Conditioning and stability

Zecheng Zhang

March 22, 2023

In the abstract, we can view a problem as $f : X \to Y$ where X, Y are two spaces. A wellconditioned problem is one with the property that all small perturbation of x lead to only small changes in f(x).

1 Relative condition number

Denote $\delta f = f(x + \delta x) - f(x)$. The relative conditioning number is defined as

$$\kappa(x) = \lim_{\delta \to 0} \sup_{\|\delta x\| \le \delta} \left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|} \right).$$
(1)

One can assume δx and δf are infinitesimal, then

$$\kappa(x) = \sup_{\|\delta x\|} \left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|} \right).$$
(2)

When f is differentiable, we can express the quantity in terms of the Jacobian of f,

$$\kappa = \frac{\|J(x)\|}{\|f(x)\|/\|x\|}.$$
(3)

A problem is well-conditioned if κ is small (e.g., 1, 10, 100), and a problem is ill-conditioned if κ is large (e.g., 10^6 or bigger).

Example 1.1. Consider $x \to x/2$.

Example 1.2. Consider $x \to \sqrt{x}$, x > 0.

Example 1.3. Consider $f(x) = x_1 - x_2$.

2 Conditioning of matrix multiplication

Let $A \in \mathbb{R}^{m \times n}$, we consider the problem of computing Ax given a x. We want to know how Ax will change if there is a perturbation in x. The conditioning number of A is defined as,

$$\kappa = \sup_{\delta x} \left(\frac{\|A(x+\delta x) - Ax\|}{\|Ax\|} \middle/ \frac{\|\delta x\|}{\|x\|} \right) = \sup_{\delta x} \frac{\|A\delta x\|}{\|\delta x\|} \middle/ \frac{\|Ax\|}{\|x\|}.$$
(4)

Note that sup is over all δx and $\frac{\|Ax\|}{\|x\|}$ is independent with respect to sup, it follows that,

$$\kappa = \frac{\|x\|}{\|Ax\|} \sup_{\delta x} \frac{\|A\delta x\|}{\|\delta x\|} = \|A\| \frac{\|x\|}{\|Ax\|},\tag{5}$$

where ||A|| is the operator norm (it is L_2 norm if $||\cdot||$ is the L_2 vector norm). Note that, the condition number depends both on A and x.

A E R 11AX-611 < 11AX-611 A $\hat{x} = \operatorname{Proj}_{\operatorname{ol}(A)} = \operatorname{Proj}_{\operatorname{ol}} \int_{\operatorname{ol}(A)} \int_{\operatorname{ol}(A$ IAY-611 (A) $A = \begin{pmatrix} 1 & -2 \\ 1 & +1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 & +1 \end{pmatrix}$ [5] () AtAX = Atb (Normal eguation) (QR, A must have liver indep cols. $\frac{1}{x} = R^{+} Q^{*} b$ SVD (3)solution. $\langle C_1, C_2 \rangle = 0 \implies \alpha_1 \& \alpha_2$ are orthogonal to each other. $P_{roj} b = \frac{\langle a_1 b \rangle}{\langle a_1, a_1 \rangle} a_1 + \frac{\langle a_2 b \rangle}{\langle a_2, a_2 \rangle} a_2$ col(A)

(unditioning & stability

$$\int : X \rightarrow Y, \quad X \quad Y \quad ore two epaces.$$

A well - conditioning problem but the property:
all small perturbation in X band to small change in fin.
Delative condition number.
 $Sf = f(x + \delta x) - f(x), \quad X \in X.$
condition number of f of x ,
 $I = (x) = \lim_{n \to \infty} \sup_{x \in I} \left(\frac{118811}{118011} / \frac{118211}{11211} \right)$
suppose $\delta (x)$ is small enough.
 $I = (x) = \sup_{x \in I} \frac{118811}{11801} / \frac{118211}{11211}$
 $Suppose f is differentiable.$

$$F(x) = \lim_{k \to 0} \frac{|x + k||}{|x + k||} \frac{|x + k||}{|x + k||} = \frac{|x + k||}{|x + k||} \frac{|x + k||}{|x + k||} = \frac{|x + k||}{|x + k||} \frac{|x + k||}{|x + k||}$$

$$F(x) = \frac{|x + k||}{|x + k||} = \frac{|x + k||}{|x + k||}$$

$$F(x) = \frac{|x + k||}{|x + k||} = \frac{|x + k||}{|x + k||}$$

$$F(x) = \frac{|x + k||}{|x + k||} = \frac{|x + k||}{|x + k||}$$

$$F(x) = \frac{|x + k||}{|x + k||} = \frac{|x + k||}{|x + k||}$$

$$F(x) = \frac{|x + k||}{|x + k||} = \frac{|x +$$

Ef 13.
$$f(x) = X_1 - X_2$$
, $x \in \binom{Y_1}{X_2}$, $x = \binom{X}{X_1}$
 $J(x) = \binom{2}{3} \frac{2}{3X_1} = \binom{1}{-1}$, $\|x\|_{\infty} = \lim_{Y \to X} |x||$
 $\|1_{X}(x)\|_{\infty} = 1$
 $\|x\|_{\infty} = \lim_{Y \to X} |x||_{\infty} = 1$, $\max\{|x|, |x|\}$
 $\|x\|_{\infty} = \lim_{Y \to X} |x||_{\infty} = \frac{1}{|x_1 - x_2|}$, $\max\{|x|, |x_1|\}$
 $\lim_{X \to X_2} |x|_{1} |x||_{\infty} = |x_1 - x_2|$
 $\lim_{X \to X_2} |x| + 1 = 0$,
 $\lim_{X \to X_2} |x||_{\infty} = 2$
 $\lim_{X \to X_2} |x||_{\infty} = 2$
 $\lim_{X \to X_2} |x||_{\infty} = 2$

118811= 0,01 $(c(x)) > \frac{|| \xi ||}{|| f(x)||} / \frac{|| \xi(x)||}{|| x||} = 200$

(a little bet big)

Remark 1. Suppose A is nonsingular square matrix. We have $||x|| = ||A^{-1}Ax|| \le ||A^{-1}|| ||Ax||$, this further implies that,

$$\kappa \le \|A\| \|A^{-1}\|,\tag{6}$$

or

$$\kappa = c \|A\| \|A^{-1}\|,\tag{7}$$

for some positive constant $c = \frac{\|x\|}{\|Ax\|} / \|A^{-1}\|.$

Theorem 2.1. Let $A \in \mathbb{R}^{m \times n}$ be invertiable and let us consider Ax = b. The problem of computing *b* given *x* has conditioning number,

$$\kappa = \|A\| \frac{\|x\|}{\|b\|} \le \|A\| \|A^{-1}\|,\tag{8}$$

with the perturbation in x. The problem of computing x given b has the conditioning number,

$$\kappa = \|A^{-1}\| \frac{\|b\|}{\|x\|} \le \|A^{-1}\| \|A\|, \tag{9}$$

with the perturbation in b. If we use the L_2 norm, the first equality holds if x is a multiple of a right singular vector of A corresponding to the minimal singular value. The second equality holds if b is a multiple of a left singular vector of A corresponding to the largest singular value.

Definition 2.2. We will call $\kappa(A) = ||A|| ||A^{-1}||$ the condition of A relative to norm $|| \cdot ||$ and denote it as $\kappa(A) = ||A|| ||A^{-1}||$. The conditioning number is attached to matrix A not to the problem and x. If $\kappa(A)$ is small, A is called well-conditioned, otherwise, it is called ill-conditioned. If A is singular, we write $\kappa(A) = \infty$.

Remark 2. If $\|\cdot\| = \|\cdot\|_2$, $\|A\| = \sigma_1$ and $\|A^{-1}\| = 1/\sigma_m$, it follows that $\kappa(A) = \frac{\sigma_1}{\sigma_m}$