
Conditioning and stability

Zecheng Zhang

April 5, 2023

In the abstract, we can view a problem as f : X ! Y where X,Y are two spaces. A well-
conditioned problem is one with the property that all small perturbation of x lead to only small
changes in f(x).

1 Relative condition number

Denote �f = f(x+ �x)� f(x). The relative conditioning number is defined as

(x) = lim
�!0

sup
k�xk�

(
k�fk

kf(x)k

�k�xk
kxk

). (1)

One can assume �x and �f are infinitesimal, then

(x) = sup
k�xk

(
k�fk

kf(x)k

�k�xk
kxk

). (2)

When f is di↵erentiable, we can express the quantity in terms of the Jacobian of f ,

 =
kJ(x)k

kf(x)k/kxk
. (3)

A problem is well-conditioned if  is small (e.g., 1, 10, 100), and a problem is ill-conditioned if
 is large (e.g., 106 or bigger).

Example 1.1. Consider x ! x/2.

Example 1.2. Consider x !
p
x, x > 0.

Example 1.3. Consider f(x) = x1 � x2.

2 Conditioning of matrix multiplication

Let A 2 Rm⇥n, we consider the problem of computing Ax given a x. We want to know how Ax

will change if there is a perturbation in x. The conditioning number of A is defined as,

 = sup
�x

(
kA(x+ �x)�Axk

kAxk

�
k�xk

kxk
) = sup

�x

kA�xk

k�xk

�
kAxk

kxk
. (4)

Note that sup is over all �x and kAxk
kxk is independent with respect to sup, it follows that,

 =
kxk

kAxk
sup
�x

kA�xk

k�xk
= kAk

kxk

kAxk
, (5)

where kAk is the operator norm (it is L2 norm if k · k is the L2 vector norm). Note that, the
condition number depends both on A and x.

1

Remark 1. Suppose A is nonsingular square matrix. We have kxk = kA
�1

Axk  kA
�1

kkAxk,
this further implies that,

  kAkkA
�1

k, (6)

or

 = ckAkkA
�1

k, (7)

for some positive constant c = kxk
kAxk/kA

�1
k.

Theorem 2.1. Let A 2 Rm⇥n be invertiable and let us consider Ax = b. The problem of
computing b given x has conditioning number,

 = kAk
kxk

kbk
 kAkkA

�1
k, (8)

with the perturbation in x. The problem of computing x given b has the conditioning number,

 = kA
�1

k
kbk

kxk
 kA

�1
kkAk, (9)

with the perturbation in b. If we use the L2 norm, the first equality holds if x is a multiple of
a right singular vector of A corresponding to the minimal singular value. The second equality
holds if b is a multiple of a left singular vector of A corresponding to the largest singular value.

Definition 2.2. We will call (A) = kAkkA
�1

k the condition of A relative to norm k · k

and denote it as (A) = kAkkA
�1

k. The conditioning number is attached to matrix A not
to the problem and x. If (A) is small, A is called well-conditioned, otherwise, it is called
ill-conditioned. If A is singular, we write (A) = 1.

Remark 2. If k · k = k · k2, kAk = �1 and kA
�1

k = 1/�m, it follows that (A) = �1
�m

Remark 3. When A 2 Cm⇥n of full rank and m � n. The conditioning number is defined in
terms of the pseudo-inverse, i.e.,

(A) = kAkkA
+
k, (10)

where A
+ = (A⇤

A)�1
A

⇤ is called the pseudo-inverse of A.

3 Conditioning of a system of eqautions

We considered the case when A is fixed and perturbed x or b. What if we perturb A? Specifically,
b is fixed and let us consider solving x from Ax = b given a small change in A, We have,

(A+ �A)(x+ �x) = b (11)

Ax+A�x+ �Ax+ �A�x = b. (12)

Using Ax = b and dropping the high order infinitesimal �A�x, it follows that A�x + �Ax = 0,
or �x = �A

�1
�Ax. Taking a norm, k�xk  kA

�1
kk�Akkxk, or,

k�xk

kxk

�k�Ak
kAk

 kA
�1

kkAk = (A). (13)

Equality holds when k�xk = kA
�1

kk�Akkxk. It can be shown that for any A and b such �A

exists. This leads us to the following result.

Theorem 3.1. Let b be fixed and consider the problem x = A
�1

b, where A is nonsingular. The
conditioning number associated with this problem with respect to perturbation in A is:

 = kAkkA
�1

k = (A). (14)

2

4 Floating point

Computers use a finite number of bits to represent real numbers, they can only represent only a
finite subset of real numbers. This has two limitations. Firstly, the represented number cannot
be arbitrarily large or small. Secondly, there must be gaps between them.

In IEEE double precision arithmetic (one way to store numbers/digital representation of number
in the computer), the interval [1, 2] is represented by the discrete subset:

1, 1 + 1⇥ 2�52
, 1 + 2⇥ 2�52

, ..., 2 + 252 ⇥ 2�52
. (15)

In general, the interval [2j , 2j+1] is represented by 15 times 2j . The gap between the two adjacent
numbers is never larger than 2�52

⇡ 2.22⇥ 10�16 in relative sense.

IEEE double precision is an example of an arithmetic system based on a floating-point F repre-
sentation of real numbers. Here F is a discrete subset of real numbers (example, Equation 15)
which is used to digitally represent real numbers. Let us now define the machine epsilon ✏m.
This number is half the distance between 1 and the next larger floating point number. It has
the following property.

Property 4.0.1. For all x 2 R, ther exists x0 2 F such that |x� x
0
|  ✏m|x|.

This is in a relative sense since if x > 0, |1� x
0
/x|  ✏m.

Let fl : R ! F be a function giving the closet floating-point approximation to a real number
(rounded to one floating number). Then the above property can be stated in terms of ft: for all
x 2 R, there exists ✏ with ✏ < ✏m, there exists ✏ with |✏| < ✏m such that fl(x) = x(1 + ✏).

The di↵erence between a real number and its closest floating-point approximation is always
smaller than the machine ✏m in a relative sense. Machine epsilon or machine precision is an
upper bound on the relative approximation error due to rounding in floating point arithmetic.

5 Stability

A mathematical problem can be formulated as f : X ! Y where X and Y are some spaces. An
algorithm can be viewed as another map g : X ! Y .

Definition 5.1 (Accuracy). We say an algorithm is accurate if

kg(x)� f(x)k

kf(x)k
= O(✏m), (16)

for all x 2 X.

Loosely speaking, the symbol O(✏) means “on the order of machine epsilon”. This expression
applies uniformly to all x.

Remark 4. We discuss the order O here. Let us consider h(t) = O(g(t)). The standard
mathematical definition is: there exists a positive constant C such that for all t su�cient close
to an understandable limit (for example, 0 or 1), we have kh(t)k  Cg(t).

Definition 5.2 (Backward Stability). We say an algorithm g is backward stable if for all x 2 X,

g(x) = f(y), for some y with
kx� yk

kxk
= O(✏m). (17)

3

Intuitively, a backward stable algorithm gives exactly the right answer to nearly the right ques-
tion. f(y) is “the exact solution (calculated by f) of a slightly wrong input (y which is closed
to x)” and is exact to the algorithm with the exact input.

To repeat, conditioning is intrinsic to the problem. Stability is a property of an algorithm. Thus
we will never say, “this problem is backward stable” or “this algorithm is ill-conditioned”. We
can say, “this problem is ill/well-conditioned”, or “this algorithm is/isn’t (backward) stable”.

Theorem 5.3. Suppose a backward stable algorithm g is applied to solve a problem f with
conditioning number . Then the relative error satisfies:

kg(x)� f(x)k

kf(x)k
= O((x)✏m). (18)

Proof. By the definition of backward stability, we have g(x) = f(y) for y 2 X satisfying

kx� yk

kxk
= O(✏m). (19)

By the definition of conditioning number,

kf(x)� g(y)k

kf(x)k

�
kx� yk

kxk
 (x). (20)

It follows that,

kf(x)� g(y)k

kf(x)k
 (x)O(✏m) ⇡ O((x)✏m). (21)

Here is how to interpret the result: If the problem is well-conditioned O() = 1, this immedi-
ately implies good accuracy of the solution! However, otherwise, the solution might have poor
accuracy. It is still the exact solution to a nearby problem (due to the backward stability). This
is often as good as one can possibly hope for.

Example 5.4. Suppose we evaluate f(x) = sin(x) for x = ⇡/2 � �, � is small. Suppose we
are lucky enough to get as a computed result the exact correct answer, rounded to the floating
point system: g(x) = fl(sin(x)) (i.e., g is the algorithm).

We want to find y close enough to x such that g(x) = f(y). However, g(x) = f(y) = f(x)+�(y�
x)+error, or y�x ⇡ (g(x)�f(x))/�. We have g(x)�f(x) = fl(sin(x))�sin(x) = O(✏m), this
implies that y � x = O(✏m/�). Since � can be arbitrarily small, the y � x is not of magnitude
machine epsilon.

Example 5.5. Matlab implementation of QR.

1. Generate Q and R which satisfy the requirement of QR. Compute A.

2. Compute QR of A by computer, i.e., we have A = Q2R2. The algorithm is g, this step is
indeed g(A) = Q2, R2. Check the error in Q2 and R2; you will find they are large. This
means that the forward error of the algorithm g is large.

3. Compute A2 = Q2R2 by computer. We can see that A is close to A2. However if we
compute f(A2) = Q2, R2, where f is the real algorithm (do it by hand using the theory).

4

4. We have g(A) = f(A2), but A is closed to A2. This indicates that the algorithm g is
stable.

It can be observed that Q2 and R2 have large errors compared to real Q and R of A. That is,
the forward errors of the algorithm g is large. In general, a large forward error can be the result
of an ill-conditioned problem (check the last theorem) or an unstable algorithm. This problem
is due to the conditioning of the problem.

Theorem 5.6. Let the A = QR be the QR of A 2 Rm⇥n computed by Householder triangular-
ization, and let Q1 and R1 be the one with floating point errors. Then we have,

Q1R1 = A+ �A,
k�Ak

kAk
= O(✏), (22)

for some �A 2 Rm⇥n.

6 Bakward error

Backward error is a measure of error associated with an approximate solution to a problem.
Whereas the forward error is the distance between the approximate and true solutions, the
backward error is how much the data must be perturbed to produce the approximate solution.

For an algorithm, g from Rn to Rn and exact function f , the backward error is the smallest
�x such that g(x) = f(x+�x), for some appropriate measure of size. There can be many �x

satisfying this equation, so the backward error is the solution to a minimization problem. Using
a vector norm and measuring perturbations in a relative sense, we can define the backward error
as

⌘ = min{✏ : g(x) = f(x+�x), k�xk  ✏kxk}. (23)

Theorem 6.1. For problems, f and algorithm g defined on finite-dimensional spaces X and Y ,
the properties of accuracy stability and backward stability all hold or fail to hold independently
of the choice of norms in X and Y .

7 (In)Stability of matrices multiplication

Some basic facts:

1. Vector-vector multiplication is backward stable. For example, fl(y⇤x) = (y+�y)⇤(x+�x).

2. It is NOT true to say matrix-matrix multiplication is backward stable, which would require
fl(AB) to be equal to (A+ �A)(B + �B).

Theorem 7.1. Fix Q 2 Cm⇥m unitary, the matrix multiplication algorithm is backward stable
for the problem

f(A) = QA, A 2 Cm⇥n
. (24)

Proof. Each entry of the product QA is an inner product g(y) = x
⇤
y. The obvious algorithm for

inner products is backward stable so that ĝ(y) = g(ŷ) where ŷ = y+ �y with k�yk  c(m)✏mkyk

with some constant c(m) independent of y and ✏m.

5

f((yAx) =y(x +3x)

11xx1 =0(tm)

Consider the i, j entry of the product QA. To apply the above idea, let x = q
⇤
i be the i�th row

of Q and denote the j�th column of A by aj . It follows by Cauchy-Schwarz inequality that,

|f̂(A)ij � f(A)ij | = |ĝ(aj)� g(aj)| = |q
⇤
i (aj + �aj)� q

⇤
i aj | (25)

= |q
⇤
i �aj |  kq

⇤
i kk�ajk = k�ajk  c(m)✏mkajk. (26)

It follows that,

kf̂(A)� f(A)k2F =
m,nX

i,j=1

|f̂(A)ij � f(A)ij |
2
 c(m)2✏2ukajk

2
2 (27)

= mc(m)2✏2u
X

j

kajk
2 = mc(m)2✏2ukAk

2
F . (28)

Now we change tacks and describe the forward error as a backward error. Let

�A = Q
⇤(f̂(A)� f(A)) (29)

Note that,

f̂(A) = f̂(A)� f(A) + f(A) = Q�A+QA = A(A+ �A) = f(Â), (30)

where we denote Â = A+ �A. It is remained to show kÂ�AkF is relatively small, but we have

kÂ�AkF

kAkF
=

k�AkF

kAkF
=

kQ�AkF

kAkF
=

kf̂(A)� f(A)kF
kAkF

(31)

=

p
mc(m)✏ukAkF

kAkF
=

p
mc(m)✏m, (32)

where we use the property that the unitary matrix preserves the norm.

8 Analyzing algorithm to solve Ax = b

We can solve Ax = b by the QR factorization. This is a back-ward stable algorithm. The
standard algorithm is as follow.

1. QR = A. This can be computed by the Householder algorithm.

2. y = Q
⇤
b. This can be computed by one algorithm in the last QR section.

3. x = R
�1

y. This can be computed by the back substitution which is not covered.

The first step is the QR, the algorithm we discussed before outputs Q1 and R1 and we have
established the stability result of the algorithm. The second step is the computation of Q⇤

1b.
Please note that, the first step outputs Q1 which has forward errors, hence we have Q

⇤
1 instead

of Q⇤. Moreover, due to the rounding o↵ errors Q
⇤
1b = y1 is not the exact y. It can be shown

that y1 satisfies the backward stability estimate. Specifically,

(Q1 + �Q)y1 = b, k�Qk = O(✏). (33)

Let us verify this claim. Suppose the real algorithm is f , i.e., f(Q1) = y, but the errors will
result in algorithm g(Q1) = y1. (Q1 + �Q)y1 = b implies that y1 = f(Q1 + �Q), where k�Qk is
of machine error. This implies that f(Q1 + �Q) = g(Q1), where k�Qk is small.

6

A =QR

Qu, R2 =Gr(A) E software algorithm

Q=Q+G,

R3 =
R +Er, G, d tz are very small.

In fact, we have another algorithm to calculate QR of A.

RCA) =

aR
R3

Q3Rz
=As,

** is large
o

blw error of the

h

blueverthe S
A-

[Q3, R3]
AsatQR

of As

One underlying assumption is:we assume QuR2 is bow stable.

Today we will prove this true.

Fact 1:a. b is bow stable a.b GRR*

Fact 2. A.3 is by stable, A HIRM

Fact 3: A-B is NOTb/w stable. 13 5 IR"m

Thin 7.1

Fix QLIR** (orthogonal), the matrix multiplication

algorithm is blow stable for the problem

f(A) =QA, At IR**

I assume A has perturbation & Q is fixed].

pf:Each entry of the productQAis an inner product

q(y)
=x

*

y. Ig is notthe algo for fl

Since the rector
inner product is blu stable, machine

↓En

q(y) =g(y) where y =y+by, 118411? ((m) Em11y1.
(*) num

u

->real exact ↓

algo to approx y
mathematics. coast.

Consider the ijth entry of QA

DenoteX =g, It is the ith row of Q.

/ICA)ij - f(A) ij)
↓ ↓
I is the algo to f is the

approx o real mathematics.

=(g(aj) - g(aj))
11

-

=I g, (ait 6a;) -gaj (A)

Canchy
=18:*saj I ↳ "I g,

11.11 saj cimEmllas1)
Schwartz men

unitary
assumption

11 I(A) - f(A) IIE

I 1 F(A):j -f(A)ij ,Cim) till all

= cinytm,"all"

-many in llaj

=m cim) an IAllE

118 (A) - fCATII = Fm (cm) Em II AllE

How can we find the perturbation SA?

Set SA =x* (ICA) - f(A1)

Notethat

I(A) =I(A) - f(x) +f(A)

=
QSA +QA =Q(SA+A)

= f(*)

This implies that (A) =f(A), A =A +bA

- Wi

real inath
algo on

on the approximation A =A+5A
exactA

NOW NTS. SA is very small in the relative sense.

Qis unitary, itpreserves
the

-" length of a vector

-
"-HAIF =F

11 All F

=Vic (m)Gm.

Here if his notbig, it*=OcGy
machine

=) QR algo is b/w stable,

Sec 8. solve Ax=3 by QR.

①
⑫x

=b

Rx
=

a
+b
-

I =Atab
⑬
me

⑭

Nis all steps are stable

① RR of A. I verified by computer]

② a b is by stable.

The final step is the back substitution. Note that we have R1 and y1 instead of R and y due to
the errors. The computation of x is backwadr stable. The estimation takes the form,

(R1 + �R)x1 = y1,
k�Rk

kR1k
= O(✏). (34)

Theorem 8.1. The algorithm (QR to solve Ax = b) is backward stable, which satisfies,

(A+�A)x1 = b,
k�Ak

kAk
= O(✏), (35)

for some �A.

Proof. We have,

b = (Q1 + �Q)(R1 + �R1)x1 = [Q1R1 + �QR1 +Q1�R+ �Q�R]x1. (36)

Due to the last theorem,

b = (Q1 + �Q)(R1 + �R1)x1 = [A�A+ �QR1 +Q1�R+ �Q�R]x1 = (A+�A)x1, (37)

where � denotes the last four terms. We show the backward stability, we need to show that �A

is small relative to A. Due to the last theorem, Q1R1 = A+ �A, where Q1 is unitary. Multiply
both sides by the Q1 inverse and divide by kAk, it follows that,

kR1k

kAk
 kQ

⇤
1k

kA+ �Ak

kAk
= O(1) +O(✏). (38)

O(✏) is higher order, we hence can drop it as ✏ goes to zero,

kR1k

kAk
 O(1). (39)

It follows that,

k�QR1k

kAk
 k�Qk

kR1k

kAk
= O(✏). (40)

Similarly,

kQ1�Rk

kAk
 kQ1k

k�Rk

kRk

kRk

kAk
= O(✏). (41)

Finally,

k�Q�Rk

kAk
 k�Qk

k�Rk

kAk
= O(✏2). (42)

The total purturbation then satisfies,

k�Ak

kAk
 O(✏). (43)

Combining all theorems, we have,

Theorem 8.2. The solution x1 by the QR algorithm satisfies,

kx1 � xk

kxk
= (A)✏. (44)

7

