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1 QR factorization

We study A 2 Rm⇥n matrix with linearly independent columns. QR algorithm is a key algorithm
in numerical linear algebra. We want to study the column space of A.

Recall the Gram–Schmidt process for producing an orthogonal or an orthonormal basis for any
nonzero subspace of Rn. Given a basis {x1, ..., xp} for a nonzero subspace W , define

q1 = a1/r11

q2 = a2/r22 �
r12
r22

q1

q3 = a3/r33 �
r13
r33

q1 �
r23
r33

q2

· · ·

qp = ap/rpp �
r1p
rpp

a1 �
r2p
rpp

q2 �
r(p�1)p

rpp
qp�1,

where rij = qTi aj and rjj = kaj �
Pj

i=1 rijqik. Then {q1, ..., qp} is an orthonormal basis for W ,
i.e., span{a1, a2, ..., ap} = span{q1, q2, ..., qp}.

Theorem 1.1. If A is an m ⇥ n matrix with linearly independent columns, then A can be
factored as A = QR, where Q is an m⇥n matrix whose columns form an orthonormal basis for
Col A and R is an n⇥n upper triangular invertible matrix with positive entries on its diagonal.

Proof. Let a1, ..., an be columns of A. Perform Gram-Schmidt, we obtain Q = [q1, ..., qn], which
is an orthonormal set of vectors whose span is col(A). For ak, ak is in span{a1, ..., ak} =
span{q1, ..., qk}. That is there exists r1k, ..., rkk such that ak = r1kq1 + ...+ rkkqk + 0qk+1...0qn.
Without loss of generality, we assume rkk > 0, otherwise multiply rkk and qk by �1 simulta-
neously. Denote Q = [q1, q2, ..., qn], R = [r1, ..., rn] where rk = [r1k, ..., rkk, 0, ..., 0]t 2 Rn, recall
the matrix multiplication we have A = QR. We now claim that R is upper triangular with a
positive diagonal (easy to verify) and invertible. Recall rank(QR)  min(rank(Q), rank(R)).
Since rank(A) = n = rank(Q), this implies that rank(R) = n.

When m > n, we can append m � n columns to Q to make it a m ⇥m unitary matrix Q̃. In
this process, we will append m� n 0 rows to R to obtain R̃. We call A = Q̃R̃ full QR of A.

2 Modified QR

The GS-QR algorithm is not numerically stable. For the moment, a stable algorithm is one that
is not too sensitive to the e↵ects of rounding o↵ errors. The modified GS is the way to improve
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Algorithm 1: Gram Schmidt
Data: n � 0

1 for j = 1 to n do
2 vj = aj
3 for i = 1 to j � 1 do
4 rij = qtiaj
5 vj = vj � rijqi

6 rjj = kvjk2
7 qj = vj/rjj

the stability of the QR algorithm. GS can be expressed as an orthogonal projection:

q1 =
P1a1
kP1a1k

, q2 =
P2a2
kP2a2k

, ..., qn =
Pnan

kPnank
, (1)

where Pj 2 Rm⇥m denotes the orthogonal projector onto space spanned by {q1, ...qj�1}.
For each j, the GS algorithm computes a single orthogonal projection of rank m � (j � 1),
vj = Pjaj . Recall that: P?q denotes the rank m � 1 orthogonal projection onto the space
orthogonal to q. By the definition of Pj , we can verify (without proof here):

Pj = P?qj�1 ...P?q2P?q1 , (2)

and P?q1 = I. As a result,

vj = Pjaj = P?qj�1 ...P?q2P?q1aj . (3)

Specifically,

v1j = aj ,

v2j = P?q1v
1
j = v1j � q1q

t
1v

1
j ,

v3j = P?q2v
2
j = v2j � q2q

t
2v

2
j ,

... ...

vj = P?qj�1v
j�1
j = vj�1

j � qj�1q
t
j�1v

j�1
j .

We summarize the algorithm in 2.

Algorithm 2: Modified Gram Schmidt

1 for i = 1 to n do
2 vi = ai

3 for i = 1 to n do
4 rii = kvik
5 qi = vi/rii
6 for j = i+ 1 to n do
7 rij = qtivj
8 vj = vj � rijqi
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2.1 Operation counts

Each addition, subtraction, multiplication, division and square root counts as one flop. Opera-
tion count is the number of flops an algorithm requires.

Theorem 2.1. The Gram-Schmidt algorithm requires ⇠ 2mn2 flops for a matrix A of size
m⇥ n.

Remark 1. The ⇠ sign here is the asymptotic convergence, i.e.,

lim
m,n!1

the total number of flops

2mn
= 1. (4)

In discussing the operation count, it is standard to discard lower-order terms, since they are
usually of little significance unless m and n are small.

Proof. In each i iteration, we have:

1. Line 7: m multiplication and m� 1 addition.

2. Line 8: m multiplication and m subtraction.

In total we have
Pn

i=1

Pn
j=1(4m� 1)i ⇠ 2m2n.

3 Housedolder triangularization

The target of the algorithm is to create a full QR of A. The idea is to applies a sequence of
unitary matrices Qk on the left of A such that, Qn...Q2Q1A = R is upper triangular. Denote
Q = Qt

1Q
t
2...Q

t
n, Q is also unitary. This implies that A = QR is a full QR of A. We will discuss

how to find Qi.

3.1 Householder reflector

Each Qk is chosen to introduce zeros below the diagonal in the k�th column while preserving
all the zeros previously introduced. In general Qk operates on rows k, ...,m. Each Qk has the
following format:

Qk =


I 0
0 F

�
, (5)

where I is the identity matrix of the size (k � 1)⇥ (k � 1) and F is unitray of size (m� k + 1).
Multiplication by F will introduce zeros into k�th column. F is called a Householder reflector.

Suppose at the beginning of step k, the entries k, ...,m of k�th column are given by the vector
x 2 Rm�k+1. The Householder reflector F should introduce some zeros to x such that Fx =
[kxk, 0, ..., 0]| = kxke1. The target now is to construct F such that F will map x to kxke1.
Let us define v = x � kxke1 (please check the picture). By the orthogonal projection formula,
we have,

Px = (I � vvt

kvk2 )x = x� vvt

kvk2x. (6)
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This is the orthogonal projection of x onto space which is orthogonal to v. Move twice as far in
the same direction; we will have the target vector, i.e.,

Fx = x� 2
vvt

kvk2x = (I � 2
vvt

kvk2 )x. (7)

We now derive the Household projector: F = I � 2 vvt

kvk2 .

Theorem 3.1. F is unitary and Hermitian.

Proof. The proof is straightforward by using the definition.

We now have Qk...Q1 which will make A become R. Or we have Qk...Q1A = R. Q = Q⇤
1...Q

⇤
k,

but since Qi are Hermitian, Q = Q1...Qk.

3.2 The algorithm

Algorithm 3: Householder
Data: n � 0

1 for k = 1 to n do
2 x = Ak:m,k

3 vk = sign(x1)kxk2e1 + x
4 vk = vk/kvkk2
5 Ak:m,k:n = Ak:m,k:n � 2vk(vtkAk:m,k:n)

We can use QR to solve Ax = b, where A 2 Rn⇥n is invertiable. We have QRx = b or Rx = Q⇤b.
This suggests the 3-step method. We now discuss the second step. We will discuss the algorithm

Algorithm 4: QR for Ax = b
Data: n � 0

1 Compute QR of A;
2 Compute y = Q⇤x;
3 Solve Rx = y for x.

for the last step later.

Calculation of Q⇤b by a sequence Qn...Q1 of n operations on b is the same as the operations
applied on A to make it triangular. As a result, we have the following algorithm.

Algorithm 5: Compute Q⇤b for Ax = b

1 for k = 1 to n do
2 x = Ak:m,k

3 vk = sign(x1)kxk2e1 + x
4 vk = vk/kvkk2
5 bk:m = bk:m � 2vkvtkbk:m.

The algorithms do not provide us a way to know Q, but by knowing what Q matrix is doing,
we can implicitly compute Qx. We know that Q = Q1...Qn. Qk will introduce 0 on k�
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=I - ** +4*
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->I is unitary/Hermitian.

-> Or is unitary/Hermitian => Q is unitary & Hermitian,
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Suppose Ax =b, A CIRM invertiable.

went to solve for X

QRX =

b

**QRX =Q*b

RX =G*b

I
x

=R
+*b

upper
triangular.

Algo 4. QR for Ax= b.

1. QR of A(Households

2. y
=a* x(?)I solve for X

3. Rx =y (talk later)

Calculate C*6 implicitly who having Q*explicitly.

** =QuQnt ... Qu

an x =am () =(o)



Algo 5.ComputeQ6 implicitly.

for k =1, ..., R.

x
=Akim, R
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Now how can me compute Q?

Method 1.

Q =Q I=a [e, ... en)

I IQe, , . . ., Qen]
en -

setx
=

e, set X
=

en

use Algouse Algo6

Method. 2.

Ce* =**I =[de, ... *en]

Algo 5 Algo 5.

To Q, take conjugale of QY,
B



Algorithm 6: Implicit calculation of Qx

1 for k = n down to 1 do
2 xk:m = xk:m � 2vk(vtkxk:m).

column starting from entry k + 1. This process is implemented by multiplying the vector by
the corresponding reflector Fk. We summarize the algorithm as below. The algorithm provides
us with one way to compute Q explicitly. We can construct Q by doing QI via Algorithm 6.
Specifically, we can compute Qe1, Qe2, ...., Qen using the algorithm. They are the columns of
Q.

Alternatively, we can compute QtI via Algorithm 5 and then take transpose or (conjugate if Q⇤

is comlex) to get Q.

4 Least square

4.1 Motivation

Suppose one has m samples with label yi, and each sample i has n features ai1, ..., ain. We want
to approximate yi by a linear function. More specifically, want to find x1, ...., xn such that,

mX

k=1

(yk �
nX

i=1

xiaki)
2.

If we define the matrix A as

a =

2

664

a11 ... a1n
a21 ... a2n
... ... ...
am1 ... amn

3

775 ,

and x = [x1, ..., xn]t and y = [y1, ..., ym]t, we can reformulate the above minimization problem
as

min
x2Rn

kAx� yk2.

4.2 Least square problem

If A 2 Rm⇥n and b is in Rm, a least-square solution of Ax = b is an x̂ in Rn such that

||b�Ax̂||  ||b�Ax||

for all x in Rn.

Remark 2. Note that Ax is always in the column space of A. As a result, we seek an x such
that Ax is the vector in col(A) which is closest to b.

Theorem 4.1. Given A and b as above, let b̂ = projColAb = Pb, where P is the orthogonal
projector onto range of A. Let x̂ in Rn and it is a least square solution of Ax = b if and only if
x̂ satisfies Ax̂ = b̂ = Pb.

Proof. True.
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4.3 Normal equation

Suppose x̂ satisfies Ax̂ = b̂ is the least square solution. We have b � b̂ is orthogonal to col(A),
it follows that b�Ax̂ is orthogonal to col(A). We then have

atj(b�Ax̂) = 0,

where aj is jth column of A. Since atj is the jth row of At, we have At(b�Ax̂) = 0. As a result,
we have,

AtAx = Atb.

the above equation is called the normal equation for Ax = b.

Theorem 4.2. The set of least-squares solutions of Ax = b coincides with the nonempty set of
solutions of the normal equations ATAx = AT b.

Proof. We have shown that x̂ satisfies the normal equation if x̂ is the least square solution. Let
us prove the converse. Suppose x̂ satisfies AtAx̂ = Atb. It follows that At(Ax � b) = 0, i.e.,
Ax � b is orthogonal with rows of At or columns of A. Consequently, b = Ax̂ + (b � Ax̂) is a
decomposition of b into sum of a vector in col(A) and col(A)?. Due to the uniqueness of the
orthogonal projection, Ax̂ must be the orthogonal projection of b onto col(A). That is Ax̂ = b̂,
or x̂ is the least square solution.

Theorem 4.3. Let A be an m⇥ n matrix. The following statements are logically equivalent:

a. The equation Ax = b has a unique least-squares solution for each b in Rm.

b. The columns of A are linearly independent.

c. The matrix ATA is invertible.

When these statements are true, the least-squares solution x̂ is given by

x̂ = (ATA)�1AT b

5 QR

Theorem 5.1. Given an m⇥ n matrix A with linearly independent columns, let A = QR be a
QR factorization of A. Then, for each b in Rm, the equation Ax = b has a unique least-squares
solution, given by

x̂ = (R)�1QT b

Proof. Let x̂ = (R)�1QT b. It follows that

Ax̂ = QRx̂ = QQtb.

Recall the POD formulation, QQtb is the orthogonal projection of b onto the column space of
A, i.e., QQT b = b̂. This implies x̂ is the least square solution. The uniqueness follows from the
theorem 4.3.
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6 SVD

Denote the reduced SVD of A as A = U⌃V T . Since range(A) = col(U), this suggests that the
orthogonal projector P = UU t. It follows that,

U⌃V T x̂ = UU tb, (8)

or we have,

⌃V T x̂ = U tb. (9)

We now present the SVD algorithm to compute the least square solution.

Algorithm 7: SVD least square

1 Compute the reduced SVD of A = U⌃V T ;
2 Compute the vector UT b;
3 Solve the diagonal system ⌃w = UT b for w;
4 Set x = V w.
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