QR and least square

Zecheng Zhang

March 15, 2023

1 QR factorization

We study $A \in \mathbb{R}^{m \times n}$ matrix with linearly independent columns. QR algorithm is a key algorithm in numerical linear algebra. We want to study the column space of A.

Recall the Gram-Schmidt process for producing an orthogonal or an orthonormal basis for any nonzero subspace of \mathbb{R}^{n}. Given a basis $\left\{x_{1}, \ldots, x_{p}\right\}$ for a nonzero subspace W, define

$$
\begin{aligned}
& q_{1}=a_{1} / r_{11} \\
& q_{2}=a_{2} / r_{22}-\frac{r_{12}}{r_{22}} q_{1} \\
& q_{3}=a_{3} / r_{33}-\frac{r_{13}}{r_{33}} q_{1}-\frac{r_{23}}{r_{33}} q_{2} \\
& \ldots \\
& q_{p}=a_{p} / r_{p p}-\frac{r_{1 p}}{r_{p p}} a_{1}-\frac{r_{2 p}}{r_{p p}} q_{2}-\frac{r_{(p-1) p}}{r_{p p}} q_{p-1},
\end{aligned}
$$

where $r_{i j}=q_{i}^{T} a_{j}$ and $r_{j j}=\left\|a_{j}-\sum_{i=1}^{j} r_{i j} q_{i}\right\|$. Then $\left\{q_{1}, \ldots, q_{p}\right\}$ is an orthonormal basis for W, i.e., $\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}=\operatorname{span}\left\{q_{1}, q_{2}, \ldots, q_{p}\right\}$.

Theorem 1.1. If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A=Q R$, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Proof. Let a_{1}, \ldots, a_{n} be columns of A. Perform Gram-Schmidt, we obtain $Q=\left[q_{1}, \ldots, q_{n}\right]$, which is an orthonormal set of vectors whose span is $\operatorname{col}(A)$. For a_{k}, a_{k} is in $\operatorname{span}\left\{a_{1}, \ldots, a_{k}\right\}=$ $\operatorname{span}\left\{q_{1}, \ldots, q_{k}\right\}$. That is there exists $r_{1 k}, \ldots, r_{k k}$ such that $a_{k}=r_{1 k} q_{1}+\ldots+r_{k k} q_{k}+0 q_{k+1} \ldots 0 q_{n}$. Without loss of generality, we assume $r_{k k}>0$, otherwise multiply $r_{k k}$ and q_{k} by -1 simultaneously. Denote $Q=\left[q_{1}, q_{2}, \ldots, q_{n}\right], R=\left[r_{1}, \ldots, r_{n}\right]$ where $r_{k}=\left[r_{1 k}, \ldots, r_{k k}, 0, \ldots, 0\right]^{t} \in \mathbb{R}^{n}$, recall the matrix multiplication we have $A=Q R$. We now claim that R is upper triangular with a positive diagonal (easy to verify) and invertible. Recall $\operatorname{rank}(Q R) \leq \min (\operatorname{rank}(Q), \operatorname{rank}(R))$. Since $\operatorname{rank}(A)=n=\operatorname{rank}(Q)$, this implies that $\operatorname{rank}(R)=n$.

When $m>n$, we can append $m-n$ columns to Q to make it a $m \times m$ unitary matrix \tilde{Q}. In this process, we will append $m-n 0$ rows to R to obtain \tilde{R}. We call $A=\tilde{Q} \tilde{R}$ full QR of A.

2 Modified QR

The GS-QR algorithm is not numerically stable. For the moment, a stable algorithm is one that is not too sensitive to the effects of rounding off errors. The modified GS is the way to improve

```
Algorithm 1: Gram Schmidt
Data: \(n \geq 0\)
for \(j=1\) to \(n\) do
    \(v_{j}=a_{j}\)
    for \(i=1\) to \(j-1\) do
            \(r_{i j}=q_{i}^{t} a_{j}\)
            \(v_{j}=v_{j}-r_{i j} q_{i}\)
    \(r_{j j}=\left\|v_{j}\right\|_{2}\)
    \(q_{j}=v_{j} / r_{j j}\)
```

the stability of the QR algorithm. GS can be expressed as an orthogonal projection:

$$
\begin{equation*}
q_{1}=\frac{P_{1} a_{1}}{\left\|P_{1} a_{1}\right\|}, q_{2}=\frac{P_{2} a_{2}}{\left\|P_{2} a_{2}\right\|}, \ldots, q_{n}=\frac{P_{n} a_{n}}{\left\|P_{n} a_{n}\right\|}, \tag{1}
\end{equation*}
$$

where $P_{j} \in \mathbb{R}^{m \times m}$ denotes the orthogonal projector onto space spanned by $\left\{q_{1}, \ldots q_{j-1}\right\}$.
For each j, the GS algorithm computes a single orthogonal projection of rank $m-(j-1)$, $v_{j}=P_{j} a_{j}$. Recall that: $P_{\perp q}$ denotes the rank $m-1$ orthogonal projection onto the space orthogonal to q. By the definition of P_{j}, we can verify (without proof here):

$$
\begin{equation*}
P_{j}=P_{\perp q_{j-1}} \ldots P_{\perp q_{2}} P_{\perp q_{1}}, \tag{2}
\end{equation*}
$$

and $P_{\perp q_{1}}=I$. As a result,

$$
\begin{equation*}
v_{j}=P_{j} a_{j}=P_{\perp q_{j-1}} \ldots P_{\perp q_{2}} P_{\perp q_{1}} a_{j} . \tag{3}
\end{equation*}
$$

Specifically,

$$
\begin{aligned}
v_{j}^{1} & =a_{j}, \\
v_{j}^{2} & =P_{\perp q_{1}} v_{j}^{1}=v_{j}^{1}-q_{1} q_{1}^{t} v_{j}^{1}, \\
v_{j}^{3} & =P_{\perp q_{2}} v_{j}^{2}=v_{j}^{2}-q_{2} q_{2}^{t} v_{j}^{2},
\end{aligned}
$$

Mar 15 wed

$$
v_{j}=P_{\perp q_{j-1}} v_{j}^{j-1}=v_{j}^{j-1}-q_{j-1} q_{j-1}^{t} v_{j}^{j-1} .
$$

We summarize the algorithm in 2

```
Algorithm 2: Modified Gram Schmidt
for \(i=1\) to \(n\) do
\(L v_{i}=a_{i}\)\(\quad\) inner product The dominant steps are step \(7 \& 8\)
for \(i=1\) to \(n\) do \(\overbrace{2 m-1}+\rightarrow^{\sqrt{r}} \quad\) b/c we have to do 2 loops for 7 d 8 .
    for \(j=i+1\) to \(n\) do
        \(r_{i j}=q_{i}^{t} v_{j}\)
        \(v_{j}=v_{j}-r_{i j} q^{\prime}\)
```

 \(q_{i} \in \| R^{m} \quad \operatorname{step} 78 \sum_{i=1}^{n} \sum_{j=i+1}^{n}(4 m-1)=2 m n^{2}\)
 $$
\operatorname{step} 45 \sum_{i=1}^{n} 3 m=3 m n
$$

2.1 Operation counts
 $$
\begin{aligned} & \quad i=1 \\ & \text { step } 485 \text { is of lower order, } \Rightarrow \text { operation counts } \backsim 2 \mathrm{mn}^{2} \end{aligned}
$$

Each addition, subtraction, multiplication, division and square root counts as one flop. Operadion count is the number of flops an algorithm requires.

Theorem 2.1. The Gram-Schmidt algorithm requires $\sim 2 m n^{2}$ flops for a matrix A of size $m \times n$.

Remark 1. The \sim sign here is the asymptotic convergence, ie.,

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \frac{\text { the total number of flops }}{2 m n^{2}}=1 . \tag{4}
\end{equation*}
$$

In discussing the operation count, it is standard to discard lower-order terms, since they are usually of little significance unless m and n are small.

Proof. In each i iteration, we have:

1. Line 7: m multiplication and $m-1$ addition.
2. Line 8: m multiplication and m subtraction.

In total we have $\sum_{i=1}^{n} \sum_{j=1}^{n}(4 m-1) i \sim 2 m^{*} n$?

3 Housedolder triangularization

The target of the algorithm is to create a full $Q R$ of A. The idea is to applies a sequence of unitary matrices Q_{k} on the left of A such that, $Q_{n} \ldots Q_{2} Q_{1} A=R$ is upper triangular. Denote $Q=Q_{1}^{t} Q_{2}^{t} \ldots Q_{n}^{t}, Q$ is also unitary. This implies that $A=Q R$ is a full QR of A. We will discuss how to find Q_{i}.

3.1 Householder reflector

Each Q_{k} is chosen to introduce zeros below the diagonal in the k-th column while preserving all the zeros previously introduced. In general Q_{k} operates on rows k, \ldots, m. Each Q_{k} has the following format:

$$
Q_{k}=\left[\begin{array}{cc}
I & 0 \tag{5}\\
0 & F
\end{array}\right]
$$

where I is the identity matrix of the size $(k-1) \times(k-1)$ and F is unitray of size $(m-k+1)$. Multiplication by F will introduce zeros into $k-$ th column. F is called a Householder reflector.
Suppose at the beginning of step k, the entries k, \ldots, m of k-th column are given by the vector $x \in \mathbb{R}^{m-k+1}$. The Householder reflector F should introduce some zeros to x such that $F x=$ $[\|x\|, 0, \ldots, 0]^{\top}=\|x\| e_{1}$. The target now is to construct F such that F will map x to $\|x\| e_{1}$.
Let us define $v=x-\|x\| e_{1}$ (please check the picture). By the orthogonal projection formula, we have,

$$
\begin{equation*}
P x=\left(I-\frac{v v^{t}}{\|v\|^{2}}\right) x=x-\frac{v v^{t}}{\|v\|^{2}} x . \tag{6}
\end{equation*}
$$

Householder
$G S:$ orthogonalization process, it will glass us Q.
H_{s} : it will glue us R.
Idea: Design \& apply a sequence of unitary matrices $Q_{1} \ldots Q_{n} n^{\mu \cdot \| R^{m}}$ sit. $Q_{n} Q_{n-1} \ldots Q_{1} A=R$ is triangular.

$$
\begin{aligned}
& A=\underbrace{Q_{1}^{*} Q_{m-1}^{*} Q_{u}^{*}}_{Q} R
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{Q_{3}}\left(\begin{array}{lll}
x & x & x \\
0 & x & x \\
0 & 0 & x \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& Q_{3} Q_{2} Q_{1} A
\end{aligned}
$$

k th step

$=\left(\begin{array}{ll}I P & R \\ 0 & F B\end{array}\right)=(\underbrace{\left.\begin{array}{ll}P & R \\ 0 & F B\end{array}\right)}_{Q_{k} Q_{k-1} \ldots Q_{1} A}$
Now, desigh $\underbrace{F^{E}}_{\text {unnitovy }}{ }_{v}^{(m \cdot k+1)}$ s.t. $\quad F B=\left(\begin{array}{ccc}x & x & x \\ 0 & x & x\end{array}\right)$
Househoder veflector.

$$
F B=\left(\begin{array}{cc}
x & \\
0 & \cdots \\
0 & \cdots \\
0 &
\end{array}\right) \text { denote } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m-b+1}
\end{array}\right) \text { as the 1st col }
$$

of B.
If

$$
F \times=\underbrace{\|x\|}_{\text {try to more sunn }} \vec{e}_{1}, \quad e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

then $\checkmark \checkmark$ we have isosceles triangles.

$$
x-v=\|x\| \overrightarrow{e_{1}}
$$

Target $\|x\| \vec{e}_{I}=$ red + purple

$$
\begin{aligned}
& =(I-p) x-p x \\
& =\underbrace{(\underbrace{I-\frac{2 v v^{t}}{\|v\|^{2}}}_{\text {House }}) x=\overrightarrow{F x}}_{\text {Household Ref lector) }}
\end{aligned}
$$

This is the orthogonal projection of x onto space which is orthogonal to v. Move twice as far in the same direction; we will have the target vector, i.e.,

$$
\begin{equation*}
F x=x-2 \frac{v v^{t}}{\|v\|^{2}} x=\left(I-2 \frac{v v^{t}}{\|v\|^{2}}\right) x \tag{7}
\end{equation*}
$$

We now derive the Household projector: $F=I-2 \frac{v v^{t}}{\|v\|^{2}}$.
Theorem 3.1. F is unitary and Hermitian.

