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1 QR factorization

We study A € R™*™ matrix with linearly independent columns. QR algorithm is a key algorithm
in numerical linear algebra. We want to study the column space of A.

Recall the Gram—Schmidt process for producing an orthogonal or an orthonormal basis for any
nonzero subspace of R"”. Given a basis {z1, ..., z,} for a nonzero subspace W, define
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where 7;; = ¢l aj and rj; = ||aj — >.7_, rijqi||. Then {qi,...,q,} is an orthonormal basis for W,

ie., span{ai,az,...,ap} = span{qi, g2, ..., qp}-

Theorem 1.1. If A is an m X n matrix with linearly independent columns, then A can be
factored as A = QR, where @) is an m X n matrix whose columns form an orthonormal basis for
Col A and R is an n X n upper triangular invertible matrix with positive entries on its diagonal.

Proof. Let ay, ..., an be columns of A. Perform Gram-Schmidt, we obtain Q = [q1, ..., ¢, which
is an orthonormal set of vectors whose span is col(A). For ag, aj is in span{ai,...,ar} =
span{q, ..., qx}. That is there exists rig, ..., rgx such that ap = rigq1 + ... + 7669k + 0ggt1...0qy.
Without loss of generality, we assume 7, > 0, otherwise multiply 7, and g by —1 simulta-
neously. Denote Q = [q1, 2, ..., qn], R = [r1, ..., ] Where rp = [r1g, ..., Tk, 0, ..., 0]° € R™, recall
the matrix multiplication we have A = QQR. We now claim that R is upper triangular with a
positive diagonal (easy to verify) and invertible. Recall rank(QR) < min(rank(Q),rank(R)).
Since rank(A) = n = rank(Q), this implies that rank(R) = n. O

When m > n, we can append m — n columns to @ to make it a m x m unitary matrix Q. In
this process, we will append m — n 0 rows to R to obtain R. We call A = QR full QR of A.

2  Modified QR

The GS-QR algorithm is not numerically stable. For the moment, a stable algorithm is one that
is not too sensitive to the effects of rounding off errors. The modified GS is the way to improve
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Algorithm 1: Gram Schmidt

Data: n >0
for j =1 ton do
vj:aj

fori=1toj—1do

— oto.
Tij = 4;%;
Vj = V5 — Tijdi

5 = llvjll2
4 =vj/rj

the stability of the QR algorithm. GS can be expressed as an orthogonal projection:
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where P; € R™*™ denotes the orthogonal projector onto space spanned by {q1,...qj—1}.

For each j, the GS algorithm computes a single orthogonal projection of rank m — (5 — 1),
v; = Pjaj. Recall that: P, denotes the rank m — 1 orthogonal projection onto the space
orthogonal to ¢. By the definition of P;, we can verify (without proof here):

P = PJ-qJ'—l"'PJ-lIQPJ-qlv (2)
and P4, = 1. As a result,
vj = Pjaj = Pig; ,..P1g,P1g 05 (3)
Specifically,
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We summarize the algorithm in

Algorithm 2: Modified Gram Schmidt
fori=1 ton do
L V; = Q;
for i =1 ton do
rii = ||vill
¢ = vi/Tii
for j=i¢+1 tondo
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2.1 Operation counts

Each addition, subtraction, multiplication, division and square root counts as one flop. Opera-
tion count is the number of flops an algorithm requires.

Theorem 2.1. The Gram-Schmidt algorithm requires ~ 2mn? flops for a matrix A of size
m X n.

Remark 1. The ~ sign here is the asymptotic convergence, i.e.,

the total number of flops

lim
m,n—00 2mn

=1 (4)

In discussing the operation count, it is standard to discard lower-order terms, since they are
usually of little significance unless m and n are small.

Proof. In each i iteration, we have:

1. Line 7: m multiplication and m — 1 addition.

2. Line 8: m multiplication and m subtraction.

In total we have > i 70 (4m — 1)i ~ 2m?n. O

3 Housedolder triangularization

The target of the algorithm is to create a full QR of A. The idea is to applies a sequence of
unitary matrices Q) on the left of A such that, Q,...QQ2Q1A = R is upper triangular. Denote
Q = Q'Q%...Q%, Q is also unitary. This implies that A = QR is a full QR of A. We will discuss

how to find Q;.

3.1 Householder reflector

Each Q) is chosen to introduce zeros below the diagonal in the k—th column while preserving
all the zeros previously introduced. In general )y operates on rows k,...,m. Each @i has the
following format:

=g (5)

where I is the identity matrix of the size (kK — 1) x (k — 1) and F' is unitray of size (m — k + 1).
Multiplication by F' will introduce zeros into k—th column. F is called a Householder reflector.

Suppose at the beginning of step k, the entries k, ..., m of k—th column are given by the vector
xz € R™ %1 The Householder reflector F' should introduce some zeros to x such that Fa =
[llz]],0,...,0]T = ||z|e1. The target now is to construct F' such that F' will map x to ||z|e;.

Let us define v = x — ||z||e; (please check the picture). By the orthogonal projection formula,
we have,
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This is the orthogonal projection of & onto space which is orthogonal to v. Move twice as far in

the same direction; we will have the target vector, i.e.,

t th
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We now derive the Household projector: F' =1 — 2%.

Theorem 3.1. F is unitary and Hermitian.

Proof. The proof is straightforward by using the definition.

We now have Qg...QQ1 which will make A become R. Or we have Q..QQ1A =R. Q = Q]

but since @; are Hermitian, Q) = Q1...Q.

3.2 The algorithm

(7)

QL

Algorithm 3: Householder

Data: n >0
for k=1 ton do
€T = Ak:m,k

v = sign(z1)||z|2e1 + 2
vk = v/ ||vkll2
Ak = Ak e — 20k (V5 Ao o)

We can use QR to solve Az = b, where A € R™*" is invertiable. We have Q Rz = b or Rx = Q*b.
This suggests the 3-step method. We now discuss the second step. We will discuss the algorithm

Algorithm 4: QR for Ax =b

Data: n >0

1 Compute QR of A;
2 Compute y = Q*x;

U W N -

Solve Rx = y for x.

for the last step later.

Calculation of Q*b by a sequence @Q.,...QQ1 of n operations on b is the same as the operations

applied on A to make it triangular. As a result, we have the following algorithm.

Algorithm 5: Compute Q*b for Az =b

for k=1 ton do
T = Ak::m,k
v = sign(z1)||z]l2er + x
v = v/ [|vkll2
bk:m = bk:m - 2Ukv]ibk:m-

The algorithms do not provide us a way to know @, but by knowing what ) matrix is doing,
we can implicitly compute Qx. We know that Q@ = @1...Qn. Qi will introduce 0 on k—
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Algorithm 6: Implicit calculation of Qx

for k =n down to 1 do
| Thom = Them — 200 (VT i)

column starting from entry k& + 1. This process is implemented by multiplying the vector by
the corresponding reflector Fj,. We summarize the algorithm as below. The algorithm provides
us with one way to compute @ explicitly. We can construct @ by doing QI via Algorithm @
Specifically, we can compute Qeq, Qesa, ...., Qe, using the algorithm. They are the columns of

Q.
Alternatively, we can compute QI via Algorithm and then take transpose or (conjugate if Q*
is comlex) to get Q.
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4 Least square

4.1 Motivation

Suppose one has m samples with label y;, and each sample i has n features a;1, ..
to approximate y; by a linear function. More specifically, want to find x1,....,z, s
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and x = [x1,...,z,])" and y = [y1, ..., ym]’, We can reformulate the above minimization problem
as

in || Az — y||?.
min |[Az —y|

4.2 Least square problem

If A e R™™ and b is in R™, a least-square solution of Ax = b is an x in R"™ such that
b — Ax|| < [|b — Ax||
for all x in R™.

Remark 2. Note that Az is always in the column space of A. As a result, we seek an = such
that Ax is the vector in col(A) which is closest to b.

Theorem 4.1. Given A and b as above, let b = projcoab = Pb, where P is the orthogonal
projector onto range of A. Let & in R™ and it is a least square solution of Az = b if and only if
Z satisfies AZ = b = Pb.

Proof. True. O



4.3 Normal equation

Suppose Z satisfies Az = b is the least square solution. We have b — b is orthogonal to col(A),
it follows that b — AZ is orthogonal to col(A). We then have

al(b— Az) =0,

where a; is jth column of A. Since af is the jth row of A’, we have A'(b— AZ) = 0. As a result,

we have,
Al Az = A'b.
the above equation is called the normal equation for Ax = b.

Theorem 4.2. The set of least-squares solutions of Ax = b coincides with the nonempty set of
solutions of the normal equations AT Az = ATb.

Proof. We have shown that & satisfies the normal equation if Z is the least square solution. Let
us prove the converse. Suppose & satisfies A'AZ = Abh. It follows that A'(Ax —b) = 0, i.e.,
Ax — b is orthogonal with rows of A’ or columns of A. Consequently, b = Az + (b — AZ) is a
decomposition of b into sum of a vector in col(A) and col(A)*. Due to the uniqueness of the
orthogonal projection, AZ must be the orthogonal projection of b onto col(A). That is Az = B,
or Z is the least square solution. ]

Theorem 4.3. Let A be an m x n matrix. The following statements are logically equivalent:

a. The equation Ax = b has a unique least-squares solution for each b in R™.
b. The columns of A are linearly independent.

c. The matrix AT A is invertible.

When these statements are true, the least-squares solution z is given by

&= (ATA)"14aTh

5 QR

Theorem 5.1. Given an m X n matrix A with linearly independent columns, let A = QR be a
QR factorization of A. Then, for each b in R™, the equation Ax = b has a unique least-squares
solution, given by

&= (R)'Qb

Proof. Let # = (R)~'QTb. It follows that
A% = QRz = QQ"b.

Recall the POD formulation, QQ'b is the orthogonal projection of b onto the column space of
A, ie., QQTb = b. This implies & is the least square solution. The uniqueness follows from the
theorem O



6 SVD

Denote the reduced SVD of A as A = USVT. Since range(A) = col(U), this suggests that the
orthogonal projector P = UU!. It follows that,

UsvTes = UU, (8)
or we have,
»vTz =U'. (9)

We now present the SVD algorithm to compute the least square solution.

Algorithm 7: SVD least square
1 Compute the reduced SVD of A =UXVT;
2 Compute the vector UTb;

3 Solve the diagonal system Yw = UTb for w;
4 Set x = Vw.




