
Conditioning and stability

Zecheng Zhang

March 31, 2023

In the abstract, we can view a problem as f : X ! Y where X,Y are two spaces. A well-
conditioned problem is one with the property that all small perturbation of x lead to only small
changes in f(x).

1 Relative condition number

Denote �f = f(x+ �x)� f(x). The relative conditioning number is defined as

(x) = lim
�!0

sup
k�xk�

(
k�fk

kf(x)k

�k�xk
kxk

). (1)

One can assume �x and �f are infinitesimal, then

(x) = sup
k�xk

(
k�fk

kf(x)k

�k�xk
kxk

). (2)

When f is di↵erentiable, we can express the quantity in terms of the Jacobian of f ,

 =
kJ(x)k

kf(x)k/kxk
. (3)

A problem is well-conditioned if  is small (e.g., 1, 10, 100), and a problem is ill-conditioned if
 is large (e.g., 106 or bigger).

Example 1.1. Consider x ! x/2.

Example 1.2. Consider x !
p
x, x > 0.

Example 1.3. Consider f(x) = x1 � x2.

2 Conditioning of matrix multiplication

Let A 2 Rm⇥n, we consider the problem of computing Ax given a x. We want to know how Ax

will change if there is a perturbation in x. The conditioning number of A is defined as,

 = sup
�x

(
kA(x+ �x)�Axk

kAxk

�
k�xk

kxk
) = sup

�x

kA�xk

k�xk

�
kAxk

kxk
. (4)

Note that sup is over all �x and kAxk
kxk is independent with respect to sup, it follows that,

 =
kxk

kAxk
sup
�x

kA�xk

k�xk
= kAk

kxk

kAxk
, (5)

where kAk is the operator norm (it is L2 norm if k · k is the L2 vector norm). Note that, the
condition number depends both on A and x.

1

Remark 1. Suppose A is nonsingular square matrix. We have kxk = kA
�1

Axk  kA
�1

kkAxk,
this further implies that,

  kAkkA
�1

k, (6)

or

 = ckAkkA
�1

k, (7)

for some positive constant c = kxk
kAxk/kA

�1
k.

Theorem 2.1. Let A 2 Rm⇥n be invertiable and let us consider Ax = b. The problem of
computing b given x has conditioning number,

 = kAk
kxk

kbk
 kAkkA

�1
k, (8)

with the perturbation in x. The problem of computing x given b has the conditioning number,

 = kA
�1

k
kbk

kxk
 kA

�1
kkAk, (9)

with the perturbation in b. If we use the L2 norm, the first equality holds if x is a multiple of
a right singular vector of A corresponding to the minimal singular value. The second equality
holds if b is a multiple of a left singular vector of A corresponding to the largest singular value.

Definition 2.2. We will call (A) = kAkkA
�1

k the condition of A relative to norm k · k

and denote it as (A) = kAkkA
�1

k. The conditioning number is attached to matrix A not
to the problem and x. If (A) is small, A is called well-conditioned, otherwise, it is called
ill-conditioned. If A is singular, we write (A) = 1.

Remark 2. If k · k = k · k2, kAk = �1 and kA
�1

k = 1/�m, it follows that (A) = �1
�m

Remark 3. When A 2 Cm⇥n of full rank and m � n. The conditioning number is defined in
terms of the pseudo-inverse, i.e.,

(A) = kAkkA
+
k, (10)

where A
+ = (A⇤

A)�1
A

⇤ is called the pseudo-inverse of A.

3 Conditioning of a system of eqautions

We considered the case when A is fixed and perturbed x or b. What if we perturb A? Specifically,
b is fixed and let us consider solving x from Ax = b given a small change in A, We have,

(A+ �A)(x+ �x) = b (11)

Ax+A�x+ �Ax+ �A�x = b. (12)

Using Ax = b and dropping the high order infinitesimal �A�x, it follows that A�x + �Ax = 0,
or �x = �A

�1
�Ax. Taking a norm, k�xk  kA

�1
kk�Akkxk, or,

k�xk

kxk

�k�Ak
kAk

 kA
�1

kkAk = (A). (13)

Equality holds when k�xk = kA
�1

kk�Akkxk. It can be shown that for any A and b such �A

exists. This leads us to the following result.

Theorem 3.1. Let b be fixed and consider the problem x = A
�1

b, where A is nonsingular. The
conditioning number associated with this problem with respect to perturbation in A is:

 = kAkkA
�1

k = (A). (14)

2

4 Floating point

Computers use a finite number of bits to represent real numbers, they can only represent only a
finite subset of real numbers. This has two limitations. Firstly, the represented number cannot
be arbitrarily large or small. Secondly, there must be gaps between them.

In IEEE double precision arithmetic (one way to store numbers/digital representation of number
in the computer), the interval [1, 2] is represented by the discrete subset:

1, 1 + 1⇥ 2�52
, 1 + 2⇥ 2�52

, ..., 2 + 252 ⇥ 2�52
. (15)

In general, the interval [2j , 2j+1] is represented by 15 times 2j . The gap between the two adjacent
numbers is never larger than 2�52

⇡ 2.22⇥ 10�16 in relative sense.

IEEE double precision is an example of an arithmetic system based on a floating-point F repre-
sentation of real numbers. Here F is a discrete subset of real numbers (example, Equation 15)
which is used to digitally represent real numbers. Let us now define the machine epsilon ✏m.
This number is half the distance between 1 and the next larger floating point number. It has
the following property.

Property 4.0.1. For all x 2 R, ther exists x0 2 F such that |x� x
0
|  ✏m|x|.

This is in a relative sense since if x > 0, |1� x
0
/x|  ✏m.

Let fl : R ! F be a function giving the closet floating-point approximation to a real number
(rounded to one floating number). Then the above property can be stated in terms of ft: for all
x 2 R, there exists ✏ with ✏ < ✏m, there exists ✏ with |✏| < ✏m such that fl(x) = x(1 + ✏).

The di↵erence between a real number and its closest floating-point approximation is always
smaller than the machine ✏m in a relative sense. Machine epsilon or machine precision is an
upper bound on the relative approximation error due to rounding in floating point arithmetic.

5 Stability

A mathematical problem can be formulated as f : X ! Y where X and Y are some spaces. An
algorithm can be viewed as another map g : X ! Y .

Definition 5.1 (Accuracy). We say an algorithm is accurate if

kg(x)� f(x)k

kf(x)k
= O(✏m), (16)

for all x 2 X.

Loosely speaking, the symbol O(✏) means “on the order of machine epsilon”. This expression
applies uniformly to all x.

Remark 4. We discuss the order O here. Let us consider h(t) = O(g(t)). The standard
mathematical definition is: there exists a positive constant C such that for all t su�cient close
to an understandable limit (for example, 0 or 1), we have kh(t)k  Cg(t).

Definition 5.2 (Backward Stability). We say an algorithm g is backward stable if for all x 2 X,

g(x) = f(y), for some y with
kx� yk

kxk
= O(✏m). (17)

3

f:X -Y(mathematical problem)

9:x -> Y C algorithm)

For: X -> sinx) (mathematical problem)
f(x)

x
->flcsincx)) (algorithm)
g(x) assume the computer

can calculate sinix) exactly.

Def:(Accuracy)

We say an algorithm g is accurate if

11 q(x) - fxll
=0(tm)

118, 11
-

the forward error.

Remark:

1.
h1t =0 (gHt))

5 C30 sit, for all to sufficient close to an

understandable limit, we have lihit)1)=C119H1.

2, for Em, examples of t:
matrix size goes to

a

discretization goes to
8

Def (Backward stability)
q

We say an algorithmis backward stable if for all x=

g(x) =fiy), some y with " =0(GM)

Abackward stable algorith gives the exactright
I

answer to nearly the right question, y is done to x)

exact sol of a slightlywrong input y

f(y)

Ialgo with the exactinput (g(x))

I
exact solution to the

A) fix rightproblem

⑪ should be 8.

close to
q(algo)I

X

- 1-forward error,
each other ⑧

11x-y11
y- q(x) accuracy of the algo

Tell
=O (tm)

f(y)
in the relative sense,

between

② thedifferenceande backward error.

The accuracy, forward errors is noteasy,

but a backward stable algo is "good"enough.

The 5.3 I gives us the relation between accuracy, b/w stable

a conditioning of a problem]

suppose a bow stable algorithm g is applied to solve

a problem of with conditioning k(x). Then the

relative error (accuracy) satisfies

119(x) - f(x)1)
=

0(k() (m)
11 f(x) ()

accuracy
-backward stable "t"well conditioning

18:By the definition of the backward stable

g(x) =f(y) for some y = I, with

1x - y1
=0 (Gm)

11 XII

By the definition
of conditioning

1 figs - thill/x11 f(x)1)

b/w stable

I **/e***
Hee 0(k1 (m)

accuracy of
the algo g.

Eg. 5.4. fix)=sinx), x == - 8, Sis small.

algogcan evaluatesinx) exactly however we need to

round off the floating pointarithmetic.

g(x) =fl(sin(x))

Assume the algo is b/w stable.

5 Y close enough to x, sitfly) =g(),

However,
g(x)

=f (y) =sincy)

Taylor's Sinx) + (y-x) sin'(x) +error

expansion

() sincx) +yy-x)cos(- x) +ear

cos(a- b)
=cos(a) cos(b) + Sin (a) sin(b)

=six) + scy-x)+or
(xx)-g(x) - f(x) =fl(sin(x)) - six) = 0CEm)

The above is true b/ Em refinition.

Ift(sin(X) - sin(x)/
=0(tm)

(sin(x) 1 = 1

(*)
*A

↓

= 2 ly -x)
=

0 (tm)4
y - x =0(+/s).0()

As 8t 0, y-x cannotbe so close to each other.

E

Intuitively, a backward stable algorithm gives exactly the right answer to nearly the right ques-
tion. f(y) is “the exact solution (calculated by f) of a slightly wrong input (y which is closed
to x)” and is exact to the algorithm with the exact input.

To repeat, conditioning is intrinsic to the problem. Stability is a property of an algorithm. Thus
we will never say, “this problem is backward stable” or “this algorithm is ill-conditioned”. We
can say, “this problem is ill/well-conditioned”, or “this algorithm is/isn’t (backward) stable”.

Theorem 5.3. Suppose a backward stable algorithm g is applied to solve a problem f with
conditioning number . Then the relative error satisfies:

kg(x)� f(x)k

kf(x)k
= O((x)✏m). (18)

Proof. By the definition of backward stability, we have g(x) = f(y) for y 2 X satisfying

kx� yk

kxk
= O(✏m). (19)

By the definition of conditioning number,

kf(x)� g(y)k

kf(x)k

�
kx� yk

kxk
 (x). (20)

It follows that,

kf(x)� g(y)k

kf(x)k
 (x)O(✏m) ⇡ O((x)✏m). (21)

Here is how to interpret the result: If the problem is well-conditioned O() = 1, this immedi-
ately implies good accuracy of the solution! However, otherwise, the solution might have poor
accuracy. It is still the exact solution to a nearby problem (due to the backward stability). This
is often as good as one can possibly hope for.

Example 5.4. Suppose we evaluate f(x) = sin(x) for x = ⇡/2 � �, � is small. Suppose we
are lucky enough to get as a computed result the exact correct answer, rounded to the floating
point system: g(x) = fl(sin(x)) (i.e., g is the algorithm).

We want to find y close enough to x such that g(x) = f(y). However, g(x) = f(y) = f(x)+�(y�
x)+error, or y�x ⇡ (g(x)�f(x))/�. We have g(x)�f(x) = fl(sin(x))�sin(x) = O(✏m), this
implies that y � x = O(✏m/�). Since � can be arbitrarily small, the y � x is not of magnitude
machine epsilon.

4

