Conditioning and stability

Zecheng Zhang

March 22, 2023

In the abstract, we can view a problem as $f: X \rightarrow Y$ where X, Y are two spaces. A wellconditioned problem is one with the property that all small perturbation of x lead to only small changes in $f(x)$.

1 Relative condition number

Denote $\delta f=f(x+\delta x)-f(x)$. The relative conditioning number is defined as

$$
\begin{equation*}
\kappa(x)=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\| \leq \delta}\left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|}\right) . \tag{1}
\end{equation*}
$$

One can assume δx and δf are infinitesimal, then

$$
\begin{equation*}
\kappa(x)=\sup _{\|\delta x\|}\left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|}\right) . \tag{2}
\end{equation*}
$$

When f is differentiable, we can express the quantity in terms of the Jacobian of f,

$$
\begin{equation*}
\kappa=\frac{\|J(x)\|}{\|f(x)\| /\|x\|} \tag{3}
\end{equation*}
$$

A problem is well-conditioned if κ is small (e.g., 1, 10, 100), and a problem is ill-conditioned if κ is large (e.g., 10^{6} or bigger).
Example 1.1. Consider $x \rightarrow x / 2$.
Example 1.2. Consider $x \rightarrow \sqrt{x}, x>0$.
Example 1.3. Consider $f(x)=x_{1}-x_{2}$.

2 Conditioning of matrix multiplication

Let $A \in \mathbb{R}^{m \times n}$, we consider the problem of computing $A x$ given a x. We want to know how $A x$ will change if there is a perturbation in x. The conditioning number of A is defined as,

$$
\begin{equation*}
\kappa=\sup _{\delta x}\left(\frac{\|A(x+\delta x)-A x\|}{\|A x\|} / \frac{\|\delta x\|}{\|x\|}\right)=\sup _{\delta x} \frac{\|A \delta x\|}{\|\delta x\|} / \frac{\|A x\|}{\|x\|} . \tag{4}
\end{equation*}
$$

Note that sup is over all δx and $\frac{\|A x\|}{\|x\|}$ is independent with respect to sup, it follows that,

$$
\begin{equation*}
\kappa=\frac{\|x\|}{\|A x\|} \sup _{\delta x} \frac{\|A \delta x\|}{\|\delta x\|}=\|A\| \frac{\|x\|}{\|A x\|} \tag{5}
\end{equation*}
$$

where $\|A\|$ is the operator norm (it is L_{2} norm if $\|\cdot\|$ is the L_{2} vector norm). Note that, the condition number depends both on A and x.

$$
\|A \hat{x}-b\| \leq\|A x-b\|
$$

$$
A \hat{x}=\operatorname{Proj}_{\text {colc(A) }} b=\operatorname{Proj} \text { of } b \text { on to } c . \mid(A)
$$

Ex $\quad A=\left(\begin{array}{cc}1 & -6 \\ 1 & -2 \\ 1 & +1 \\ 1 & 7\end{array}\right) \quad b=\left(\begin{array}{c}-1 \\ 2 \\ 1 \\ 6\end{array}\right)$
(1) $A^{+} A x=A^{+} b \quad$ (normal equation)
(2) QR, A mast have liver indep cols.

$$
\hat{x}=R^{-1} Q^{*} b
$$

(3) SUD
solution. $\left\langle a_{1} a_{2}\right\rangle=0 \Rightarrow a_{1} \& a_{2}$ ane orthogonal to each other.

$$
\underset{\operatorname{col}(A)}{\operatorname{Proj} b}=\frac{\left\langle a_{1} b\right\rangle}{\left\langle a_{1}, a_{1}\right\rangle} a_{1}+\frac{\left\langle a_{2} b\right\rangle}{\left\langle a_{2} a_{2}\right\rangle} a_{2}
$$

$$
\begin{aligned}
& \vec{a} a_{1}+\frac{1}{2} a_{2}=\left(\begin{array}{c}
-1 \\
1 \\
5 / 2 \\
11 / 2
\end{array}\right) \\
& A \hat{x}=\operatorname{Proj}_{\operatorname{col}(A)}^{b}=2 a_{1}+\frac{1}{2} a_{2} \\
& \Rightarrow \quad \hat{x}=\binom{2}{1 / 2}
\end{aligned}
$$

$E g:$

$$
A=\left(\begin{array}{cc}
1 & 5 \\
3 & 1 \\
-2 & 4
\end{array}\right) \quad b=\left(\begin{array}{c}
4 \\
-2 \\
-3
\end{array}\right)
$$

Conditioning \& stability.
$f: \bar{X} \rightarrow Y, \quad \underline{X} \quad Y$ che two spaces.

A well - conditioning problem has the property: all small perturbation in x lead to small change in $f(x)$.

Belatlue condition number.

$$
\delta f=f(x+\delta x)-f(x), \quad x \in \underline{\bar{x}}
$$

condition number of f at x,

$$
K(x)=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\|<\delta}\left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|}\right)
$$

suppose $\delta(x)$ is small enough.

$$
F(x)=\sup _{\|\delta x\|}^{\|f f\|} / \| f(x) / \frac{\|\delta x\|}{\|x\|}
$$

suppose f is differentiable.

$$
\begin{aligned}
& F(x)=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\| c \delta} \frac{\|\delta f\|}{\|\delta x\|} \frac{\|x\|}{\| f(x \|}=\frac{\|J(x)\|}{\|f(x)\| /\|x\|} \\
& {[J(x)]_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(J \text { acobian })}
\end{aligned}
$$

E 1.1. $\quad x \rightarrow \frac{x}{2}, \quad x>0$.

$$
\begin{aligned}
\bar{X} & =(0, \infty) \\
\bar{Y} & =(0, \infty) \\
f(x) & =\frac{x}{2} \\
K(x) & =\frac{\|J\|}{\|f(x)\| /\|x\|}=\frac{f^{\prime}(x)}{x / 2 / x}=\frac{1 / 2}{1 / 2}=1
\end{aligned}
$$

cmall contioning number

L100, well condioning.
$1000, \ldots$, ill-conditioned.

Eg. $\quad x \rightarrow \sqrt{x}, \quad x>0$.

Eg 1.3. $\quad f(x)=x_{1}-x_{2} . \quad x=\binom{x_{1}}{x_{2}}$

$$
\begin{aligned}
& \left.J(x)=\binom{\frac{\partial f}{\partial x_{1}}}{\frac{\partial f}{\partial x_{2}}}=\binom{1}{-1} \right\rvert\,\|x\|_{\infty}={ }_{v}^{m} \\
& \|J(x)\|_{\infty}=1 \\
& k(x)=\frac{\|J(x)\|_{\infty}}{\|f(x)\|_{/\|x\|_{\infty}}}=\frac{1}{\left|x_{1}-x_{2}\right|} \cdot \max \left\{\left|x_{1}\right|_{j}\left|x_{2}\right|\right\}
\end{aligned}
$$

when $x_{1}=x_{2}, \quad k(x) \rightarrow \infty, \quad$ ill-confitioned.
E. 1.4 .

$$
y^{2}-2 y+1=0
$$

consider peturb the cueffs for y \& coust.
$f:$ coeff or $y \&$ const, \longrightarrow solution of the equation.

$$
x=\binom{-2}{1}, \quad\|x\|_{\infty}=2
$$

$$
\begin{aligned}
& y^{2}-2 y+0.9999=0 \\
& \delta x=\left(\begin{array}{c}
0 \\
1 \\
0.0001
\end{array}\right), \quad\|\delta x\|_{\infty}=0.0001 \\
& f(x)=\binom{1}{1} \quad\|f\|_{\infty}=1 \\
& \delta f=f(x+\delta x)-f(x)=\binom{0.99}{1.01}-\binom{1}{1}=\binom{-0.01}{+0.01} \\
& \|\delta f\|=0.01 \\
& k(x)>\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta(x)\|}{\|x\|}=200 \\
& \text { (a } 1:+t b b+b: g \text {) }
\end{aligned}
$$

Remark 1. Suppose A is nonsingular square matrix. We have $\|x\|=\left\|A^{-1} A x\right\| \leq\left\|A^{-1}\right\|\|A x\|$, this further implies that,

$$
\begin{equation*}
\kappa \leq\|A\|\left\|A^{-1}\right\| \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\kappa=c\|A\|\left\|A^{-1}\right\| \tag{7}
\end{equation*}
$$

for some positive constant $c=\frac{\|x\|}{\|A x\|} /\left\|A^{-1}\right\|$.
Theorem 2.1. Let $A \in \mathbb{R}^{m \times n}$ be invertiable and let us consider $A x=b$. The problem of computing b given x has conditioning number,

$$
\begin{equation*}
\kappa=\|A\| \frac{\|x\|}{\|b\|} \leq\|A\|\left\|A^{-1}\right\|, \tag{8}
\end{equation*}
$$

with the perturbation in x. The problem of computing x given b has the conditioning number,

$$
\begin{equation*}
\kappa=\left\|A^{-1}\right\| \frac{\|b\|}{\|x\|} \leq\left\|A^{-1}\right\|\|A\|, \tag{9}
\end{equation*}
$$

with the perturbation in b. If we use the L_{2} norm, the first equality holds if x is a multiple of a right singular vector of A corresponding to the minimal singular value. The second equality holds if b is a multiple of a left singular vector of A corresponding to the largest singular value.
Definition 2.2. We will call $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ the condition of A relative to norm $\|\cdot\|$ and denote it as $\kappa(A)=\|A\|\left\|A^{-1}\right\|$. The conditioning number is attached to matrix A not to the problem and x. If $\kappa(A)$ is small, A is called well-conditioned, otherwise, it is called ill-conditioned. If A is singular, we write $\kappa(A)=\infty$.

Remark 2. If $\|\cdot\|=\|\cdot\|_{2},\|A\|=\sigma_{1}$ and $\left\|A^{-1}\right\|=1 / \sigma_{m}$, it follows that $\kappa(A)=\frac{\sigma_{1}}{\sigma_{m}}$

