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This section will discuss singular value decomposition (SVD) of a matrix A 2 Rm⇥n.

1 Construction

The first singular value is defined as:

�1 = sup
kvk=1

kAvk.

Remark 1. The first singular value is well defined, i.e., such a v1 2 Rn always exists. Non-
rigorous argument: the function : v ! kAvk is continuous and with a compact domain.

Now one can find u1 2 Rm with ku1k = 1 such that Av1 = �1u1.

One can follow the definition of the first singular value and define the second singular value as,

�2 = sup
kvk=1,v?v1

kAvk.

The remark 1 implies that such a v2 always exists and let us denote it as v2. In addition, we
can find u2 2 Rm with ku2k = 1 such that Av2 = �2u2.

Remark 2. �2  �1 because v2 is taken from a smaller subspace {v1}? ⇢ Rn.

Theorem 1.1. u1 and u2 which are defined above are orthogonal.

The theorem implies that u1 ? u2. Repeat the process, one can find a unit vector v3 2 W2 =
{v1, v2}? such that it admits

�3 = sup
kvk=1,v2V2

kAvk.

In addition, one can find a unit vector u3 such that Av3 = �3u3. One can show that {u1, u2, u3}
are orthogonal.

Remark 3. Let us define Wp = {v1, v2, ..., vp}?. If supv2Wp
kAvk = 0, or, Avp+1 = 0, we can

make up+1 (nonzero if possible) to be any vector which is orthogonal to {u1, ..., up}. If up+1 has
to be zero, span{u1, ..., up} = Rm

Repeat the process for n times (why is n the maximum step of the process?), we then can
construct an orthonormal matrix V = [v1, ..., vn] 2 Rn⇥n, another matrix with orthonormal
columns U = [u1, ..., un] 2 Rm⇥n up to some 0 columns, and a diagonal matrix ⌃ 2 Rn⇥n with
diagonal entries being �1, ...,�n (up to some 0). Recall the matrix multiplication we have,

AV = U⌃.
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Theorem 1.2. rank(A) equals to the number of nonzero singular values.

Proof. Let us assume {�1, ...,�p} are all nonzero singular values but �p+1 = 0. Let Vp =
{v1, ..., vp} be the singular vector corresponding to �1, ...�p. We claim that Vp ⇢ row(A). We
have AV = U⌃, or UTA = ⌃V T . The i� th row (i  p) of the right-hand side is �ivti . The i�th
row on the left-hand side is (ui)tA, it follows that vti =

1
�i
(ui)tA. This implies that Vp ⇢ row(A).

By theorem in the last section (Complement theorem), null(A) = row(A)? ⇢ V ?
p . Now,

for v 2 V ?
p , we have Av = 0, otherwise contradicts with the definition of Vp. As a result,

V ?
p ⇢ null(A) = row(A)?, or, row(A) ⇢ Vp. It follows that Vp = row(A). We then have

dim(Vp) = rank(A).

As a corollary, Vp = row(A). We summarize the results in the following theorem.

Theorem 1.3. Assume {�1, ...,�p} are all nonzero singular values, {v1, ..., vp} and {u1, ..., up}
are right and left singular vectors respectively, we denote the space spanned by them as Vp and
Up. The followings are true:

Vp = row(A),

Up = col(A).

Proof. The first one is proved in the last theorem and let us prove Up = col(A). Since V
is unitary, for any y 2 Rn, there exists ci, u = 1, ..., n such that y =

Pn
i=1 civi. It follows

that Ay =
Pn

i=1 ciAvi =
Pp

i=1 ci�iui. This implies that col(A) ⇢ span{u1, ..., up}. However,
ui =

1
�i
Avi, this implies that ui 2 col(A).

Full SVD: make U matrix orthonormal when m > n. One can append an additional m � n
orthonormal columns to fulfill this goal. ⌃ should change as well so that the product AV = U⌃
still holds. To do this, one can append m � n zero rows to the bottom of ⌃. As a result, we
have AV = U⌃ where V 2 Rn⇥n, U 2 Rm⇥m and ⌃ 2 Rm⇥n. Since V is orthonormal, we have:

A = U⌃V �1.

2 Revisit SVD

2.1 From SVD

Let A 2 Rm⇥n. Suppose A admits an SVD A = U⌃V t, where U 2 Rm⇥n (U is orthogonal if
this is the full SVD), V 2 Rn⇥n are orthogonal matrices and ⌃ 2 Rm⇥n is a diagonal matrix.
Let us now consider AAt 2m⇥m and AtA 2 Rn⇥n, which are symmetric matrices.

AtA = V ⌃tU tU⌃V t = V ⌃t⌃V t,

AAt = U⌃V tV ⌃tU t = U⌃⌃tU t.

⌃⌃2 and ⌃2⌃ are still diagonal, and nonzero entries of these two matrices are indeed singular
values squared.

In addition, since U and V are orthogonal (U is orthogonal only when the SVD is full), this
implies that V ⌃t⌃V t and U⌃⌃tU t are the eigenvalue decomposition (diagonalization) of AtA
and AAt.
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2.2 From eigenvalue decompostion

Let us recall the Spectral theorem.

Theorem 2.1 (Spectral Theorem). Let A 2 Cn⇥n. Then A is Hermitian if and only if there is
a unitary matrix U 2 Cn⇥n and a real diagonal matrix D 2 Rn⇥n such that A = UDU⇤.

AtA is symmetric, and by the Spectral theorem, let {vi}ni=1 be the orthonormal eigenvectors of
AtA corresponding to eigenvalue �1 � �2... � �n. We first claim that �1 � �2... � �n � 0. We
have,

kAvik2 = (Avi)
tAvi = vtiA

tAvi = �ikvk2 � 0,

it implies that �i � 0.

Let �1 =
p
�1 for all i. We want to find {uk}k, which are orthonormal, such that,

Avk = �kuk.

When �k 6= 0, one can define uk = 1
�k
Avk. Let us claim all uk are orthonormal. Let ui, uj be

nonzero and defined as before. We have,

utiuj =
1

�i�j
vtiA

tAvj = vtivj = �ij .

The claim is proved. When �p = 0, for some 1  p  n, we can construct up which is orthogonal
to u1, u2, ..., up�1. If {u1, ..., up�1} have formed a basis for Rm, then set up = 0. Now we can
construct an orthonormal matrix V = [v1, ..., vn] 2 Rn⇥n, another matrix with orthonormal
columns U = [u1, ..., un] 2 Rm⇥n up to some 0 columns, and a diagonal matrix ⌃ 2 Rn⇥n with
diagonal entries being �1, ...,�n. The SVD follows: AV = U⌃. One can apply the same trick as
before to make U a square matrix and obtain the full SVD.

Remark 4. Nonzero uk constructed before are eigenvectors of AAt. The proof is simple.

AAtuk = AAt 1

�k
Avk = A

1

�k
AtAvk = A�kvk = �2

kuk.

Definition 2.2. L2 norm of a matrix A 2 Rm⇥n is defined as:

kAk2 = max
x2Rn,kxk=1

kAxk = max
x2Rn,x 6=0

kAxk
kxk = �1.

In the rest of the notes, we sometimes write k · k2 as k · k for simplicity.

Remark 5. For any x 2 Rn and x 6= 0, we have, kAxk
kxk  kAk2. This implies that kAxk 

kAkkxk.

Definition 2.3. The Frobenius norm of A 2 Rm⇥n is:

kAkF =

vuut
mX

i=1

nX

j=1

a2ij .

Theorem 2.4. Frobenius norm can be calculated in the following way,

kAk2F =
X

i

�2
i .
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Proof. Let the SVD be A = U⌃V t. We have kAk2F = trace(AtA), it follows that,

kAk2F = trace(V ⌃tU tU⌃V t) = trace(V ⌃t⌃V t) = trace(⌃⌃t) =
X

i

�2
i ,

where we use trace(MN) = trace(NM) in the last equality, where M and N are two matrices
of the proper size.

Theorem 2.5 (Courant Fisher min max). For A 2 Rm⇥n, the singular value �i of A satisfy:

�k = max
V⇢Rn,dim(V )=k

min
v2V,kvk=1

kAvk,

�k+1 = min
V⇢Rn,dimV=n�k

max
v2v,kvk=1

kAvk.

Proof. Let us prove the first one first. Let V be any k� dimensional space. Since dim(span{vk, ..., vn}) =
n � k + 1, V intersects span{vk, ..., vn} nontrivially. Let v be a unit vector in the intersection,
i.e., there exist ck, ..., cn such that, v =

Pn
i=k civi. Moreover, kvk =

Pn
i=k |ci| = 1. We have,

Av =
Pn

i=k ci�iui, it follows that, kAvk =
Pn

i=k |ci|�ikuik  �k. This implies that for any
V of dimension k, there exists v such that kAvk  �k, i.e., minv2V,kvk=1 kAvk  �k. Now we
need to find a V such that the equality sign holds, i.e., kAvk = �k. We claim that V can be
span{v1, ..., vk}, i.e., V \span{vk, ..., vn} = span{vk}. Now let v = vk, it follows that kAvk = �k.
The claim is proved, i.e., maximizing over all V , we can obtain the equal sign.

The second one can be derived similarly. Let V be any (n � k)� dimensional subspace of
Rn, it intersects Vk+1 := span{v1, ..., vk+1} nontrivially, i.e., there exists unit vector v in the
intersection. It follows that, there exist c1, ..., ck+1 such that v =

Pk+1
i=1 civi. We have Av =Pk+1

i=1 ci�iui, it follows that, kAvk � �k+1. This implies that for any V of dimension n � k,
there exists v such that kAvk � �k+1, i.e., maxv2V,kvk=1 kAvk � �k+1. The equality holds when
V = span{vk+1, ..., vn} and v = vk+1.

3 Rank k approximation

Let us consider the SVD of A 2 Rm⇥n, i.e., A = U⌃V t. Recall the matrix multiplication, we
have a decomposition for A as,

A =
nX

i=1

�iuiv
t
i =

rX

i=1

�iuiv
t
i ,

where {�i}ri=1 are all nonzero singular values of A. Let us define an approximation Ak to A as:

Ak =
kX

i=1

�iuiv
t
i ,

where k  r. It is easy to check rank(Ak) = k. We then can show Ak is the best approximation
to A; the result is summarized in the following theorem.

3.1 Eckart-Young theorem

Theorem 3.1 (Eckart-Young). Suppose A,B 2 Rm⇥n and rank(B) = k  rank(A) = r. We
then have:

kA�Bk � kA�Akk = �k+1.
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That is Ak is the best rank k approximation to A in the L2 sense.

Proof. We first prove that kA�Akk = �k+1. We have,

A�Ak =
nX

i=k+1

�iuiv
t
i =

n�kX

i=1

�i+kui+kv
t
i+k +

nX

i=n�k+1

�̃iũiṽ
t
i ,

where �̃i = 0, ũi are orthonormal to all ui+k, and ṽi are also orthonormal to all vi+k. The
summation is then an SVD of A�Ak. Since kA�Akk is equal to the first singular value of its
SVD, we have kA�Akk = �k+1.

Assume not, i.e., assume there is B 2 Rm⇥n with rank(B) = k such that kA�Bk < kA�Akk =
�k+1. For any w 2 Rn, we have k(A � B)wk < �k+1kwk. It follows that, for any w 2 null(B),
we have,

k(A�B)wk = kAwk < �k+1kwk. (1)

Now for any w 2 Vk+1 = span{v1, v2, ..., vk+1}, we claim that kAwk � �k+1kwk. Since w 2 Vk+1,
there exist c1, ..., ck+1, such that w =

Pk+1
i=1 civi. It follows that

kAwk = k
k+1X

i=1

ciAvik =
k+1X

i=1

|ci|�i � �k+1kwk, (2)

where the last inequality is due to the orthogonality of vi and �1 � ... � �k+1.

The Rank theorem indicates that dim(null(B)) = n� k, however dim(Vk+1) = k + 1. We then
have dim(null(B)) + dim(Vk+1) > n. Since null(B) and Vk+1 both are subspace of Rn, this
implies that there exists w 6= 0 such that w 2 null(B) \ Vk+1. However, 1 and 2 cannot hold
simultaneously, which is the contradiction.

Corollary 3.1.1. Suppose A,B 2 Rm⇥n and rank(B)  k  rank(A) = r. We then have:

kA�Bk � kA�Akk = �k+1.

Proof. Let rank(B) = k � j, 0  j  k, by Eckart-Young, we have kA � Bk � kA � Ak�jk =
�k�j+1 � �k+1 = kA�Akk.

3.2 Eckart-Young theorem (Frobenius)

Corollary 3.1.2. Let the SVD of A be A = U⌃V t, and U = [u1, ..., un], V = [v1, ..., vn], and
the diagonal entries of ⌃ are �1, ...,�n. Let Ak =

Pk
i=1 �iuiv

t
i , we have,

kA�Akk2F =
nX

i=k+1

�2
i .

Theorem 3.2 (Weyl). Let A,B 2 Rm⇥n, and denote the singular values as �i(A) and �i(B).
We then have:

�i+j�1(A+B)  �i(A) + �j(B). (3)
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Proof. Let VA, and VB be the subspace of Rn of dimensions n�k and n� l, which are orthogonal
to the first k and l right singular vectors of A and B respectively. Let W = VA \ VB, we have
dim(W ) � n� k � l. It follows that,

max
v2W,kvk=1

kAv +Bvk = max
v2W,kvk=1

kAvk+ kBvk  �k+1 + �l+1.

By Curant-Fisher,

�k+l+1(A+B) = min
V⇢Rn,dimV=n�k�l

max
v2v,kvk=1

kAv +Bvk  max
v2W,kvk=1

kAv +Bvk = �k+1 + �l+1.

Weyl’s inequality will help us prove the Eckart-Young for the Frobenius norm.

Theorem 3.3 (Eckart-Young Frobenius). SupposeA,B 2 Rm⇥n and rank(B) = k  rank(A) =
r. We then have:

kA�Bk2F � kA�Akk2F =
X

i=k+1

�2
i .

That is Ak is the best rank k approximation to A in the L2 sense.

Proof. Let X = A�B and Y = B and apply Weyl’s inequality 3.2,

�i+k(A)  �i(A�B) + �k+1(B) = �i(A�B),

where is last equal sign is due to rank(B) = k. Apply Corollary 3.1.2, it follows that,

kA�Akk2F

=
rX

i=k+1

�i(A)2 =
r�kX

i=1

�2
i+k(A) 

r�kX

i=1

�2
i (A�B) 

min(m,n)X

i=1

�2
i (A�B) = kA�Bk2F .

A direct consequence of the Eckart-Young for the Frobenius norm is the proper orthogonal
decomposition (POD).

3.3 Proper orthogonal decomposition (POD)

Given A = [y1, y2, ..., yn] 2 Rm⇥n, and a set of orthonormal vectors Q = [x1, ..., xk] 2 Rm⇥k, one
wants to solve the following problem:

min
Q

nX

i=1

kyi �
kX

j=1

< yi, xj > xjk2. (4)

We claim that the equation 4 is equivalent to the matrix form,

nX

i=1

kyi �
kX

j=1

< yi, xj > xjk2 = kA�QQtAkF . (5)
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Denote the matrix as columns, i.e., kA � QQtAkF = k[y1 � QQT y1, ..., yn � QQtyn]kF ; and
denote yi �QQT yi as zi 2 Rm, it follows that,

k[y1 �QQT y1, ..., yn �QQtyn]k2F =
nX

i=1

mX

j=1

z2ji =
nX

i=1

kzik2 =
nX

i=1

kyi �QQtyik2.

It is not hard to see QQtyi =
Pk

j=1 < yi, xj > xj . The claim is proved. Apply the Eckart-Young
theorem for the Frobenius norm; we then have the POD theorem.

Theorem 3.4. Given A = [y1, y2, ..., yn] 2 Rm⇥n with rank r. For any k  r, we consider,

min
Q

nX

i=1

kyi �
kX

j=1

< yi, xj > xjk2, (6)

where Q = [x1, ..., xk] 2 Rm⇥k is a set of orthonormal vectors. The minimum is given by the
left singular vectors of A, which are also called proper orthogonal modes. Denote the singular
values of A as �i, the minimum is equal to

Pr
i=k+1 �

2
i .

Proof. The only statement left to prove is QQTA = Ak if Q = [u1, ..., uk] and uk are the singular
vectors. We have,

QQTA = [u1, u2, ..., uk][u1, u2, ..., uk]
tA =

kX

i=1

uiu
t
iA.
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