QR and least square

Zecheng Zhang

March 3, 2023

1 QR factorization

We study $A \in \mathbb{R}^{m \times n}$ matrix with linearly independent columns. QR algorithm is a key algorithm in numerical linear algebra. We want to study the column space of A.

Recall the Gram-Schmidt process for producing an orthogonal or an orthonormal basis for any nonzero subspace of \mathbb{R}^{n}. Given a basis $\left\{x_{1}, \ldots, x_{p}\right\}$ for a nonzero subspace W, define

$$
\begin{aligned}
& q_{1}=a_{1} / r_{11} \\
& q_{2}=a_{2} / r_{22}-\frac{r_{12}}{r_{22}} q_{1} \\
& q_{3}=a_{3} / r_{33}-\frac{r_{13}}{r_{33}} q_{1}-\frac{r_{23}}{r_{33}} q_{2} \\
& \ldots \\
& q_{p}=a_{p} / r_{p p}-\frac{r_{1 p}}{r_{p p}} a_{1}-\frac{r_{2 p}}{r_{p p}} q_{2}-\frac{r_{(p-1) p}}{r_{p p}} q_{p-1},
\end{aligned}
$$

where $r_{i j}=q_{i}^{T} a_{j}$ and $r_{j j}=\left\|a_{j}-\sum_{i=1}^{j} r_{i j} q_{i}\right\|$. Then $\left\{q_{1}, \ldots, q_{p}\right\}$ is an orthonormal basis for W, i.e., $\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}=\operatorname{span}\left\{q_{1}, q_{2}, \ldots, q_{p}\right\}$.

Theorem 1.1. If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A=Q R$, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Proof. Let a_{1}, \ldots, a_{n} be columns of A. Perform Gram-Schmidt, we obtain $Q=\left[q_{1}, \ldots, q_{n}\right]$, which is an orthonormal set of vectors whose span is $\operatorname{col}(A)$. For a_{k}, a_{k} is in $\operatorname{span}\left\{a_{1}, \ldots, a_{k}\right\}=$ $\operatorname{span}\left\{q_{1}, \ldots, q_{k}\right\}$. That is there exists $r_{1 k}, \ldots, r_{k k}$ such that $a_{k}=r_{1 k} q_{1}+\ldots+r_{k k} q_{k}+0 q_{k+1} \ldots 0 q_{n}$. Without loss of generality, we assume $r_{k k}>0$, otherwise multiply $r_{k k}$ and q_{k} by -1 simultaneously. Denote $Q=\left[q_{1}, q_{2}, \ldots, q_{n}\right], R=\left[r_{1}, \ldots, r_{n}\right]$ where $r_{k}=\left[r_{1 k}, \ldots, r_{k k}, 0, \ldots, 0\right]^{t} \in \mathbb{R}^{n}$, recall the matrix multiplication we have $A=Q R$. We now claim that R is upper triangular with a positive diagonal (easy to verify) and invertible. Recall $\operatorname{rank}(Q R) \leq \min (\operatorname{rank}(Q), \operatorname{rank}(R))$. Since $\operatorname{rank}(A)=n=\operatorname{rank}(Q)$, this implies that $\operatorname{rank}(R)=n$.

When $m>n$, we can append $m-n$ columns to Q to make it a $m \times m$ unitary matrix \tilde{Q}. In this process, we will append $m-n 0$ rows to R to obtain \tilde{R}. We call $A=\tilde{Q} \tilde{R}$ full QR of A.

2 Modified QR

The GS-QR algorithm is not numerically stable. For the moment, a stable algorithm is one that is not too sensitive to the effects of rounding off errors. The modified GS is the way to improve

```
Algorithm 1: Gram Schmidt
Data: \(n \geq 0\)
for \(j=1\) to \(n\) do
    \(v_{j}=a_{j}\)
    for \(i=1\) to \(j-1\) do
        \(r_{i j}=q_{i}^{t} a_{j}\)
        \(v_{j}=v_{j}-r_{i j} q_{i}\)
    \(r_{j j}=\left\|v_{j}\right\|_{2}\)
    \(q_{j}=v_{j} / r_{j j}\)
```

the stability of the QR algorithm. GS can be expressed as an orthogonal projection:

$$
\begin{equation*}
q_{1}=\frac{P_{1} a_{1}}{\left\|P_{1} a_{1}\right\|}, q_{2}=\frac{P_{2} a_{2}}{\left\|P_{2} a_{2}\right\|}, \ldots, q_{n}=\frac{P_{n} a_{n}}{\left\|P_{n} a_{n}\right\|}, \tag{1}
\end{equation*}
$$

where $P_{j} \in \mathbb{R}^{m \times m}$ denotes the orthogonal projector onto space spanned by $\left\{q_{1}, \ldots q_{j-1}\right\}$.
For each j, the GS algorithm computes a single orthogonal projection of rank $m-(j-1)$, $v_{j}=P_{j} a_{j}$. Recall that: $P_{\perp q}$ denotes the rank $m-1$ orthogonal projection onto the space orthogonal to q. By the definition of P_{j}, we can verify (without proof here):

$$
\begin{equation*}
P_{j}=P_{\perp q_{j-1}} \ldots P_{\perp q_{2}} P_{\perp q_{1}}, \tag{2}
\end{equation*}
$$

and $P_{1}=I$. As a result,

$$
\begin{equation*}
v_{j}=P_{j} a_{j}=P_{\perp q_{j-1}} \ldots P_{\perp q_{2}} P_{\perp q_{1}} a_{j} . \tag{3}
\end{equation*}
$$

Specifically,

$$
\begin{aligned}
v_{j}^{1} & =a_{j}, \\
v_{j}^{2} & =P_{\perp q_{1}} v_{j}^{1}=v_{j}^{1}-q_{1} q_{1}^{t} v_{j}^{1}, \\
v_{j}^{3} & =P_{\perp q_{2}} v_{j}^{2}=v_{j}^{2}-q_{2} q_{2}^{t} v_{j}^{2}, \\
& \cdots \quad \cdots \\
v_{j} & =P_{\perp q_{j-1}} v_{j}^{j-1}=v_{j}^{j-1}-q_{j-1} q_{j-1}^{t} v_{j}^{j-1} .
\end{aligned}
$$

We summarize the algorithm in 2 .

```
Algorithm 2: Modified Gram Schmidt
for \(i=1\) to \(n\) do
    \(v_{j}=a_{j}\)
for \(i=1\) to \(n\) do
    \(r_{i i}=\left\|v_{i}\right\|\)
    \(q_{i}=v_{i} / r_{i i}\)
    for \(j=i+1\) to \(n\) do
        \(r_{i j}=q_{i}^{t} v_{j}\)
        \(v_{j}=v_{j}-r_{i j} q_{i}\)
```

