Singular value decomposition (SVD)

Zecheng Zhang

February 15, 2023

This section will discuss singular value decomposition (SVD) of a matrix $A \in \mathbb{R}^{m \times n}$.

1 Construction

The first singular value is defined as:

$$
\sigma_{1}=\sup _{\|v\|=1}\|A v\| .
$$

Remark 1. The first singular value is well defined, i.e., such a $v_{1} \in \mathbb{R}^{n}$ always exists. Nonrigorous argument: the function : $v \rightarrow\|A v\|$ is continuous and with a compact domain.

Now one can find $u_{1} \in \mathbb{R}^{m}$ with $\left\|u_{1}\right\|=1$ such that $A v_{1}=\sigma_{1} u_{1}$.
One can follow the definition of the first singular value and define the second singular value as,

$$
\sigma_{2}=\sup _{\|v\|=1, v \perp v_{1}}\|A v\| .
$$

The remark 1 implies that such a v_{2} always exists and let us denote it as v_{2}. In addition, we can find $u_{2} \in \mathbb{R}^{m}$ with $\left\|u_{2}\right\|=1$ such that $A v_{2}=\sigma_{2} u_{2}$.
Remark 2. $\sigma_{2} \leq \sigma_{1}$ because v_{2} is taken from a smaller subspace $\left\{v_{1}\right\}^{\perp} \subset \mathbb{R}^{n}$.
Theorem 1.1. u_{1} and u_{2} which are defined above are orthogonal.
The theorem implies that $u_{1} \perp u_{2}$. Repeat the process, one can find a unit vector $v_{3} \in W_{2}=$ $\left\{v_{1}, v_{2}\right\}^{\perp}$ such that it admits

$$
\sigma_{3}=\sup _{\|v\|=1, v \in V_{2}}\|A v\| .
$$

In addition, one can find a unit vector u_{3} such that $A v_{3}=\sigma_{3} u_{3}$. One can show that $\left\{u_{1}, u_{2}, u_{3}\right\}$ are orthogonal.
Remark 3. Let us define $W_{p}=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}^{\perp}$. If $\sup _{v \in W_{p}}\|A v\|=0$, or, $A v_{p+1}=0$, we can make u_{p+1} (nonzero if possible) to be any vector which is orthogonal to $\left\{u_{1}, \ldots, u_{p}\right\}$. If u_{p+1} has to be zero, $\operatorname{span}\left\{u_{1}, \ldots, u_{p}\right\}=\mathbb{R}^{m}$

Repeat the process for n times (why is n the maximum step of the process?), we then can construct an orthonormal matrix $V=\left[v_{1}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}$, another matrix with orthonormal columns $U=\left[u_{1}, \ldots, u_{n}\right] \in \mathbb{R}^{m \times n}$ up to some 0 columns, and a diagonal matrix $\Sigma \in \mathbb{R}^{n \times n}$ with diagonal entries being $\sigma_{1}, \ldots, \sigma_{n}$ (up to some 0). Recall the matrix multiplication we have,

$$
A V=U \Sigma .
$$

Theorem 1.2. $\operatorname{rank}(A)$ equals to the number of nonzero singular values.
Proof. Let us assume $\left\{\sigma_{1}, \ldots, \sigma_{p}\right\}$ are all nonzero singular values but $\sigma_{p+1}=0$. Let $V_{p}=$ $\left\{v_{1}, \ldots, v_{p}\right\}$ be the singular vector corresponding to $\sigma_{1}, \ldots \sigma_{p}$. We claim that $V_{p} \subset \operatorname{row}(A)$. We have $A V=U \Sigma$, or $U^{T} A=\Sigma V^{T}$. The $i-t h$ row $(i \leq p)$ of the right-hand side is $\sigma_{i} v_{i}^{t}$. The $i-$ th row on the left-hand side is $\left(u_{i}\right)^{t} A$, it follows that $v_{i}^{t}=\frac{1}{\sigma_{i}}\left(u_{i}\right)^{t} A$. This implies that $V_{p} \subset \operatorname{row}(A)$. By theorem in the last section (Complement theorem), $\operatorname{null}(A)=\operatorname{row}(A)^{\perp} \subset V_{p}^{\perp}$. Now, for $v \in V_{p}^{\perp}$, we have $A v=0$, otherwise contradicts with the definition of V_{p}. As a result, $V_{p}^{\perp} \subset \operatorname{null}(A)=\operatorname{row}(A)^{\perp}$, or, $\operatorname{row}(A) \subset V_{p}$. It follows that $V_{p}=\operatorname{row}(A)$. We then have $\operatorname{dim}\left(V_{p}\right)=\operatorname{rank}(A)$.

As a corollary, $V_{p}=\operatorname{row}(A)$. We summarize the results in the following theorem.
Theorem 1.3. Assume $\left\{\sigma_{1}, \ldots, \sigma_{p}\right\}$ are all nonzero singular values, $\left\{v_{1}, \ldots, v_{p}\right\}$ and $\left\{u_{1}, \ldots, u_{p}\right\}$ are right and left singular vectors respectively, we denote the space spanned by them as V_{p} and U_{p}. The followings are true:

$$
\begin{aligned}
& V_{p}=\operatorname{row}(A), \\
& U_{p}=\operatorname{col}(A) .
\end{aligned}
$$

Proof. The first one is proved in the last theorem and let us prove $U_{p}=\operatorname{col}(A)$. Since V is unitary, for any $y \in \mathbb{R}^{n}$, there exists $c_{i}, u=1, \ldots, n$ such that $y=\sum_{i=1}^{n} c_{i} v_{i}$. It follows that $A y=\sum_{i=1}^{n} c_{i} A v_{i}=\sum_{i=1}^{p} c_{i} \sigma_{i} u_{i}$. This implies that $\operatorname{col}(A) \subset \operatorname{span}\left\{u_{1}, \ldots, u_{p}\right\}$. However, $u_{i}=\frac{1}{\sigma_{i}} A v_{i}$, this implies that $u_{i} \in \operatorname{col}(A)$.

Full SVD: make U matrix orthonormal when $m>n$. One can append an additional $m-n$ orthonormal columns to fulfill this goal. Σ should change as well so that the product $A V=U \Sigma$ still holds. To do this, one can append $m-n$ zero rows to the bottom of Σ. As a result, we have $A V=U \Sigma$ where $V \in \mathbb{R}^{n \times n}, U \in \mathbb{R}^{m \times m}$ and $\Sigma \in \mathbb{R}^{m \times n}$. Since V is orthonormal, we have:

$$
A=U \Sigma V^{-1}
$$

2 Revisit SVD

2.1 From SVD

Let $A \in \mathbb{R}^{m \times n}$. Suppose A admits an SVD $A=U \Sigma V^{t}$, where $U \in \mathbb{R}^{m \times n}$ (U is orthogonal if this is the full SVD), $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix. Let us now consider $A A^{t} \in^{m \times m}$ and $A^{t} A \in \mathbb{R}^{n \times n}$, which are symmetric matrices.

$$
\begin{aligned}
& A^{t} A=V \Sigma^{t} U^{t} U \Sigma V^{t}=V \Sigma^{t} \Sigma V^{t}, \\
& A A^{t}=U \Sigma V^{t} V \Sigma^{t} U^{t}=U \Sigma \Sigma^{t} U^{t} .
\end{aligned}
$$

$\Sigma \Sigma^{2}$ and $\Sigma^{2} \Sigma$ are still diagonal, and nonzero entries of these two matrices are indeed singular values squared.
In addition, since U and V are orthogonal (U is orthogonal only when the SVD is full), this implies that $V \Sigma^{t} \Sigma V^{t}$ and $U \Sigma \Sigma^{t} U^{t}$ are the eigenvalue decomposition (diagonalization) of $A^{t} A$ and $A A^{t}$.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right)_{2.2} \\
& \max _{v \in \mathbb{R}^{2}}^{\| \|\| \|^{2}} \|\left\{A v\left\|^{2}=\right\|\binom{3 x}{4 x+5 y} \|^{2}=9 x^{2}+16 x^{2}+25 y^{2}+40 x y\right. \\
& \|v\|=1 \\
& \text { where } v=\binom{x}{y} \\
& =25\left(x^{2}+y^{2}\right)+40 x y \\
& \|v\|^{2}=1=25+40 x y
\end{aligned}
$$

$\max 2 \xi+40 x y=f(x)$
constraint: $g(x)=x^{2}+y^{2}=1$

$$
\begin{gathered}
\frac{\partial f}{\partial x}=40 y=\lambda \frac{\partial g}{\partial x}=\lambda \cdot 2 x, \\
\frac{\partial f}{\partial y}=40 x=\lambda \frac{\partial g}{\partial y}=\lambda \cdot 2 y \\
x=y=0, \quad f(x)=25 \\
x \neq 0, y \neq 0, \\
\Rightarrow \quad \frac{y}{x}=\frac{x}{y} \\
\Rightarrow x^{2}+y^{2}=1 .
\end{gathered}
$$

set $V_{1}=\binom{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}$

$$
\begin{aligned}
& \sigma_{1}=\sqrt{40-\frac{\sqrt{2}_{2}}{2} \frac{T_{2}}{2}+25}=\sqrt{45} \\
& A v_{1}=\frac{\sqrt{2}}{2}\binom{3}{9}=\frac{3 \sqrt{2}}{2}\binom{1}{3}
\end{aligned}=\frac{3 \sqrt{2} \cdot \sqrt{10}}{2}\binom{1 / \sqrt{10}}{3 / \sqrt{10}} .
$$

step 2.

$$
\left.\begin{aligned}
& V_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2} \\
& \operatorname{mox}^{v \in v_{1}^{1}} \\
& \|A v\|=1 \\
& \|v\|
\end{aligned} \right\rvert\,
$$

$$
\begin{aligned}
& V_{2}=\frac{1}{\sqrt{2}}\binom{-1}{+1} \quad \sigma_{2}=\sqrt{25+40 x y}=\sqrt{5} \\
& u_{2}=\frac{1}{\sigma_{2}} A V_{2}=\frac{\sqrt{20}}{2}\binom{-3 / \sqrt{10}}{1 / \sqrt{10}}
\end{aligned}
$$

$$
\begin{align*}
& V=\left(\begin{array}{cc}
\sqrt{2} / 2 & -\sqrt{1} / 2 \\
\sqrt{2} / 2 & +\sqrt{2} / 2
\end{array}\right) \quad \overline{2}=\left(\begin{array}{cc}
\sqrt{45} & 0 \\
0 & \sqrt{5}
\end{array}\right) \\
& U=\left(\begin{array}{lll}
1 / \sqrt{10} & 1 & -3 / \sqrt{10} \\
3 / \sqrt{10} & 1 & 1 / \sqrt{10}
\end{array}\right) . \quad A=U \Sigma V^{1} .
\end{align*}
$$

$E g_{1}$

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

$$
\max _{v \in \in p^{2}}\|\Delta v\|^{2}=\left\|\left(\begin{array}{c}
x+y \\
0 \\
0
\end{array}\right)\right\|^{2}=x^{2}+y^{2}+2 x y
$$

$$
\|v\|=1=1+2 x y,:=f(x \cdot y)
$$

constraint $\quad y(x, y)=x^{2}+y^{2}=1$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 y=\lambda \frac{\partial y}{\partial x}=\lambda 2 x \\
& \frac{\partial f}{\partial y}=2 x=\lambda^{2} \frac{\partial y}{\partial y}=\lambda^{2} y
\end{aligned}
$$

$x=y=0$ not true singe $x^{2}+y^{2}=1$.

$$
\begin{aligned}
x \neq 0 \Rightarrow x^{2}=y^{2} \Rightarrow & \Rightarrow= \pm \sqrt{2} / 2 \\
y & = \pm \sqrt{2} / 2
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{1}=\sqrt{2}, \\
& v_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2} \\
& A v_{1}=\left(\begin{array}{c}
\sqrt{2} \\
0 \\
0
\end{array}\right)=\underbrace{\sqrt{2}}_{\sigma_{1}} \underbrace{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}_{u_{1}} \\
& V_{2}=\binom{\sqrt{2} / 2}{-\sqrt{2} / 2} \text { or }\binom{-\sqrt{2} / 2}{\sqrt{2} / 2} \\
& A v_{2}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \Rightarrow \quad \sigma_{2}=0 \\
& u_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \begin{array}{c}
u_{2}: \text { be a unit vector } \\
\text { which is } \perp \perp\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=u_{1}
\end{array} \\
& V=\left(\begin{array}{cc}
\sqrt{2} / 2 & \sqrt{2} / 2 \\
\sqrt{2} / 2 & -\sqrt{2} / 2
\end{array}\right) \quad \Sigma=\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 0
\end{array}\right) \quad W=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)_{3 \cdot 2} \\
& A=U \Sigma V^{t} \\
& \text { (1) } \perp u_{1} 8 u_{2} \\
& \text { (2) }\|\|=1 \text {. } \\
& \text { Full SVD of } A: \quad \bigcup \quad=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \tilde{\Sigma}=\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \rightarrow \bar{\Sigma} \quad A=\tilde{U} \tilde{\nu} \tilde{V} t \\
& \tilde{v}=V
\end{aligned}
$$

2.2 From eigenvalue decompostion

Let us recall the Spectral theorem.
Theorem 2.1 (Spectral Theorem). Let $A \in \mathbb{C}^{n \times n}$. Then A is Hermitian if and only if there is a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a real diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that $A=U D U^{*}$.
$A^{t} A$ is symmetric, and by the Spectral theorem, let $\left\{v_{i}\right\}_{i=1}^{n}$ be the orthonormal eigenvectors of $A^{t} A$ corresponding to eigenvalue $\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{n}$. We first claim that $\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{n} \geq 0$. We have,

$$
\left\|A v_{i}\right\|^{2}=\left(A v_{i}\right)^{t} A v_{i}=v_{i}^{t} A^{t} A v_{i}=\lambda_{i}\|v\|^{2} \geq 0
$$

it implies that $\lambda_{i} \geq 0$.
Let $\sigma_{1}=\sqrt{\lambda_{1}}$ for all i. We want to find $\left\{u_{k}\right\}_{k}$, which are orthonormal, such that,

$$
A v_{k}=\sigma_{k} u_{k}
$$

When $\sigma_{k} \neq 0$, one can define $u_{k}=\frac{1}{\sigma_{k}} A v_{k}$. Let us claim all u_{k} are orthonormal. Let u_{i}, u_{j} be nonzero and defined as before. We have,

$$
u_{i}^{t} u_{j}=\frac{1}{\sigma_{i} \sigma_{j}} v_{i}^{t} A^{t} A v_{j}=v_{i}^{t} v_{j}=\delta_{i j} .
$$

The claim is proved. When $\lambda_{p}=0$, for some $1 \leq p \leq n$, we can construct u_{p} which is orthogonal to $u_{1}, u_{2}, \ldots, u_{p-1}$. If $\left\{u_{1}, \ldots, u_{p-1}\right\}$ have formed a basis for \mathbb{R}^{m}, then set $u_{p}=0$. Now we can construct an orthonormal matrix $V=\left[v_{1}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}$, another matrix with orthonormal columns $U=\left[u_{1}, \ldots, u_{n}\right] \in \mathbb{R}^{m \times n}$ up to some 0 columns, and a diagonal matrix $\Sigma \in \mathbb{R}^{n \times n}$ with diagonal entries being $\sigma_{1}, \ldots, \sigma_{n}$. The SVD follows: $A V=U \Sigma$. One can apply the same trick as before to make U a square matrix and obtain the full SVD.

Remark 4. Nonzero u_{k} constructed before are eigenvectors of $A A^{t}$. The proof is simple.

$$
A A^{t} u_{k}=A A^{t} \frac{1}{\sigma_{k}} A v_{k}=A \frac{1}{\sigma_{k}} A^{t} A v_{k}=A \sigma_{k} v_{k}=\sigma_{k}^{2} u_{k} .
$$

Definition 2.2. L^{2} norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as:

$$
\|A\|_{2}=\max _{x \in \mathbb{R}^{n},\|x\|=1}\|A x\|=\max _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|A x\|}{\|x\|}=\sigma_{1} .
$$

In the rest of the notes, we sometimes write $\|\cdot\|_{2}$ as $\|\cdot\|$ for simplicity.
Remark 5. For any $x \in \mathbb{R}^{n}$ and $x \neq 0$, we have, $\frac{\|A x\|}{\|x\|} \leq\|A\|_{2}$. This implies that $\|A x\| \leq$ $\|A\|\|x\|$.

Definition 2.3. The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is:

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}} .
$$

Theorem 2.4. Frobenius norm can be calculated in the following way,

$$
\|A\|_{F}^{2}=\sum_{i} \sigma_{i}^{2}
$$

$A \in \mathbb{R}^{\text {min }}$
$A^{+} A^{\in \mathbb{R}^{\text {in }}}$ is symmetric. Remote all e'jencalues of $A^{+} A$ is
$\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{n}$, all corresponding eivec. $V_{1} \ldots V_{n}$.
eivals ane real
(spectral theorem)

Tho, $\quad \lambda_{1} \geqslant \lambda_{2} \ldots \geqslant \lambda_{n} \geqslant 0$

$$
\begin{aligned}
\left\|A v_{i}\right\|^{2} & =\left\langle A v_{i}, A v_{i}\right\rangle \\
& =v_{i}^{+} \underbrace{A^{+} A v_{i}}_{=\lambda_{i} v_{i}}
\end{aligned}=v_{i}^{+} \lambda_{i} v_{i} .
$$

$$
\Rightarrow \quad \lambda_{i} \geqslant 0 .
$$

Refine the i th singular value of A as $G_{i}=\sqrt{\lambda_{i}}, i=1, \ldots, n$.

$$
u_{i}=\frac{1}{\sigma_{i}} A V_{i}, \quad \therefore f \quad G_{i} \neq 0 .
$$

Proof. Let the SVD be $A=U \Sigma V^{t}$. We have $\|A\|_{F}^{2}=\operatorname{trace}\left(A^{t} A\right)$, it follows that,

$$
\|A\|_{F}^{2}=\operatorname{trace}\left(V \Sigma^{t} U^{t} U \Sigma V^{t}\right)=\operatorname{trace}\left(V \Sigma^{t} \Sigma V^{t}\right)=\operatorname{trace}\left(\Sigma \Sigma^{t}\right)=\sum_{i} \sigma_{i}^{2}
$$

where we use $\operatorname{trace}(M N)=\operatorname{trace}(N M)$ in the last equality, where M and N are two matrices of the proper size.

Theorem 2.5 (Courant Fisher min max). For $A \in \mathbb{R}^{m \times n}$, the singular value σ_{i} of A satisfy:

$$
\begin{aligned}
& \sigma_{k}=\max _{V \subset \mathbb{R}^{n}, \operatorname{dim}(V)=k} \min _{v \in V,\|v\|=1}\|A v\|, \\
& \sigma_{k+1}=\min _{V \subset \mathbb{R}^{n}, \operatorname{dim} V=n-k} \max _{v \in v,\|v\|=1}\|A v\| .
\end{aligned}
$$

Proof. Let us prove the first one first. Let V be any $k-\operatorname{dimensional~space.~Since~} \operatorname{dim}\left(\operatorname{span}\left\{v_{k}, \ldots, v_{n}\right\}\right)=$ $n-k+1, V$ intersects $\operatorname{span}\left\{v_{k}, \ldots, v_{n}\right\}$ nontrivially. Let v be a unit vector in the intersection, i.e., there exist c_{k}, \ldots, c_{n} such that, $v=\sum_{i=k}^{n} c_{i} v_{i}$. Moreover, $\|v\|=\sum_{i=k}^{n}\left|c_{i}\right|=1$. We have, $A v=\sum_{i=k}^{n} c_{i} \sigma_{i} u_{i}$, it follows that, $\|A v\|=\sum_{i=k}^{n}\left|c_{i}\right| \sigma_{i}\left\|u_{i}\right\| \leq \sigma_{k}$. This implies that for any V of dimension k, there exists v such that $\|A v\| \leq \sigma_{k}$, i.e., $\min _{v \in V,\|v\|=1}\|A v\| \leq \sigma_{k}$. Now we need to find a V such that the equality sign holds, i.e., $\|A v\|=\sigma_{k}$. We claim that V can be $\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$, i.e., $V \cap \operatorname{span}\left\{v_{k}, \ldots, v_{n}\right\}=\operatorname{span}\left\{v_{k}\right\}$. Now let $v=v_{k}$, it follows that $\|A v\|=\sigma_{k}$. The claim is proved, i.e., maximizing over all V, we can obtain the equal sign.

The second one can be derived similarly. Let V be any $(n-k)-$ dimensional subspace of \mathbb{R}^{n}, it intersects $V_{k+1}:=\operatorname{span}\left\{v_{1}, \ldots, v_{k+1}\right\}$ nontrivially, i.e., there exists unit vector v in the intersection. It follows that, there exist c_{1}, \ldots, c_{k+1} such that $v=\sum_{i=1}^{k+1} c_{i} v_{i}$. We have $A v=$ $\sum_{i=1}^{k+1} c_{i} \sigma_{i} u_{i}$, it follows that, $\|A v\| \geq \sigma_{k+1}$. This implies that for any V of dimension $n-k$, there exists v such that $\|A v\| \geq \sigma_{k+1}$, i.e., $\max _{v \in V,\|v\|=1}\|A v\| \geq \sigma_{k+1}$. The equality holds when $V=\operatorname{span}\left\{v_{k+1}, \ldots, v_{n}\right\}$ and $v=v_{k+1}$.

3 Rank k approximation

Let us consider the SVD of $A \in \mathbb{R}^{m \times n}$, i.e., $A=U \Sigma V^{t}$. Recall the matrix multiplication, we have a decomposition for A as,

$$
A=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{t}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{t}
$$

where $\left\{\sigma_{i}\right\}_{i=1}^{r}$ are all nonzero singular values of A. Let us define an approximation A_{k} to A as:

$$
A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{t}
$$

where $k \leq r$. It is easy to check $\operatorname{rank}\left(A_{k}\right)=k$. We then can show A_{k} is the best approximation to A; the result is summarized in the following theorem.

3.1 Eckart-Young theorem

Theorem 3.1 (Eckart-Young). Suppose $A, B \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(B)=k \leq \operatorname{rank}(A)=r$. We then have:

$$
\|A-B\| \geq\left\|A-A_{k}\right\|=\sigma_{k+1}
$$

That is A_{k} is the best rank k approximation to A in the L^{2} sense.
Proof. We first prove that $\left\|A-A_{k}\right\|=\sigma_{k+1}$. We have,

$$
A-A_{k}=\sum_{i=k+1}^{n} \sigma_{i} u_{i} v_{i}^{t}=\sum_{i=1}^{n-k} \sigma_{i+k} u_{i+k} v_{i+k}^{t}+\sum_{i=n-k+1}^{n} \tilde{\sigma}_{i} \tilde{u}_{i} v_{i}^{t},
$$

where $\tilde{\sigma}_{i}=0, \tilde{u}_{i}$ are orthonormal to all u_{i+k}, and \tilde{v}_{i} are also orthonormal to all v_{i+k}. The summation is then an SVD of $A-A_{k}$. Since $\left\|A-A_{k}\right\|$ is equal to the first singular value of its SVD, we have $\left\|A-A_{k}\right\|=\sigma_{k+1}$.
Assume not, i.e., assume there is $B \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(B)=k$ such that $\|A-B\|<\left\|A-A_{k}\right\|=$ σ_{k+1}. For any $w \in \mathbb{R}^{n}$, we have $\|(A-B) w\|<\sigma_{k+1}\|w\|$. It follows that, for any $w \in \operatorname{null}(B)$, we have,

$$
\begin{equation*}
\|(A-B) w\|=\|A w\|<\sigma_{k+1}\|w\| . \tag{1}
\end{equation*}
$$

Now for any $w \in V_{k+1}=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k+1}\right\}$, we claim that $\|A w\| \geq \sigma_{k+1}\|w\|$. Since $w \in V_{k+1}$, there exist c_{1}, \ldots, c_{k+1}, such that $w=\sum_{i=1}^{k+1} c_{i} v_{i}$. It follows that

$$
\begin{equation*}
\|A w\|=\left\|\sum_{i=1}^{k+1} c_{i} A v_{i}\right\|=\sum_{i=1}^{k+1}\left|c_{i}\right| \sigma_{i} \geq \sigma_{k+1}\|w\|, \tag{2}
\end{equation*}
$$

where the last inequality is due to the orthogonality of v_{i} and $\sigma_{1} \geq \ldots \geq \sigma_{k+1}$.
The Rank theorem indicates that $\operatorname{dim}(\operatorname{null}(B))=n-k$, however $\operatorname{dim}\left(V_{k+1}\right)=k+1$. We then have $\operatorname{dim}(\operatorname{null}(B))+\operatorname{dim}\left(V_{k+1}\right)>n$. Since $\operatorname{null}(B)$ and V_{k+1} both are subspace of \mathbb{R}^{n}, this implies that there exists $w \neq 0$ such that $w \in \operatorname{null}(B) \cap V_{k+1}$. However, 1 and 2 cannot hold simultaneously, which is the contradiction.

Corollary 3.1.1. Suppose $A, B \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(B) \leq k \leq \operatorname{rank}(A)=r$. We then have:

$$
\|A-B\| \geq\left\|A-A_{k}\right\|=\sigma_{k+1} .
$$

Proof. Let $\operatorname{rank}(B)=k-j, 0 \leq j \leq k$, by Eckart-Young, we have $\|A-B\| \geq\left\|A-A_{k-j}\right\|=$ $\sigma_{k-j+1} \geq \sigma_{k+1}=\left\|A-A_{k}\right\|$.

3.2 Eckart-Young theorem (Frobenius)

Corollary 3.1.2. Let the SVD of A be $A=U \Sigma V^{t}$, and $U=\left[u_{1}, \ldots, u_{n}\right], V=\left[v_{1}, \ldots, v_{n}\right]$, and the diagonal entries of Σ are $\sigma_{1}, \ldots, \sigma_{n}$. Let $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{t}$, we have,

$$
\left\|A-A_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{n} \sigma_{i}^{2}
$$

Theorem 3.2 (Weyl). Let $A, B \in \mathbb{R}^{m \times n}$, and denote the singular values as $\sigma_{i}(A)$ and $\sigma_{i}(B)$. We then have:

$$
\begin{equation*}
\sigma_{i+j-1}(A+B) \leq \sigma_{i}(A)+\sigma_{j}(B) \tag{3}
\end{equation*}
$$

Proof. Let V_{A}, and V_{B} be the subspace of \mathbb{R}^{n} of dimensions $n-k$ and $n-l$, which are orthogonal to the first k and l right singular vectors of A and B respectively. Let $W=V_{A} \cap V_{B}$, we have $\operatorname{dim}(W) \geq n-k-l$. It follows that,

$$
\max _{v \in W,\|v\|=1}\|A v+B v\|=\max _{v \in W,\|v\|=1}\|A v\|+\|B v\| \leq \sigma_{k+1}+\sigma_{l+1} .
$$

By Curant-Fisher,

$$
\sigma_{k+l+1}(A+B)=\min _{V \subset \mathbb{R}^{n}, \operatorname{dim} V=n-k-l} \max _{v \in v,\|v\|=1}\|A v+B v\| \leq \max _{v \in W,\|v\|=1}\|A v+B v\|=\sigma_{k+1}+\sigma_{l+1}
$$

Weyl's inequality will help us prove the Eckart-Young for the Frobenius norm.
Theorem 3.3 (Eckart-Young Frobenius). Suppose $A, B \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(B)=k \leq \operatorname{rank}(A)=$ r. We then have:

$$
\|A-B\|_{F}^{2} \geq\left\|A-A_{k}\right\|_{F}^{2}=\sum_{i=k+1} \sigma_{i}^{2}
$$

That is A_{k} is the best rank k approximation to A in the L^{2} sense.
Proof. Let $X=A-B$ and $Y=B$ and apply Weyl's inequality 3.2,

$$
\sigma_{i+k}(A) \leq \sigma_{i}(A-B)+\sigma_{k+1}(B)=\sigma_{i}(A-B)
$$

where is last equal sign is due to $\operatorname{rank}(B)=k$. Apply Corollary 3.1.2 it follows that,

$$
\begin{aligned}
& \left\|A-A_{k}\right\|_{F}^{2} \\
= & \sum_{i=k+1}^{r} \sigma_{i}(A)^{2}=\sum_{i=1}^{r-k} \sigma_{i+k}^{2}(A) \leq \sum_{i=1}^{r-k} \sigma_{i}^{2}(A-B) \leq \sum_{i=1}^{\min (m, n)} \sigma_{i}^{2}(A-B)=\|A-B\|_{F}^{2}
\end{aligned}
$$

A direct consequence of the Eckart-Young for the Frobenius norm is the proper orthogonal decomposition (POD).

3.3 Proper orthogonal decomposition (POD)

Given $A=\left[y_{1}, y_{2}, \ldots, y_{n}\right] \in \mathbb{R}^{m \times n}$, and a set of orthonormal vectors $Q=\left[x_{1}, \ldots, x_{k}\right] \in \mathbb{R}^{m \times k}$, one wants to solve the following problem:

$$
\begin{equation*}
\min _{Q} \sum_{i=1}^{n}\left\|y_{i}-\sum_{j=1}^{k}<y_{i}, x_{j}>x_{j}\right\|^{2} \tag{4}
\end{equation*}
$$

We claim that the equation 4 is equivalent to the matrix form,

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|y_{i}-\sum_{j=1}^{k}<y_{i}, x_{j}>x_{j}\right\|^{2}=\left\|A-Q Q^{t} A\right\|_{F} \tag{5}
\end{equation*}
$$

Denote the matrix as columns, i.e., $\left\|A-Q Q^{t} A\right\|_{F}=\left\|\left[y_{1}-Q Q^{T} y_{1}, \ldots, y_{n}-Q Q^{t} y_{n}\right]\right\|_{F}$; and denote $y_{i}-Q Q^{T} y_{i}$ as $z_{i} \in \mathbb{R}^{m}$, it follows that,

$$
\left\|\left[y_{1}-Q Q^{T} y_{1}, \ldots, y_{n}-Q Q^{t} y_{n}\right]\right\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m} z_{j i}^{2}=\sum_{i=1}^{n}\left\|z_{i}\right\|^{2}=\sum_{i=1}^{n}\left\|y_{i}-Q Q^{t} y_{i}\right\|^{2}
$$

It is not hard to see $Q Q^{t} y_{i}=\sum_{j=1}^{k}<y_{i}, x_{j}>x_{j}$. The claim is proved. Apply the Eckart-Young theorem for the Frobenius norm; we then have the POD theorem.

Theorem 3.4. Given $A=\left[y_{1}, y_{2}, \ldots, y_{n}\right] \in \mathbb{R}^{m \times n}$ with rank r. For any $k \leq r$, we consider,

$$
\begin{equation*}
\min _{Q} \sum_{i=1}^{n}\left\|y_{i}-\sum_{j=1}^{k}<y_{i}, x_{j}>x_{j}\right\|^{2} \tag{6}
\end{equation*}
$$

where $Q=\left[x_{1}, \ldots, x_{k}\right] \in \mathbb{R}^{m \times k}$ is a set of orthonormal vectors. The minimum is given by the left singular vectors of A, which are also called proper orthogonal modes. Denote the singular values of A as σ_{i}, the minimum is equal to $\sum_{i=k+1}^{r} \sigma_{i}^{2}$.

Proof. The only statement left to prove is $Q Q^{T} A=A_{k}$ if $Q=\left[u_{1}, \ldots, u_{k}\right]$ and u_{k} are the singular vectors. We have,

$$
Q Q^{T} A=\left[u_{1}, u_{2}, \ldots, u_{k}\right]\left[u_{1}, u_{2}, \ldots, u_{k}\right]^{t} A=\sum_{i=1}^{k} u_{i} u_{i}^{t} A
$$

