QR and least square

Zecheng Zhang

March 18, 2023

1 QR factorization

We study $A \in \mathbb{R}^{m \times n}$ matrix with linearly independent columns. QR algorithm is a key algorithm in numerical linear algebra. We want to study the column space of A.

Recall the Gram-Schmidt process for producing an orthogonal or an orthonormal basis for any nonzero subspace of \mathbb{R}^{n}. Given a basis $\left\{x_{1}, \ldots, x_{p}\right\}$ for a nonzero subspace W, define

$$
\begin{aligned}
& q_{1}=a_{1} / r_{11} \\
& q_{2}=a_{2} / r_{22}-\frac{r_{12}}{r_{22}} q_{1} \\
& q_{3}=a_{3} / r_{33}-\frac{r_{13}}{r_{33}} q_{1}-\frac{r_{23}}{r_{33}} q_{2} \\
& \ldots \\
& q_{p}=a_{p} / r_{p p}-\frac{r_{1 p}}{r_{p p}} a_{1}-\frac{r_{2 p}}{r_{p p}} q_{2}-\frac{r_{(p-1) p}}{r_{p p}} q_{p-1},
\end{aligned}
$$

where $r_{i j}=q_{i}^{T} a_{j}$ and $r_{j j}=\left\|a_{j}-\sum_{i=1}^{j} r_{i j} q_{i}\right\|$. Then $\left\{q_{1}, \ldots, q_{p}\right\}$ is an orthonormal basis for W, i.e., $\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}=\operatorname{span}\left\{q_{1}, q_{2}, \ldots, q_{p}\right\}$.

Theorem 1.1. If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A=Q R$, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Proof. Let a_{1}, \ldots, a_{n} be columns of A. Perform Gram-Schmidt, we obtain $Q=\left[q_{1}, \ldots, q_{n}\right]$, which is an orthonormal set of vectors whose span is $\operatorname{col}(A)$. For a_{k}, a_{k} is in $\operatorname{span}\left\{a_{1}, \ldots, a_{k}\right\}=$ $\operatorname{span}\left\{q_{1}, \ldots, q_{k}\right\}$. That is there exists $r_{1 k}, \ldots, r_{k k}$ such that $a_{k}=r_{1 k} q_{1}+\ldots+r_{k k} q_{k}+0 q_{k+1} \ldots 0 q_{n}$. Without loss of generality, we assume $r_{k k}>0$, otherwise multiply $r_{k k}$ and q_{k} by -1 simultaneously. Denote $Q=\left[q_{1}, q_{2}, \ldots, q_{n}\right], R=\left[r_{1}, \ldots, r_{n}\right]$ where $r_{k}=\left[r_{1 k}, \ldots, r_{k k}, 0, \ldots, 0\right]^{t} \in \mathbb{R}^{n}$, recall the matrix multiplication we have $A=Q R$. We now claim that R is upper triangular with a positive diagonal (easy to verify) and invertible. Recall $\operatorname{rank}(Q R) \leq \min (\operatorname{rank}(Q), \operatorname{rank}(R))$. Since $\operatorname{rank}(A)=n=\operatorname{rank}(Q)$, this implies that $\operatorname{rank}(R)=n$.

When $m>n$, we can append $m-n$ columns to Q to make it a $m \times m$ unitary matrix \tilde{Q}. In this process, we will append $m-n 0$ rows to R to obtain \tilde{R}. We call $A=\tilde{Q} \tilde{R}$ full QR of A.

2 Modified QR

The GS-QR algorithm is not numerically stable. For the moment, a stable algorithm is one that is not too sensitive to the effects of rounding off errors. The modified GS is the way to improve

```
Algorithm 1: Gram Schmidt
Data: \(n \geq 0\)
for \(j=1\) to \(n\) do
    \(v_{j}=a_{j}\)
    for \(i=1\) to \(j-1\) do
        \(r_{i j}=q_{i}^{t} a_{j}\)
        \(v_{j}=v_{j}-r_{i j} q_{i}\)
    \(r_{j j}=\left\|v_{j}\right\|_{2}\)
    \(q_{j}=v_{j} / r_{j j}\)
```

the stability of the QR algorithm. GS can be expressed as an orthogonal projection:

$$
\begin{equation*}
q_{1}=\frac{P_{1} a_{1}}{\left\|P_{1} a_{1}\right\|}, q_{2}=\frac{P_{2} a_{2}}{\left\|P_{2} a_{2}\right\|}, \ldots, q_{n}=\frac{P_{n} a_{n}}{\left\|P_{n} a_{n}\right\|}, \tag{1}
\end{equation*}
$$

where $P_{j} \in \mathbb{R}^{m \times m}$ denotes the orthogonal projector onto space spanned by $\left\{q_{1}, \ldots q_{j-1}\right\}$.
For each j, the GS algorithm computes a single orthogonal projection of rank $m-(j-1)$, $v_{j}=P_{j} a_{j}$. Recall that: $P_{\perp q}$ denotes the rank $m-1$ orthogonal projection onto the space orthogonal to q. By the definition of P_{j}, we can verify (without proof here):

$$
\begin{equation*}
P_{j}=P_{\perp q_{j-1}} \ldots P_{\perp q_{2}} P_{\perp q_{1}}, \tag{2}
\end{equation*}
$$

and $P_{\perp q_{1}}=I$. As a result,

$$
\begin{equation*}
v_{j}=P_{j} a_{j}=P_{\perp q_{j-1}} \ldots P_{\perp q_{2}} P_{\perp q_{1}} a_{j} . \tag{3}
\end{equation*}
$$

Specifically,

$$
\begin{aligned}
v_{j}^{1} & =a_{j}, \\
v_{j}^{2} & =P_{\perp q_{1}} v_{j}^{1}=v_{j}^{1}-q_{1} q_{1}^{t} v_{j}^{1}, \\
v_{j}^{3} & =P_{\perp q_{2}} v_{j}^{2}=v_{j}^{2}-q_{2} q_{2}^{t} v_{j}^{2}, \\
& \cdots \quad \cdots \\
v_{j} & =P_{\perp q_{j-1}} v_{j}^{j-1}=v_{j}^{j-1}-q_{j-1} q_{j-1}^{t} v_{j}^{j-1} .
\end{aligned}
$$

We summarize the algorithm in 2

```
Algorithm 2: Modified Gram Schmidt
for \(i=1\) to \(n\) do
    \(v_{i}=a_{i}\)
for \(i=1\) to \(n\) do
    \(r_{i i}=\left\|v_{i}\right\|\)
    \(q_{i}=v_{i} / r_{i i}\)
    for \(j=i+1\) to \(n\) do
        \(r_{i j}=q_{i}^{t} v_{j}\)
        \(v_{j}=v_{j}-r_{i j} q_{i}\)
```


2.1 Operation counts

Each addition, subtraction, multiplication, division and square root counts as one flop. Operation count is the number of flops an algorithm requires.

Theorem 2.1. The Gram-Schmidt algorithm requires $\sim 2 m n^{2}$ flops for a matrix A of size $m \times n$.

Remark 1. The \sim sign here is the asymptotic convergence, i.e.,

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \frac{\text { the total number of flops }}{2 m n}=1 . \tag{4}
\end{equation*}
$$

In discussing the operation count, it is standard to discard lower-order terms, since they are usually of little significance unless m and n are small.

Proof. In each i iteration, we have:

1. Line 7: m multiplication and $m-1$ addition.
2. Line 8: m multiplication and m subtraction.

In total we have $\sum_{i=1}^{n} \sum_{j=1}^{n}(4 m-1) i \sim 2 m^{2} n$.

3 Housedolder triangularization

The target of the algorithm is to create a full $Q R$ of A. The idea is to applies a sequence of unitary matrices Q_{k} on the left of A such that, $Q_{n} \ldots Q_{2} Q_{1} A=R$ is upper triangular. Denote $Q=Q_{1}^{t} Q_{2}^{t} \ldots Q_{n}^{t}, Q$ is also unitary. This implies that $A=Q R$ is a full QR of A. We will discuss how to find Q_{i}.

3.1 Householder reflector

Each Q_{k} is chosen to introduce zeros below the diagonal in the k-th column while preserving all the zeros previously introduced. In general Q_{k} operates on rows k, \ldots, m. Each Q_{k} has the following format:

$$
Q_{k}=\left[\begin{array}{ll}
I & 0 \tag{5}\\
0 & F
\end{array}\right],
$$

where I is the identity matrix of the size $(k-1) \times(k-1)$ and F is unitray of size $(m-k+1)$. Multiplication by F will introduce zeros into $k-$ th column. F is called a Householder reflector.

Suppose at the beginning of step k, the entries k, \ldots, m of k-th column are given by the vector $x \in \mathbb{R}^{m-k+1}$. The Householder reflector F should introduce some zeros to x such that $F x=$ $[\|x\|, 0, \ldots, 0]^{\top}=\|x\| e_{1}$. The target now is to construct F such that F will map x to $\|x\| e_{1}$.
Let us define $v=x-\|x\| e_{1}$ (please check the picture). By the orthogonal projection formula, we have,

$$
\begin{equation*}
P x=\left(I-\frac{v v^{t}}{\|v\|^{2}}\right) x=x-\frac{v v^{t}}{\|v\|^{2}} x . \tag{6}
\end{equation*}
$$

This is the orthogonal projection of x onto space which is orthogonal to v. Move twice as far in the same direction; we will have the target vector, i.e.,

$$
\begin{equation*}
F x=x-2 \frac{v v^{t}}{\|v\|^{2}} x=\left(I-2 \frac{v v^{t}}{\|v\|^{2}}\right) x \tag{7}
\end{equation*}
$$

We now derive the Household projector: $F=I-2 \frac{v v^{t}}{\|v\|^{2}}$.
Theorem 3.1. F is unitary and Hermitian.

Proof. The proof is straightforward by using the definition.
We now have $Q_{k} \ldots Q_{1}$ which will make A become R. Or we have $Q_{k} \ldots Q_{1} A=R$. $Q=Q_{1}^{*} \ldots Q_{k}^{*}$, but since Q_{i} are Hermitian, $Q=Q_{1} \ldots Q_{k}$.

3.2 The algorithm

```
Algorithm 3: Householder
Data: \(n \geq 0\)
for \(k=1\) to \(n\) do
    \(x=A_{k: m, k}\)
    \(v_{k}=\operatorname{sign}\left(x_{1}\right)\|x\|_{2} e_{1}+x\)
    \(v_{k}=v_{k} /\left\|v_{k}\right\|_{2}\)
    \(A_{k: m, k: n}=A_{k: m, k: n}-2 v_{k}\left(v_{k}^{t} A_{k: m, k: n}\right)\)
```

We can use $Q R$ to solve $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is invertiable. We have $Q R x=b$ or $R x=Q^{*} b$. This suggests the 3 -step method. We now discuss the second step. We will discuss the algorithm

```
Algorithm 4: QR for \(A x=b\)
Data: \(n \geq 0\)
Compute \(Q R\) of \(A\);
Compute \(y=Q^{*} x\);
Solve \(R x=y\) for \(x\).
```

for the last step later.
Calculation of $Q^{*} b$ by a sequence $Q_{n} \ldots Q_{1}$ of n operations on b is the same as the operations applied on A to make it triangular. As a result, we have the following algorithm.

```
Algorithm 5: Compute \(Q^{*} b\) for \(A x=b\)
for \(k=1\) to \(n\) do
    \(x=A_{k: m, k}\)
    \(v_{k}=\operatorname{sign}\left(x_{1}\right)\|x\|_{2} e_{1}+x\)
    \(v_{k}=v_{k} /\left\|v_{k}\right\|_{2}\)
    \(b_{k: m}=b_{k: m}-2 v_{k} v_{k}^{t} b_{k: m}\).
```

The algorithms do not provide us a way to know Q, but by knowing what Q matrix is doing, we can implicitly compute $Q x$. We know that $Q=Q_{1} \ldots Q_{n}$. Q_{k} will introduce 0 on $k-$

```
Algorithm 6: Implicit calculation of \(Q x\)
for \(k=n\) down to 1 do
    \(x_{k: m}=x_{k: m}-2 v_{k}\left(v_{k}^{t} x_{k: m}\right)\).
```

column starting from entry $k+1$. This process is implemented by multiplying the vector by the corresponding reflector F_{k}. We summarize the algorithm as below. The algorithm provides us with one way to compute Q explicitly. We can construct Q by doing $Q I$ via Algorithm 6 . Specifically, we can compute $Q e_{1}, Q e_{2}, \ldots ., Q e_{n}$ using the algorithm. They are the columns of Q.
Alternatively, we can compute $Q^{t} I$ via Algorithm 5 and then take transpose or (conjugate if Q^{*} is complex) to get Q.
1 starts
4 Least square
4.1 Motivation (ace linear furctlon to upprosin

Suppose one has m samples with label y_{i}, and each sample i has n features $a_{i 1}, \ldots, a_{i n}$. We want to approximate y_{i} by a linear function. More specifi\&ally, want to find x_{1}, \ldots, x_{n} such that,

$$
\sum_{k=1}^{m}\left(y_{k}-\sum_{i=1}^{n} x_{i} a_{k i}\right)^{2}
$$

If we define the matrix A as

$$
a=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right],\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ldots & \vdots \\
\vdots & & a_{m n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
\vdots \\
a_{m 1} \\
x_{n}
\end{array}\right)
$$

and $x=\left[x_{1}, \ldots, x_{n}\right]^{t}$ and $y=\left[y_{1}, \ldots, y_{m}\right]^{t}$, we can reformulate the above minimization problem as

$$
\min _{x \in \mathbb{R}^{n}}\|A x-y\|^{2} .
$$

4.2 Least square problem

If $A \in \mathbb{R}^{m \times n}$ and b is in \mathbb{R}^{m}, a least-square solution of $A \mathbf{x}=\mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^{n} such that

$$
\|\mathbf{b}-A \hat{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\|
$$

for all x in \mathbb{R}^{n}.
Remark 2. Note that $A x$ is always in the column space of A. As a result, we seek an x such that $A x$ is the vector in $\operatorname{col}(A)$ which is closest to b.

Theorem 4.1. Given A and b as above, let $\hat{b}=\operatorname{proj}_{\text {Col } A} b=P b$, where P is the orthogonal projector onto range of A. Let \hat{x} in \mathbb{R}^{n} and it is a least square solution of $A x=b$ if and only if \hat{x} satisfies $A \hat{x}=\hat{b}=P b$.

Proof. True.
(1) $\left\{A x, \forall x \in \vdash^{n}\right\}:=\operatorname{col}(A)=\operatorname{range}(A)$
(8) Wart to find a vector in the $\operatorname{col}(A)$

Sit. this vector has the least distance with b
(3)

According to best approximation theorem, we know that this vector must be Proj b (ollA)
(4) Find \hat{x}. $A \hat{x}=\operatorname{Proj}_{\text {tot }(A)} b \operatorname{col}(A)$
\hat{x} is the least square solution.
video 1 ends

4.3 Normal equation

Suppose \hat{x} satisfies $A \hat{x}=\hat{b}$ is the least square solution. We have $b-\hat{b}$ is orthogonal to $\operatorname{col}(A)$, it follows that $b-A \hat{x}$ is orthogonal to $\operatorname{col}(A)$. We then have

$$
a_{j}^{t}(b-A \hat{x})=0,
$$

where a_{j} is jth column of A. Since a_{j}^{t} is the jth row of A^{t}, we have $A^{t}(b-A \hat{x})=0$. As a result, we have,

$$
A^{t} A x=A^{t} b .
$$

the above equation is called the normal equation for $A x=b$.
Theorem 4.2. The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solutions of the normal equations $A^{T} A x=A^{T} b$.

Proof. We have shown that \hat{x} satisfies the normal equation if \hat{x} is the least square solution. Let us prove the converse. Suppose \hat{x} satisfies $A^{t} A \hat{x}=A^{t} b$. It follows that $A^{t}(A x-b)=0$, i.e., $A x-b$ is orthogonal with rows of A^{t} or columns of A. Consequently, $b=A \hat{x}+(b-A \hat{x})$ is a decomposition of b into sum of a vector in $\operatorname{col}(A)$ and $\operatorname{col}(A)^{\perp}$. Due to the uniqueness of the orthogonal projection, $A \hat{x}$ must be the orthogonal projection of b onto $\operatorname{col}(A)$. That is $A \hat{x}=\hat{b}$, or \hat{x} is the least square solution.

Theorem 4.3. Let A be an $m \times n$ matrix. The following statements are logically equivalent:
a. The equation $A x=b$ has a unique least-squares solution for each b in \mathbb{R}^{m}.
b. The columns of A are linearly independent.
c. The matrix $A^{T} A$ is invertible.

When these statements are true, the least-squares solution \hat{x} is given by

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b
$$

5 QR

Theorem 5.1. Given an $m \times n$ matrix A with linearly independent columns, let $A=Q R$ be a QR factorization of A. Then, for each b in \mathbb{R}^{m}, the equation $A x=b$ has a unique least-squares solution, given by

$$
\hat{x}=(R)^{-1} Q^{T} b
$$

Proof. Let $\hat{x}=(R)^{-1} Q^{T} b$. It follows that

$$
A \hat{x}=Q R \hat{x}=Q Q^{t} b
$$

Recall the POD formulation, $Q Q^{t} b$ is the orthogonal projection of b onto the column space of A, i.e., $Q Q^{T} b=\hat{b}$. This implies \hat{x} is the least square solution. The uniqueness follows from the theorem 4.3.

Video 2 starts
Suppress \hat{x} is the least square solution.

$$
A \hat{x}=\hat{b}=p_{r-j} \hat{\operatorname{col}(A)}
$$

$b-\hat{b}$ is orthogonal with $\operatorname{col}(A)$

$$
A=\left[\begin{array}{ll}
a_{1}, \ldots & a_{n}
\end{array}\right], \quad a_{i} \in \mathbb{R}^{m}
$$

$$
a_{j}^{+}(b-A \hat{x})=0, \text { for all } j=1, \ldots, n \text {. }
$$

due to the orthogonality.

$$
A^{t}(b-A \hat{x})=0
$$

normal equation
for $A x=b$

$$
A^{t} A \hat{x}=A^{t} b
$$

pf of Thu 4.2.

Suppere \hat{x} is the Cost square solution \Rightarrow

Now let us study the converse.
Suppose \hat{x} satisfies the normal equation.

$$
\begin{aligned}
& A^{t} A \hat{X}=A^{t} b \\
& A^{t}(\hat{A} \hat{X}-b)=0
\end{aligned}
$$

$\Rightarrow A x-b$ is orthogonal with all cols of A.
$\operatorname{Tan} 30$
$\Rightarrow b=\underbrace{A \hat{x}}_{\text {col lA) }}+\underbrace{b-A \hat{x}}_{\operatorname{col}(A)^{\perp}}$ is the decomposition
of b onto $\operatorname{col}(A) \& \operatorname{col}(A)^{\perp}$ decmportf?
Due to the uniqueness of the orthogonal projection $\Rightarrow A \hat{x}$ must be $\operatorname{Proj}_{\operatorname{col}(A)} b \stackrel{\operatorname{def}}{\Rightarrow} \hat{x}$ is the Least square solution.
video 2 ends
$V: \operatorname{deo} 3$ starts
$Q R$

$$
A \in \mathbb{R}^{m_{1} n}, \quad \operatorname{rank}(A)=n
$$

pf of The 5.1.
Let $\hat{x}=R^{-1} Q^{t} b$

$$
\begin{aligned}
A \hat{x} & =\underbrace{Q \mathbb{R}}_{A} R^{-1} Q^{t} b \\
& =Q Q^{t} b=\operatorname{Proj}^{\text {orthogonal projection }} b
\end{aligned}
$$

but $(o l(Q)=\operatorname{col}(A)$
$\Rightarrow \quad A \hat{x}=\operatorname{Proj}_{\operatorname{col}(A)}^{\prime} \Rightarrow \hat{x}$ is the lost square solution.

6 SVD
Denote the reduced SVD of A as $A=U \Sigma V^{T}$. Since $\operatorname{range}(A)=\operatorname{col}(U)$, this suggests that the orthogonal projector $P=U U^{t}$. It follows that,

$$
\begin{equation*}
U \Sigma V^{T} \hat{x}=U U^{t} b \tag{8}
\end{equation*}
$$

or we have,

$$
\begin{equation*}
\Sigma V^{T} \hat{x}=U^{t} b \tag{9}
\end{equation*}
$$

We now present the SVD algorithm to compute the least square solution.

$$
\begin{aligned}
& \text { Algorithm 7: SVD least square } \\
& 1 \text { Compute the reduced SVD of } A=U \Sigma V^{T} \text {; } \\
& 2 \text { Compute the vector } U^{T} b ; \longrightarrow \operatorname{RHS}(*) \\
& 3 \text { Solve the diagonal system } \Sigma \underset{\sim}{w}=U^{T} b \text { for } w \text {; } \\
& 4 \text { Set } \hat{x}=V w \text {. } \\
& v^{+} \hat{x}=w \\
& \left(V V^{t}=I, V\right. \text { is unitary). }
\end{aligned}
$$

SVD

$$
\begin{aligned}
& A \in \mathbb{R}^{\text {min }} \\
& A=U \bar{z} V^{t} \text { (SVD of } A \text {) } \\
& \operatorname{range}(A)=\cot (U) \\
& P=U U^{+} \text {(orthogoual projector) } \\
& U \bar{\nu} V^{t} \hat{x}=\underbrace{U U^{t} b}_{P_{\text {Proj }} b}=\operatorname{Prill}) b \\
& \text { - } U^{t} \underbrace{\sum} V^{t} \hat{x}=U^{t} b \quad(*) \\
& \text { diagonal } \\
& \text { motlix }
\end{aligned}
$$

