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In the abstract, we can view a problem as f : X ! Y where X,Y are two spaces. A well-
conditioned problem is one with the property that all small perturbation of x lead to only small
changes in f(x).

1 Relative condition number

Denote �f = f(x+ �x)� f(x). The relative conditioning number is defined as

(x) = lim
�!0

sup
k�xk�

(
k�fk
kf(x)k

�k�xk
kxk ). (1)

One can assume �x and �f are infinitesimal, then

(x) = sup
k�xk

(
k�fk
kf(x)k

�k�xk
kxk ). (2)

When f is di↵erentiable, we can express the quantity in terms of the Jacobian of f ,

 =
kJ(x)k

kf(x)k/kxk . (3)

A problem is well-conditioned if  is small (e.g., 1, 10, 100), and a problem is ill-conditioned if
 is large (e.g., 106 or bigger).

Example 1.1. Consider x ! x/2.

Example 1.2. Consider x !
p
x, x > 0.

Example 1.3. Consider f(x) = x1 � x2.

2 Conditioning of matrix multiplication

Let A 2 Rm⇥n, we consider the problem of computing Ax given a x. We want to know how Ax
will change if there is a perturbation in x. The conditioning number of A is defined as,

 = sup
�x

(
kA(x+ �x)�Axk

kAxk

�
k�xk
kxk ) = sup

�x

kA�xk
k�xk

�
kAxk
kxk . (4)

Note that sup is over all �x and kAxk
kxk is independent with respect to sup, it follows that,

 =
kxk
kAxk sup

�x

kA�xk
k�xk = kAk kxk

kAxk , (5)

where kAk is the operator norm (it is L2 norm if k · k is the L2 vector norm). Note that, the
condition number depends both on A and x.
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Lastremark.
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Remark 1. Suppose A is nonsingular square matrix. We have kxk = kA�1Axk  kA�1kkAxk,
this further implies that,

  kAkkA�1k, (6)

or

 = ckAkkA�1k, (7)

for some positive constant c = kxk
kAxk/kA

�1k.

Theorem 2.1. Let A 2 Rm⇥n be invertiable and let us consider Ax = b. The problem of
computing b given x has conditioning number,

 = kAkkxkkbk  kAkkA�1k, (8)

with the perturbation in x. The problem of computing x given b has the conditioning number,

 = kA�1k kbkkxk  kA�1kkAk, (9)

with the perturbation in b. If we use the L2 norm, the first equality holds if x is a multiple of
a right singular vector of A corresponding to the minimal singular value. The second equality
holds if b is a multiple of a left singular vector of A corresponding to the largest singular value.

Definition 2.2. We will call (A) = kAkkA�1k the condition of A relative to norm k · k
and denote it as (A) = kAkkA�1k. The conditioning number is attached to matrix A not
to the problem and x. If (A) is small, A is called well-conditioned, otherwise, it is called
ill-conditioned. If A is singular, we write (A) = 1.

Remark 2. If k · k = k · k2, kAk = �1 and kA�1k = 1/�m, it follows that (A) = �1
�m

Remark 3. When A 2 Cm⇥n of full rank and m � n. The conditioning number is defined in
terms of the pseudo-inverse, i.e.,

(A) = kAkkA+k, (10)

where A+ = (A⇤A)�1A⇤ is called the pseudo-inverse of A.

3 Conditioning of a system of eqautions

We considered the case when A is fixed and perturbed x or b. What if we perturb A? Specifically,
b is fixed and let us consider solving x from Ax = b given a small change in A, We have,

(A+ �A)(x+ �x) = b (11)

Ax+A�x+ �Ax+ �A�x = b. (12)

Using Ax = b and dropping the high order infinitesimal �A�x, it follows that A�x + �Ax = 0,
or �x = �A�1�Ax. Taking a norm, k�xk  kA�1kk�Akkxk, or,

k�xk
kxk

�k�Ak
kAk  kA�1kkAk = (A). (13)

Equality holds when k�xk = kA�1kk�Akkxk. It can be shown that for any A and b such �A
exists. This leads us to the following result.

Theorem 3.1. Let b be fixed and consider the problem x = A�1b, where A is nonsingular. The
conditioning number associated with this problem with respect to perturbation in A is:

 = kAkkA�1k = (A). (14)
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4 Floating point

Computers use a finite number of bits to represent real numbers, they can only represent only a
finite subset of real numbers. This has two limitations. Firstly, the represented number cannot
be arbitrarily large or small. Secondly, there must be gaps between them.

In IEEE double precision arithmetic (one way to store numbers/digital representation of number
in the computer), the interval [1, 2] is represented by the discrete subset:

1, 1 + 1⇥ 2�52, 1 + 2⇥ 2�52, ..., 2 + 252 ⇥ 2�52. (15)

In general, the interval [2j , 2j+1] is represented by 15 times 2j . The gap between the two adjacent
numbers is never larger than 2�52 ⇡ 2.22⇥ 10�16 in relative sense.

IEEE double precision is an example of an arithmetic system based on a floating-point F repre-
sentation of real numbers. Here F is a discrete subset of real numbers (example, Equation 15)
which is used to digitally represent real numbers. Let us now define the machine epsilon ✏m.
This number is half the distance between 1 and the next larger floating point number. It has
the following property.

Property 4.0.1. For all x 2 R, ther exists x0 2 F such that |x� x0|  ✏m|x|.

This is in a relative sense since if x > 0, |1� x0/x|  ✏m.

Let fl : R ! F be a function giving the closet floating-point approximation to a real number
(rounded to one floating number). Then the above property can be stated in terms of ft: for all
x 2 R, there exists ✏ with ✏ < ✏m, there exists ✏ with |✏| < ✏m such that fl(x) = x(1 + ✏).

The di↵erence between a real number and its closest floating-point approximation is always
smaller than the machine ✏m in relative sense.
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