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1 QR factorization

We study A ∈ Rm×n matrix with linearly independent columns. QR algorithm is a key algorithm
in numerical linear algebra. We want to study the column space of A.

Recall the Gram–Schmidt process for producing an orthogonal or an orthonormal basis for any
nonzero subspace of Rn. Given a basis {x1, ..., xp} for a nonzero subspace W , define
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where rij = qTi aj and rjj = ∥aj −
∑j

i=1 rijqi∥. Then {q1, ..., qp} is an orthonormal basis for W ,
i.e., span{a1, a2, ..., ap} = span{q1, q2, ..., qp}.

Theorem 1.1. If A is an m × n matrix with linearly independent columns, then A can be
factored as A = QR, where Q is an m×n matrix whose columns form an orthonormal basis for
Col A and R is an n×n upper triangular invertible matrix with positive entries on its diagonal.

Proof. Let a1, ..., an be columns of A. Perform Gram-Schmidt, we obtain Q = [q1, ..., qn], which
is an orthonormal set of vectors whose span is col(A). For ak, ak is in span{a1, ..., ak} =
span{q1, ..., qk}. That is there exists r1k, ..., rkk such that ak = r1kq1 + ...+ rkkqk + 0qk+1...0qn.
Without loss of generality, we assume rkk > 0, otherwise multiply rkk and qk by −1 simulta-
neously. Denote Q = [q1, q2, ..., qn], R = [r1, ..., rn] where rk = [r1k, ..., rkk, 0, ..., 0]

t ∈ Rn, recall
the matrix multiplication we have A = QR. We now claim that R is upper triangular with a
positive diagonal (easy to verify) and invertible. Recall rank(QR) ≤ min(rank(Q), rank(R)).
Since rank(A) = n = rank(Q), this implies that rank(R) = n.

When m > n, we can append m − n columns to Q to make it a m ×m unitary matrix Q̃. In
this process, we will append m− n 0 rows to R to obtain R̃. We call A = Q̃R̃ full QR of A.

2 Modified QR

The GS-QR algorithm is not numerically stable. For the moment, a stable algorithm is one that
is not too sensitive to the effects of rounding off errors. The modified GS is the way to improve
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Algorithm 1: Gram Schmidt

Data: n ≥ 0
1 for j = 1 to n do
2 vj = aj
3 for i = 1 to j − 1 do
4 rij = qtiaj
5 vj = vj − rijqi

6 rjj = ∥vj∥2
7 qj = vj/rjj

the stability of the QR algorithm. GS can be expressed as an orthogonal projection:
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∥P2a2∥

, ..., qn =
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∥Pnan∥
, (1)

where Pj ∈ Rm×m denotes the orthogonal projector onto space spanned by {q1, ...qj−1}.
For each j, the GS algorithm computes a single orthogonal projection of rank m − (j − 1),
vj = Pjaj . Recall that: P⊥q denotes the rank m − 1 orthogonal projection onto the space
orthogonal to q. By the definition of Pj , we can verify (without proof here):

Pj = P⊥qj−1
...P⊥q2P⊥q1 , (2)

and P1 = I. As a result,
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Specifically,
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We summarize the algorithm in 2.

Algorithm 2: Modified Gram Schmidt

1 for i = 1 to n do
2 vj = aj

3 for i = 1 to n do
4 rii = ∥vi∥
5 qi = vi/rii
6 for j = i+ 1 to n do
7 rij = qtivj
8 vj = vj − rijqi
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