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This section will discuss singular value decomposition (SVD) of a matrix A € R™*".

1 Construction

The first singular value is defined as:

o1 = sup [Avl.
l[ofl=1

Remark 1. The first singular value is well defined, i.e., such a v; € R"™ always exists. Non-
rigorous argument: the function : v — ||Av|| is continuous and with a compact domain.
Now one can find u; € R™ with ||u;|| = 1 such that Av; = ojuy.

One can follow the definition of the first singular value and define the second singular value as,

oy=  sup  |Av.
[lvl|=1,0Lvy

The remarkimplies that such a vy always exists and let us denote it as vo. In addition, we
can find ug € R™ with |Juz|| = 1 such that Avy = oqus.

Remark 2. 09 < 01 because vy is taken from a smaller subspace {111}L C R".
Theorem 1.1. u; and us which are defined above are orthogonal.

The theorem implies that u; L us. Repeat the process, one can find a unit vector vg € Wy =
{v1,v2}* such that it admits

os= sup |lAu].

|v]|=1,0€V2
In addition, one can find a unit vector uz such that Avs = o3ug. One can show that {u1,ug,us}
are orthogonal.

Remark 3. Let us define W, = {v1,v2, ..., vp} . If supyew, [[Avl| = 0, or, Avyy1 = 0, we can
make up, 11 (nonzero if possible) to be any vector which is orthogonal to {u1, ..., up}. If upyq has
to be zero, span{ui,...,u,} = R™

Repeat the process for n times (why is n the maximum step of the process?), we then can
construct an orthonormal matrix V' = [vy,...,v,] € R"™ " another matrix with orthonormal
columns U = [ug, ..., up] € R™*™ up to some 0 columns, and a diagonal matrix ¥ € R™*" with
diagonal entries being o1, ..., 0, (up to some 0). Recall the matrix multiplication we have,

AV =UX.



Theorem 1.2. rank(A) equals to the number of nonzero singular values.

Proof. Let us assume {o1,...,0,} are all nonzero singular values but 0,41 = 0. Let V, =
{v1,...,vp} be the singular vector corresponding to o1, ...0p,. We claim that V,, C row(A). We
have AV = UY, or UTA = ZV7T. The i —th row (i < p) of the right-hand side is o;v!. The i—th
row on the left-hand side is (u;)' 4, it follows that v! = U%(uz)tA This implies that V), C row(A).

By theorem in the last section (Complement theorem), null(A) = row(A)* C V;-. Now,
for v € Vpl7 we have Av = 0, otherwise contradicts with the definition of V,,. As a result,
VpL C null(A) = row(A)*, or, row(A) C V,. Tt follows that V, = row(A). We then have

dim(V,) = rank(A). O

As a corollary, V), = row(A). We summarize the results in the following theorem.

Theorem 1.3. Assume {o7y,...,0,} are all nonzero singular values, {v1,...,v,} and {u,...,up}
are right and left singular vectors respectively, we denote the space spanned by them as V}, and
Up. The followings are true:

Vp = row(4),
Uy, = col(A).

Proof. The first one is proved in the last theorem and let us prove U, = col(A). Since V
is unitary, for any y € R", there exists ¢;, u = 1,...,n such that y = > ' | ¢;u;. It follows
that Ay = >0 | ¢;Av; = Y P ¢joyu;. This implies that col(A) C span{ui,...,u,}. However,
w; = %Avi, this implies that u; € col(A).

O

Full SVD: make U matrix orthonormal when m > n. One can append an additional m —n
orthonormal columns to fulfill this goal. 3 should change as well so that the product AV = UX%
still holds. To do this, one can append m — n zero rows to the bottom of ¥. As a result, we
have AV = UX where V € R™™"™, U € R™*™ and ¥ € R™*", Since V is orthonormal, we have:

A=UxVL.

2 Revisit SVD

2.1 From SVD

Let A € R™*™, Suppose A admits an SVD A = UXV?, where U € R™*" (U is orthogonal if
this is the full SVD), V' € R™™™ are orthogonal matrices and ¥ € R™*" is a diagonal matrix.
Let us now consider AA? €™*™ and A'A € R™*", which are symmetric matrices.

AtA = VIIUtUSVE = VEIZVE,
AAL = USVIVYIU = USYIUY.

¥¥2 and ¥2% are still diagonal, and nonzero entries of these two matrices are indeed singular
values squared.

In addition, since U and V are orthogonal (U is orthogonal only when the SVD is full), this
implies that VXXV and UXY!U? are the eigenvalue decomposition (diagonalization) of A'A
and AA!,



2.2 From eigenvalue decompostion

Let us recall the Spectral theorem.

Theorem 2.1 (Spectral Theorem). Let A € C"*". Then A is Hermitian if and only if there is
a unitary matrix U € C™*™ and a real diagonal matrix D € R™*"™ such that A = UDU*.

A'A is symmetric, and by the Spectral theorem, let {v;}?"_; be the orthonormal eigenvectors of
Al A corresponding to eigenvalue A\; > Xa... > \,. We first claim that \; > Xa... > A\, > 0. We
have,

| Av;||> = (Avy)t Av; = vt A  Av; = \|jv||? > 0,

it implies that \; > 0.
Let o1 = /Ay for all i. We want to find {uy}x, which are orthonormal, such that,

Avy, = opuy.

When o, # 0, one can define ui = U—lkAvk. Let us claim all u; are orthonormal. Let u;, u; be
nonzero and defined as before. We have,

t,, AL Ay — ot — 5.
uuj = v A" Avj = vjv; = 04.

00}
The claim is proved. When )\, = 0, for some 1 < p < n, we can construct u, which is orthogonal
to wi,ug, ..., up—1. If {ui,...,up—1} have formed a basis for R™, then set u, = 0. Now we can
construct an orthonormal matrix V = [vq,...,v,] € R™ " another matrix with orthonormal
columns U = [ug, ..., up] € R™*™ up to some 0 columns, and a diagonal matrix ¥ € R™*" with
diagonal entries being o1, ..., 0y,. The SVD follows: AV = U3. One can apply the same trick as
before to make U a square matrix and obtain the full SVD.

Remark 4. Nonzero u; constructed before are eigenvectors of AA!. The proof is simple.

1 1
AAly, = AA' — Ay, = A— At Avy, = Aoy, = oruy.

Ok Ok

Definition 2.2. L2 norm of a matrix A € R™*" is defined as:

A
Al = max [Az]= max A2l
zeR™ [|z|=1 z€R™,z£0 ||gc||
In the rest of the notes, we sometimes write || - ||2 as || - || for simplicity.

[| Az||
[Ed]

Remark 5. For any x € R™ and z # 0, we have,
[Alllz]]-

< ||A|l2. This implies that [[Az| <

Definition 2.3. The Frobenius norm of A € R™*" is:

[AllF =

Theorem 2.4. Frobenius norm can be calculated in the following way,
1AIF =" ot
i

3



AR (A V) T o eg [w‘vvg ATA

/¢ G =+ o eprvae o A
Vs right Singulr Vetor of A
/7 N wle all Q)VMAOV\\)TW\IA\ (AV\Q to chjﬂ""l
Woten @ KTA)
. wi= = AVE S o, 4
|

congpraet U [\Mt\\:l o1

|
P

& W ¢ ovdhovorme| 4o

E\At - U‘«-|S‘ V\,"\J«aval

J
; G, 0 ~
A= UV s (e W) R ;f[@\m), Vo]

(9} 5\“"" ‘{ 0] g\l\b"‘)

prevR Uy & by o Dv*lﬂoﬁbv\ml'( w = 'é;AV\ [N OV'}L‘OV‘“"‘“I)
. = u+ u| — ._L Q\\/‘)tt ’I"'(/'\V‘)
QUi Wy > = S S, J
| £t IRV
= o WARY = o]
39y N
L
- 5 <Y, Ve >
— . J
‘\ 1 (/_\ 6(/6\!
“* Se <V, vy = :E\AV;C
Q-9

s\udw\\ Hmy



PQW\'»VLQ Ll— .

_'t

AA™ We
¥ 22

& “Qh/

Wty =
w2 L s
be A=

.
nA ”\c

I

[

2

ml Sk
o
N wdh e
%‘) eL‘Semwch«a\’$ % A
e
w*\rh CLZI}\ %) Ve
U|Q (o"™ S

L4 (5 Vi)
Gl

L A e VR
Sk
_ Uk
6hL AV’Q Gh
Ik
A cR
WAt G,
vX
< e [ |
~% 0
4 Lm(AB) = frow CRA)
u
2

= rb
‘t) = tree (VD 2 V)

\)



Proof. Let the SVD be A = UXV!. We have ||A||% = trace(AtA), it follows that,

|A|% = trace(VEIUTURVY) = trace(VEIEV?Y) = trace(BE!) = Z o,

where we use trace(MN) = trace(NM) in the last equality, where M and N are two matrices
of the proper size. I

Theorem 2.5 (Courant Fisher min max). For A € R™*" the singular value o; of A satisfy:

- o
o = min || Av||, (4 J..%“»\uk loa. 4hs, QQC(,V\& é—ag,m—\fk:"l_

= max
VR dim(V)=k  veV,|v]=1

min max ||Av|.
VCR"™ dimV=n—k vev,||v|=1

Ok+1 =
Proof. Let us prove the first one first. Let V be any k— dimensional space. Since dim(span{vg, ...,v,}) =
n—k+ 1, V intersects span{vg, ..., v, } nontrivially. Let v be a unit vector in the intersection,
i.e., there exist ¢, ...,c, such that, v = >, ¢;v;. Moreover, |lv]| = >, |¢;| = 1. We have,
Av = Y7, cioju;, it follows that, [|[Av|| = Y, |ciloil|ui|| < ok. This implies that for any
V' of dimension k, there exists v such that [|Av| < oy, i.e., min,cy =1 [|[Av]| < ok Now we
need to find a V such that the equality sign holds, i.e., ||Av|| = 0. We claim that V' can be
span{vy, ..., v}, i.e., VNspan{vk, ...,v,} = span{vg}. Now let v = vy, it follows that ||Av|| = o.
The claim is proved, i.e., maximizing over all V', we can obtain the equal sign.

The second one can be derived similarly. Let V' be any (n — k)— dimensional subspace of
R™, it intersects Viy1 := span{vi, ..., vp4+1} nontrivially, i.e., there exists unit vector v in the
intersection. It follows that, there exist ci,...,cx1 such that v = Zfill c;v;. We have Av =
Zf:ll cioju;, it follows that, ||Av|| > ogy1. This implies that for any V' of dimension n — k,
there exists v such that ||Av|| > o1, i.e., max,ey,|o|=1 [[Av|| = ok11. The equality holds when
V = span{viy1,...,vn} and v = vgy1. d

Theorem 2.6. Every matrix A has an SVD. Furthermore, the singular values are unique. If
A is square and all o; are distinct, the left and right singular vectors are unique up to complex

scalar signs (complex scalar factors of absolute value 1).
wW

el
Remark 6. If A = UXV?, where U has orthonormal columns, V is orthogonal, and ¥ is diagonal
and has non-negative diagonal entries, then this is an SVD of A.

Proof. ATA = VXSV, it is then very easy to see the column of V are the eigenvectors of

AT A, or they are singular vectors of A. Similarly, %¢3 diagonal entries are eigenvalues of AT A,
and their positve square roots are singular values of A. ]

3 Rank k approximation

Let us consider the SVD of A € R™*" ie., A = UXV!. Recall the matrix multiplication, we
have a decomposition for A as,

n T
_ t_ t
A= E iUV = E iU V;
i=1 =1
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where {0;}7_; are all nonzero singular values of A. Let us define an approximation Aj to A as:

k

t

A = E OiUiV;,
i=1

where k < r. It is easy to check rank(Ay) = k. We then can show Ay, is the best approximation
to A; the result is summarized in the following theorem.

3.1 Eckart-Young theorem

Theorem 3.1 (Eckart-Young). Suppose A, B € R™*" and rank(B) = k < rank(A) =r. We
then have:

A= Bl = [|A = Al| = ok
That is Ay, is the best rank k approximation to A in the L? sense.

Proof. We first prove that || A — Ag|| = ox+1. We have,

n n—k n
2 : t 2 : t 2 : ~ ~ ~t
A— Ak = o U V; = Ui+kui+kvi+k + O;UV; ,
i=k+1 =1 i=n—k+1

where 6; = 0, 4; are orthonormal to all u;y;, and v; are also orthonormal to all v;4;. The
summation is then an SVD of A — Aj. Since ||A — Ag|| is equal to the first singular value of its
SVD, we have ||[A — Akl = og+1-

Assume not, i.e., assume there is B € R™*" with rank(B) = k such that ||[A— BJ| < ||A—Ax|| =
Ok+1. For any w € R™, we have ||(A — B)w|| < ox41]|w||. It follows that, for any w € null(B),
we have,

(A = B)wl| = [[Aw|| < opq1[w]. (1)
Now for any w € V41 = span{vi, v, ..., V41 }, we claim that ||Aw]|| > og41]|w||. Since w € Vi1,
there exist cy, ..., ckt1, such that w = fill c;v;. It follows that
k+1 k+1
[Aw]| = 1Y " ciAvi| = |eiloi > opqa||wl], (2)
i=1 i=1

where the last inequality is due to the orthogonality of v; and o1 > ... > 0§11.

The Rank theorem indicates that dim(null(B)) = n — k, however dim(Vy41) = k + 1. We then
have dim(null(B)) + dim(Vi4+1) > n. Since null(B) and Vi1 both are subspace of R", this
implies that there exists w # 0 such that w € null(B) N Viy1. However, and cannot hold
simultaneously, which is the contradiction.

O
Corollary 3.1.1. Suppose A, B € R™*" and rank(B) < k < rank(A) = r. We then have:
A= Bl = [|A = Al = ox41-
Proof. Let rank(B) = k — j, 0 < j < k, by Eckart-Young, we have |4 — B|| > ||A — A;—j|| =
Oh—j+1 = Oht1 = [[A = Ag. O



3.2 Eckart-Young theorem (Frobenius)

Corollary 3.1.2. Let the SVD of A be A =UXV?! and U = [uy,...,us), V = [v1, ..., v,), and
the diagonal entries of ¥ are o1, ...,0,. Let A = Zle oju;vt, we have,

n
1A= A=) of.
i=k+1

Theorem 3.2 (Weyl). Let A, B € R™*" and denote the singular values as o;(A4) and o;(B).
We then have:

itj-1(A+ B) < 0i(A) + 0;(B). (3)

Proof. Let V4, and Vg be the subspace of R™ of dimensions n—k and n—1[, which are orthogonal
to the first £ and [ right singular vectors of A and B respectively. Let W = V4 N Vp, we have
dim(W) > n — k — 1. Tt follows that,

max |[[Av+ Bv||= max |Av| + ||Bv| < ogt1 + 0141-
veW,|lv]|=1 veEW,|jv]|=1

By Curant-Fisher,

Opt1+1(A+ B) = max ||Av+ Bv|| < max |[Av+ Bv| = 041 + 0141-

min
VCR™ dimV=n—k—lvev,||v||=1 veW,|jv||=1

O

Weyl’s inequality will help us prove the Eckart-Young for the Frobenius norm.

Theorem 3.3 (Eckart-Young Frobenius). Suppose A, B € R™*™ and rank(B) = k < rank(A) =
r. We then have:

IA=BlF > A~ A4llE = ) of
i=k+1

That is Ay, is the best rank k approximation to A in the L? sense.
Proof. Let X = A— B and Y = B and apply Weyl’s inequality
oitk(A) < 0i(A—=B) + 0441(B) = 04(A - B),
where is last equal sign is due to rank(B) = k. Apply Corollary it follows that,

IA — Agll%
r in(m,n)

r—k r—k m
- Y =Y <Y 2UA-B)< Y oHA-B)=|A-B|}
i=1 i=1

i=k+1 =1

O]

A direct consequence of the Eckart-Young for the Frobenius norm is the proper orthogonal
decomposition (POD).



3.3 Proper orthogonal decomposition (POD)

Given A = [y1,%2, ..., yn] € R™*™ and a set of orthonormal vectors Q = |1, ..., 71] € R™*¥ one
wants to solve the following problem:

n k
min g =Y < v, > (4)
i=1 j=1
We claim that the equationis equivalent to the matrix form,
n k
Dol = <wizg >’ = A - QQ'Allr. (5)
i=1 j=1

Denote the matrix as columns, i.e., [|[A — QQ'Allr = ||[y1 — QQTy1, ..., yn — QQ'yx]||lF; and
denote y; — QQTy; as z; € R™, it follows that,

n m n n
s — QR w1, ooy yn — QQ'ulIF =D D 25 = llzill> =D llvi — QQ"wil1*.
i=1 j=1 i=1 i=1

It is not hard to see QQ'y; = Z?:l < y;,x; > xj. The claim is proved. Apply the Eckart-Young
theorem for the Frobenius norm; we then have the POD theorem.

Theorem 3.4. Given A = [y1,y2, ..., yn] € R™*™ with rank r. For any k < r, we consider,

n k
Hgnz lys =Y < vz > )%, (6)
i=1 j=1

where Q = [x1,...,2;] € R™*F is a set of orthonormal vectors. The minimum is given by the
left singular vectors of A, which are also called proper orthogonal modes. Denote the singular
values of A as ¢;, the minimum is equal to ZZ:k:H 01-2.

Proof. The only statement left to prove is QQT A = Ay if Q = [uy, ..., uy] and uy, are the singular
vectors. We have,

k
QQTA = [uy, ug, ..., up)[u1, ug, ..., up] A = Zulqu
i=1



