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This section will discuss singular value decomposition (SVD) of a matrix A € R™*".

1 Construction

The first singular value is defined as:

o1 = sup [Avl.
l[ofl=1

Remark 1. The first singular value is well defined, i.e., such a v; € R"™ always exists. Non-
rigorous argument: the function : v — ||Av|| is continuous and with a compact domain.
Now one can find u; € R™ with ||u;|| = 1 such that Av; = ojuy.

One can follow the definition of the first singular value and define the second singular value as,

oy=  sup  |Av.
[lvl|=1,0Lvy

The remarkimplies that such a vy always exists and let us denote it as vo. In addition, we
can find ug € R™ with |Juz|| = 1 such that Avy = oqus.

Remark 2. 09 < 01 because vy is taken from a smaller subspace {111}L C R".
Theorem 1.1. u; and us which are defined above are orthogonal.

The theorem implies that u; L us. Repeat the process, one can find a unit vector vg € Wy =
{v1,v2}* such that it admits

os= sup |lAu].

|v]|=1,0€V2
In addition, one can find a unit vector uz such that Avs = o3ug. One can show that {u1,ug,us}
are orthogonal.

Remark 3. Let us define W, = {v1,v2, ..., vp} . If supyew, [[Avl| = 0, or, Avyy1 = 0, we can
make up, 11 (nonzero if possible) to be any vector which is orthogonal to {u1, ..., up}. If upyq has
to be zero, span{ui,...,u,} = R™

Repeat the process for n times (why is n the maximum step of the process?), we then can
construct an orthonormal matrix V' = [vy,...,v,] € R"™ " another matrix with orthonormal
columns U = [ug, ..., up] € R™*™ up to some 0 columns, and a diagonal matrix ¥ € R™*" with
diagonal entries being o1, ..., 0, (up to some 0). Recall the matrix multiplication we have,

AV =UX.



Theorem 1.2. rank(A) equals to the number of nonzero singular values.

Proof. Let us assume {o1,...,0,} are all nonzero singular values but 0,41 = 0. Let V, =
{v1,...,vp} be the singular vector corresponding to o1, ...0p,. We claim that V,, C row(A). We
have AV = UY, or UTA = ZV7T. The i —th row (i < p) of the right-hand side is o;v!. The i—th
row on the left-hand side is (u;)' 4, it follows that v! = U%(uz)tA This implies that V), C row(A).

By theorem in the last section (Complement theorem), null(A) = row(A)* C V;-. Now,
for v € Vpl7 we have Av = 0, otherwise contradicts with the definition of V,,. As a result,
VpL C null(A) = row(A)*, or, row(A) C V,. Tt follows that V, = row(A). We then have

dim(V,) = rank(A). O

As a corollary, V), = row(A). We summarize the results in the following theorem.

Theorem 1.3. Assume {o7y,...,0,} are all nonzero singular values, {v1,...,v,} and {u,...,up}
are right and left singular vectors respectively, we denote the space spanned by them as V}, and
Up. The followings are true:

Vp = row(4),
Uy, = col(A).

Proof. The first one is proved in the last theorem and let us prove U, = col(A). Since V
is unitary, for any y € R", there exists ¢;, u = 1,...,n such that y = > ' | ¢;u;. It follows
that Ay = >0 | ¢;Av; = Y P ¢joyu;. This implies that col(A) C span{ui,...,u,}. However,
w; = %Avi, this implies that u; € col(A).

O

Full SVD: make U matrix orthonormal when m > n. One can append an additional m —n
orthonormal columns to fulfill this goal. 3 should change as well so that the product AV = UX%
still holds. To do this, one can append m — n zero rows to the bottom of ¥. As a result, we
have AV = UX where V € R™™"™, U € R™*™ and ¥ € R™*", Since V is orthonormal, we have:

A=UxVL.

2 Revisit SVD

2.1 From SVD

Let A € R™*™, Suppose A admits an SVD A = UXV?, where U € R™*" (U is orthogonal if
this is the full SVD), V' € R™™™ are orthogonal matrices and ¥ € R™*" is a diagonal matrix.
Let us now consider AA? €™*™ and A'A € R™*", which are symmetric matrices.

AtA = VIIUtUSVE = VEIZVE,
AAL = USVIVYIU = USYIUY.

¥¥2 and ¥2% are still diagonal, and nonzero entries of these two matrices are indeed singular
values squared.

In addition, since U and V are orthogonal (U is orthogonal only when the SVD is full), this
implies that VXXV and UXY!U? are the eigenvalue decomposition (diagonalization) of A'A
and AA!,
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2.2 From eigenvalue decompostion

Let us recall the Spectral theorem.

Theorem 2.1 (Spectral Theorem). Let A € C"*". Then A is Hermitian if and only if there is
a unitary matrix U € C™*™ and a real diagonal matrix D € R™*"™ such that A = UDU*.

A'A is symmetric, and by the Spectral theorem, let {v;}?"_; be the orthonormal eigenvectors of
Al A corresponding to eigenvalue A\; > Xa... > \,. We first claim that \; > Xa... > A\, > 0. We
have,

| Av;||> = (Avy)t Av; = vt A  Av; = \|jv||? > 0,

it implies that \; > 0.
Let o1 = /Ay for all i. We want to find {uy}x, which are orthonormal, such that,

Avy, = opuy.

When o, # 0, one can define ui = U—lkAvk. Let us claim all u; are orthonormal. Let u;, u; be
nonzero and defined as before. We have,

t,, AL Ay — ot — 5.
uuj = v A" Avj = vjv; = 04.

00}
The claim is proved. When )\, = 0, for some 1 < p < n, we can construct u, which is orthogonal
to wi,ug, ..., up—1. If {ui,...,up—1} have formed a basis for R™, then set u, = 0. Now we can
construct an orthonormal matrix V = [vq,...,v,] € R™ " another matrix with orthonormal
columns U = [ug, ..., up] € R™*™ up to some 0 columns, and a diagonal matrix ¥ € R™*" with
diagonal entries being o1, ..., 0y,. The SVD follows: AV = U3. One can apply the same trick as
before to make U a square matrix and obtain the full SVD.

Remark 4. Nonzero u; constructed before are eigenvectors of AA!. The proof is simple.

1 1
AAly, = AA' — Ay, = A— At Avy, = Aoy, = oruy.

Ok Ok

Definition 2.2. L2 norm of a matrix A € R™*" is defined as:

A
Al = max [Az]= max A2l
zeR™ [|z|=1 z€R™,z£0 ||gc||
In the rest of the notes, we sometimes write || - ||2 as || - || for simplicity.

[| Az||
[Ed]

Remark 5. For any x € R™ and z # 0, we have,
[Alllz]]-

< ||A|l2. This implies that [[Az| <

Definition 2.3. The Frobenius norm of A € R™*" is:

[AllF =

Theorem 2.4. Frobenius norm can be calculated in the following way,
1AIF =" ot
i

3
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Proof. Let the SVD be A = UXV'. We have ||AH% = trace(AtA), it follows that,
||AH% = trace(VEIUTULVY) = trace(VEILVY) = trace(BX) = Z oi,

where we use trace(MN) = trace(NM) in the last equality, where M and N are two matrices
of the proper size. O

Theorem 2.5 (Courant Fisher min max). For A € R™*", the singular value o; of A satisfy:

o) = max min || Av||,
VCR",dim(V)=k veV|v||=1

o = min max ||Av].
k1= VCR"™ dimV=n—k va,HUH:lH H

Proof. Let us prove the first one first. Let V' be any k— dimensional space. Since dim(span{vg, ...,vn}) =

n—k+ 1, V intersects span{vg, ..., v, } nontrivially. Let v be a unit vector in the intersection,
i.e., there exist ¢, ...,c, such that, v = >, ¢;v;. Moreover, |lv]| = >, |¢i| = 1. We have,
Av = Y7, cioju;, it follows that, [[Av|| = Y., |ciloil|ui|| < ok. This implies that for any
V' of dimension k, there exists v such that [|Av| < oy, i.e., min,cy =1 [|[Av]| < 0. Now we
need to find a V such that the equality sign holds, i.e., ||Av|| = 0. We claim that V' can be
span{vi, ..., v}, i.e., VNspan{vg, ..., v, } = span{vi}. Now let v = vy, it follows that ||Av| = o%.
The claim is proved, i.e., maximizing over all V', we can obtain the equal sign.

The second one can be derived similarly. Let V' be any (n — k)— dimensional subspace of
R™, it intersects Viy1 := span{vi, ..., vp41} nontrivially, i.e., there exists unit vector v in the
intersection. It follows that, there exist cy,...,crx4+1 such that v = foll c;v;. We have Av =
Zerll cioju;, it follows that, ||Av|| > ogy1. This implies that for any V' of dimension n — k,
there exists v such that ||Av|| > o1, i.e., maxyey,|o|=1 [[Av|| = ox11. The equality holds when
V = span{viy1, ..., on} and v = vgy1. d

3 Rank £ approximation

Let us consider the SVD of A € R™*" ie., A = UXV!. Recall the matrix multiplication, we
have a decomposition for A as,

A= g o;U;v; E O;Us;v p

where {0;}7_; are all nonzero singular values of A. Let us define an approximation Aj to A as:

k
§ : t
Ak = OiUiv;,
=1

where k < r. It is easy to check rank(Ag) = k. We then can show Ay, is the best approximation
to A; the result is summarized in the following theorem.

3.1 Eckart-Young theorem

Theorem 3.1 (Eckart-Young). Suppose A, B € R™*" and rank(B) = k < rank(A) =r. We
then have:

A= B[ > [|A = Ag| = opp1-



That is Ay, is the best rank k approximation to A in the L? sense.

Proof. We first prove that ||A — Ag|| = og+1. We have,

n n—k n
t t ~ ~ ~t
A=A =) o) = oipruigvip+ Y Gillid),
i=kt1 i=1 i=n—k+1

where 6; = 0, 4; are orthonormal to all u;y;, and v; are also orthonormal to all v;4;. The
summation is then an SVD of A — Aj. Since ||A — Ag|| is equal to the first singular value of its
SVD, we have ||A — Akl = og+1-

Assume not, i.e., assume there is B € R™*" with rank(B) = k such that ||A— BJ| < ||A—Ax|| =
Ok+1. For any w € R", we have ||(A — B)w|| < ox41]||w||. It follows that, for any w € null(B),
we have,

(A = B)wl|| = [[Aw]|| < opq1[w]|. (1)
Now for any w € V41 = span{vi, v, ..., V41 }, we claim that ||Aw|| > op41||w||. Since w € Vi1,
there exist cy, ..., cky1, such that w = fill c;v;. It follows that
k+1 k+1
lAw]| = > esdvill =Y |eiloi > oppalw], (2)
i=1 i=1

where the last inequality is due to the orthogonality of v; and o1 > ... > o§11.

The Rank theorem indicates that dim(null(B)) = n — k, however dim(Vy41) = k + 1. We then
have dim(null(B)) + dim(Vi4+1) > n. Since null(B) and Vi1 both are subspace of R™, this
implies that there exists w # 0 such that w € null(B) N Vi41. However, and cannot hold
simultaneously, which is the contradiction.

U
Corollary 3.1.1. Suppose A, B € R™*" and rank(B) < k < rank(A) = r. We then have:
A= Bl = |A = Apll = ox41-
Proof. Let rank(B) = k —j, 0 < j < k, by Eckart-Young, we have |[A — B|| > ||A — Ai—;| =
Ok—jt+1 = Oky1 = |A — Agl|. O

3.2 Eckart-Young theorem (Frobenius)

Corollary 3.1.2. Let the SVD of A be A = UXV? and U = [uq, ..., un], V = [v1, ..., v,], and
the diagonal entries of ¥ are o1, ...,0,. Let Ay = Zle oiuvt, we have,

n
IA = Agllz = > o
i=k+1

Theorem 3.2 (Weyl). Let A, B € R™*" and denote the singular values as o;(A4) and o;(B).
We then have:

O'H_j_l(A + B) < O'Z(A) + O'j(B). (3)



Proof. Let V4, and Vp be the subspace of R” of dimensions n—k and n—1[, which are orthogonal
to the first k£ and [ right singular vectors of A and B respectively. Let W = V4 N Vp, we have
dim(W) > n — k — . It follows that,

max |[[Av+ Bv||= max | Av| + ||Bv| < ogs1 + o141-
veW,||v||=1 veW,||lv]|=1

By Curant-Fisher,

A+ B)= i Av + By| < Av + Bo|| = .
ortiri(A+ B) VR dimV=n—k—L vevju]|=1 | Av+ Bul| < veW =1 l4v+ Boll = oki1 + 01

O
Weyl’s inequality will help us prove the Eckart-Young for the Frobenius norm.
Theorem 3.3 (Eckart-Young Frobenius). Suppose A, B € R™*™ and rank(B) = k < rank(A) =
r. We then have:
IA=BlE > [|A- AlE = > of.
i=k+1
That is Ay is the best rank k approximation to A in the L? sense.
Proof. Let X = A— B and Y = B and apply Weyl’s inequality
oi+k(A) < 0i(A = B) + 041(B) = 0i(A — B),

where is last equal sign is due to rank(B) = k. Apply Corollary|3.1.2| it follows that,

1A — Akl

r r—k r—k min(m,n)
=Y (AP =) ol (A) <Y of(A-B)< Y of(A-B)=|A- B}
i=k+1 i=1 i=1 i=1
O

A direct consequence of the Eckart-Young for the Frobenius norm is the proper orthogonal
decomposition (POD).

3.3 Proper orthogonal decomposition (POD)

Given A = [y1,%2, ..., yn] € R™™, and a set of orthonormal vectors Q = [z1, ..., z] € R™*F, one
wants to solve the following problem:

n k
Hgnz lys = > < iy > 5%, (4)
i=1 j=1

We claim that the equationis equivalent to the matrix form,

n k
Dol = <wizp >’ = A - QQ'Allr. (5)

i=1 j=1



Denote the matrix as columns, i.e., [|[A — QQ'A|r = ||[y1 — QQTy1, ..., yn — QQ'yy]||F; and
denote y; — QQTy; as z; € R™, it follows that,

n m n n
1 — QQ Y1, o yn — QQwllF =D D 25 = Nzl =D llvi — QQ"will*
=1 j=1 =1 =1

It is not hard to see QQ'y; = Z;?:l < yi,x; > xj. The claim is proved. Apply the Eckart-Young
theorem for the Frobenius norm; we then have the POD theorem.

Theorem 3.4. Given A = [y1, 92, ..., yn] € R™*™ with rank r. For any k < r, we consider,

n k
Hgnz lyi =Y < wirxj > 1%, (6)
i=1 j=1

where Q = [x1,...,2x] € R™*k is a set of orthonormal vectors. The minimum is given by the
left singular vectors of A, which are also called proper orthogonal modes. Denote the singular
values of A as 0, the minimum is equal to ) ;_, 1 01-2 .

Proof. The only statement left to prove is QQT A = Ay if Q = [u1, ..., ux] and uy, are the singular
vectors. We have,

k
QQTA = [ug,ug, ..., up][ur, ug, ..., up) A = Zuzqu
i=1



