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In the abstract, we can view a problem as f : X — Y where X,Y are two spaces. A well-

conditioned problem is one with the property that all small perturbation of x lead to only small
changes in f(x).

1 Relative condition number

Denote 6 f = f(z + dx) — f(x). The relative conditioning number is defined as
|5f|| /||533||
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One can assume dx and 0 f are infinitesimal, then
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When f is differentiable, we can express the quantity in terms of the Jacobian of f,
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A problem is well-conditioned if k is small (e.g., 1, 10, 100), and a problem is ill-conditioned if
K is large (e.g., 10% or bigger).
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Example 1.1. Consider z — x/2.
Example 1.2. Consider z — \/z, = > 0.
Example 1.3. Consider f(z) = z1 — x2.

2 Conditioning of matrix multiplication

Let A € R™*" we consider the problem of computing Az given a x. We want to know how Ax
will change if there is a perturbation in . The conditioning number of A is defined as,
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Note that sup is over all §z and ”” I is independent with respect to sup, it follows that,
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where || A|| is the operator norm (it is Lo norm if || - || is the Lo vector norm). Note that, the

condition number depends both on A and zx.
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Remark 1. Suppose 4 is nonsingular square matrix. We have ||z|| = || A~ Az < ||A7L]||| Az]|,
this further implies that,

k< [lANIATH, (6)
or
k= cllAlllATY), (7)
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for some positive constant ¢ =
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Theorem 2.1. Let A € R™*™ be invertiable and let us consider Ar = b. The problem of
computing b given x has conditioning number,
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with the perturbation in x. The problem of computing = given b has the conditioning number,
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with the perturbation in b. If we use the Lo norm, the first equality holds if  is a multiple of
a right singular vector of A corresponding to the minimal singular value. The second equality
holds if b is a multiple of a left singular vector of A corresponding to the largest singular value.

Definition 2.2. We will call x(A) = ||AJ|||A7!|| the condition of A relative to norm || - ||
and denote it as x(A) = ||A||[|[A™Y|. The conditioning number is attached to matrix A not
to the problem and z. If k(A) is small, A is called well-conditioned, otherwise, it is called
ill-conditioned. If A is singular, we write x(A) = oc.

Remark 2. If |- || = | - |2, [|A|l = o1 and [|[A7Y]| = 1 /oy, it follows that k(A) = Z-
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