{x^{t}\chi} = \lambda$

$$\frac{\partial v}{\partial x_{1}} = \begin{pmatrix} \frac{\partial v}{\partial x_{1}} \\ \frac{\partial v}{\partial x_{1}} \\ \frac{\partial v}{\partial x_{m}} \end{pmatrix} = \frac{2}{x^{T} x} (Ax - r(x) x)$$

when x is an eigenvector of A,

$$\Rightarrow \quad \nabla r(x) = 0$$
when $\nabla F(x) = 0$, $\Rightarrow \quad x^{*}$ is an eigenvector of A

The 1.1.
Let
$$(85)^{n_{5}}$$
 be on eigen-pair of A,
 $r(x) - \lambda_{j} = O((1x - 8; 1^{2})), \text{ as } x \rightarrow g_{j}$
 $\rightarrow Rayleigh guotlent is guadratically accurate estimation of
the eigenvalue.$

(i)
$$k \rightarrow -p$$
, we have the convergence,
set $V^{(0)}$, $||v_{0}|| = 1$.
for $k = 1, ..., ?$
 $w = A V^{(kn)}$
 $w = A V^{(kn)}$
 $w' = (V^{(k)})^{+} A (V^{(k)})$
 $Forglargh guotient$
 $g A A$.
 $B g flow [1], X^{(k)} \rightarrow \lambda_{1}$
 $B epvensent U^{(k)}$ in $Kn(A)$
 $Repvensent U^{(k)}$ in $Kn(A)$

Suppose
$$\mu$$
 is not on eigenvalue of A .
Suppose (V, d) is an eigen-pair of $(A - \mu I)^{-1}$
 $(A - \mu I)^{-1}V = dV$
 $V = d(A - \mu I)V$
 $V = dAV - d\mu V$
 $dAV = (I + d\mu)V$ (assume $d \neq 0$)
 $AV = (I + d\mu)/dV$

$$V^{(0)}, ||V^{(0)}|| = 1$$
For $|e| = 1, +0 \infty$
solve $(A - \mu I) W = V^{(k+1)}$ for W .
$$V^{(k)} = W/||W||$$

$$S^{(k)} = (V^{(k)})^{+} A V^{(k)}$$

$$A = (V^{(k)})^{+} A V^{(k)}$$
Shave the eigenvelors.

Remark 1. Power iteration has some limitations.

- 1. It can only find the largest eigenvectors corresponding to the largest eigenvalues.
- 2. The convergence is linear, i.e., the algorithm reduces the error by a factor $\left|\frac{\lambda_2}{\lambda_1}\right|$ in every iteration.
- 3. The quality of the convergence depends on the quotient. If there is no huge eigen-gap, the convergence is slow.

1.1 Inverse Iteration

Let μ be a number which is not an eigenvalue of A, the eigenvectors of $(A - \mu I)^{-1}$ are the same as the eigenvectors of A, and the corresponding eigenvalues are $(\lambda_j - \mu)^{-1}$, where $\{\lambda_j\}$ are the eigenvalues of A.

This motivates us to design an algorithm to identify λ_j and the corresponding eigenvectors of A. Suppose we know any estimate of λ_j and denote it as μ . $(\mu - \lambda_j)^{-1}$ will be very large. According to the Remark, the power iteration can identify q_j , which are the eigenvectors of $(A - \mu I)^{-1}$ (also the eigenvectors of A). This idea is called the inverse iteration.

Algorithm 2: Inverse iteration

1 v^0 = some vectors with norm 1 2 for k = 1 to ... do 3 | Solve $(A - \mu I)w = v^{k-1}$ for w 4 | $v^k = w/||w||$ 5 | $\lambda^k = (v^k)^T A v^k$.

Rayleigh quotient is one method to estimate eigenvalues from an eigenvector estimation. Inverse iteration is an estimate of eigenvector from the eigenvalues.

Algorithm 3: RQ iteration1 $v^0 =$ some vectors with norm 12 $\lambda^0 = v^0 A v^0 =$ corresponding Rayleigh quotient. for k = 1 to ... do3Solve $(A - \lambda^{k-1}I)w = v^{k-1}$ for w4 $v^k = w/||w||$ 5 $\lambda^k = (v^k)^T A v^k$.

Without proof, the Rayleigh Quotient iteration has cubic convergence.

2 Iterative methods

In this section, let us consider matrix $A \in \mathbb{R}^{m \times m}$. Broadly speaking, the idea of iterative methods is to:

- 1. Gradually refine the solution iteratively.
- 2. Each iteration should be (a lot) cheaper than direct methods.