Singular value decomposition (SVD)
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This section will discuss singular value decomposition (SVD) of a matrix A € R™*".

1 Construction

deel. .
The first singular value is defined as:

o1 = sup [Avl.
l[ofl=1

. . (VA . .
Remark 1. The first singular value is well defll\}led, i.e., such a v; € R™ always exists. Non-
rigorous argument: the function : v — ||Av|| is continuous and with a compact domain.
Now one can find u; € R™ with ||u;|| = 1 such that Av; = ojuy.

One can follow the definition of the first singular value and define the second singular value as,

oy=  sup  |Av.
[lvl|=1,0Lvy

The remarkimplies that such a vy always exists and let us denote it as vo. In addition, we
can find ug € R™ with |Juz|| = 1 such that Avy = oqus.

Remark 2. 09 < 01 because vy is taken from a smaller subspace {111}L C R".
Theorem 1.1. u; and us which are defined above are orthogonal.

The theorem implies that u; L us. Repeat the process, one can find a unit vector vg € Wy =
{v1,v2}* such that it admits

os= sup |lAu].

|v]|=1,0€V2
In addition, one can find a unit vector uz such that Avs = o3ug. One can show that {u1,ug,us}
are orthogonal.

Remark 3. Let us define W, = {v1,v2, ..., vp} . If supyew, [[Avl| = 0, or, Avyy1 = 0, we can
make up, 11 (nonzero if possible) to be any vector which is orthogonal to {u1, ..., up}. If upyq has
to be zero, span{ui,...,u,} = R™

Repeat the process for n times (why is n the maximum step of the process?), we then can
construct an orthonormal matrix V' = [vy,...,v,] € R"™ " another matrix with orthonormal
columns U = [ug, ..., up] € R™*™ up to some 0 columns, and a diagonal matrix ¥ € R™*" with
diagonal entries being o1, ..., 0, (up to some 0). Recall the matrix multiplication we have,

AV =UX.
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Theorem 1.2. rank(A) equals to the number of nonzero singular values.

Proof. Let us assume {o1,...,0,} are all nonzero singular values but 0,41 = 0. Let V, =
{v1,...,vp} be the singular vector corresponding to o1, ...0p,. We claim that V,, C row(A). We
have AV = UY, or UTA = ZV7T. The i —th row (i < p) of the right-hand side is o;v!. The i—th
row on the left-hand side is (u;)' 4, it follows that v! = U%(uz)tA This implies that V), C row(A).

By theorem in the last section (Complement theorem), null(A) = row(A)* C VpL. Now,

for v € Vpl7 we have Av = 0, otherwise contradicts with the definition of V,,. As a result,
VpL C null(A), i.e., VpL = null(A). By the rank theorem, dim(V,) = rank(A). O

As a corollary, V}, = row(A). We summarize the results in the following theorem.

Theorem 1.3. Assume {0y, ...,0,} are all nonzero singular values, {v1,...,vp} and {u1,...,up}
are right and left singular vectors respectively, we denote the space spanned by them as V}, and
Up. The followings are true: v\

~ \(s (‘MF\L"
Vp = row(A), e C’\YU\'JQA\ 4/[& (W )/

Proof. The first one is/proved in the last thedrem and let us prove U, = col(A). We claim “YN(,A>
that for any y € R”, there exists z € row(A) such that Az = Ay. When y € row(A), it is

true. When y ¢ row(A), assume not, i.e., for all + € row(A), A(x —y) = 0. This implies L
that v —y € null(A)o. It follows from the theorem we discussed in the last section that = ?< ¢ M@
x —y € row(A). However, this is the contradiction. The claim is proved. 2,
Now for any y € R", let y, € row(A) such that Ay, = Ay. Since V,, = row(A), y» = > 5, c/v; "D K-

for some constants ¢;. It follows that Ay = ZZ Uic?jui. The other direction is also true, this N ‘1 -0

implies that col(A) = Up.
o ‘g TS

P A
Full SVD: make U matrix orthonormal when m > n. One can append an additional m —n u‘/&\’"‘&w{\‘
orthonormal columns to fulfill this goal. 3 should change as well so that the product AV = UX ¢

still holds. To do this, one can append m — n zero rows to the bottom of ¥. As a result, we
have AV = UX where V € R™"™, U € R™*™ and ¥ € R™*", Since V is orthonormal, we have:

Y 4 oo\ CMS i;&r'a(\(]\—\hm)
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Z\(\A\l‘\ _
2.1 From SVD KG = Lan b=

Let A € R™ ", Suppose A admits an SVD A = UXV?, where U € R™*™ V € R™ " are [0\( 7L\
orthogonal matrices and ¥ € R™*" is a diagonal matrix. Let us Bsaw consider AA? €™ W)and

A'A € R™" which are symmetric matrices. f tt«\(wu 'V\;\
AtA = VvEiUtUSV = ViRV, %m{
t_ tyytrrt trrt
L AA" =UEV'VEU" = UXEU". iy

¥¥? and X223 are still diagonal, and nonzero entries of these two matrices are indeed singular = \{Mw"h(-[)l;) :"(e

values squared.
Koy unl £
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X SA = SRS
o U o 2 UM B B b s g
S (ﬂ O I -
)/)In addition, since U and V are orthogonal (hence invertible), this implies that V!X V? and
UXYUY are the eigenvalue decomposition (diagonalization) of A*A and AA! (theorem 4.1 in
diagonalization section).

2.2 From eigenvalue decompostion A

A'A is symmetric and by the Spectral theorem, let {v;}" ; be the orthonormal eigenvectors of

At A corresponding to eigenvalue A\; > Xa... > A\ We first claim that Ay > Xa... > A\, > 0. We
have, Q{‘U\ \ \A\[‘ \\\ ) CPV\I vl f*\\’\>
[ Av[|* = (Av;)' Av; = vj A" Av; = Ni[o]|* > 0, o W = "\
it implies that \; > 0. —= @V\'\g \ I\ \
Let 01 = /Ay for all i. We want to find {uy}x, which are orthonormal, such that, X A’* F\\;\‘
= \v

Avk = OrUL. T

\
ANV
hen o1 # 0, one can define ug = U—lkAvk. Let us claim all u; are orthonormal. Let u;,u; be + vl AV .
nonzero and defined as before. We have, \
= 7\\\\“\\
t At t
uiu; = vi A" Av; = viv; = ;5.
] O'io'j 2 J ) 7 \\%

The claim is proved. When ), = 0, for some 1 < p < n, we can construct u, which is orthogonal
to uy, ug, ..., up—1. If {uy,...,up—1} have formed a basis for R™, then set u, = 0. Now we can
construct an orthonormal matrix V' = [v1,...,v,] € R™"™ another matrix with orthonormal
columns U = [uy, ..., up] € R™™ up to some 0 columns, and a diagonal matrix ¥ € R"*" with
diagonal entries being o1, ..., 0. The SVD follows: AV = UX. One can apply the same trick as
before to make U a square matrix and obtain the full SVD.

Remark 4. Nonzero u;, constructed before are eigenvectors of AA!. The proof is simple.

AA yy, = AAtiAvk = AiAtAvk = Aopvg = Uzuk.
o Ok

Remark 5. If S = S! is symmetric and assumes all eigenvalues are non-negative, then the
eigenvalue decomposition is the SVD (as long as the eigenvalues are in descending order).

3 Rank k approximation

Let us consider the SVD of A € R™*" ie., A = UXV!. Recall the matrix multiplication, we
have a decomposition for A as,

n T
2 : t 2 : t
A= oiUiv; = oiuUiv;,
i=1 i=1
where {o;}7_; are all nonzero singular values of A. Let us define an approximation Aj to A as:

k

t

Ay = § oU
i=1

where k < r. It is easy to check rank(Ay) = k. We then can show Ay, is the best approximation
to A; the result is summarized in the following theorem.



3.1 Preliminaries

Definition 3.1. L2 norm of a matrix A € R™*" is defined as:

A
1A= max  [Az]= max 122N _ o
z€R™ [|z|=1 zER™, x40 Hx”
In the rest of the notes, we sometimes write || - ||2 as || - || for simplicity.

[ Az|
[E3]

Remark 6. For any x € R™ and x # 0, we have,
[Alll]-

< ||Al|2. This implies that ||Az| <

3.2 Eckart-Young theorem

Theorem 3.2 (Eckart-Young). Suppose A, B € R™*" and rank(B) = k < rank(A) = r. We
then have:

A= Bl > [|A = Ap]| = opp1-

That is Ay is the best rank k approximation to A in the L? sense.

Proof. We first prove that ||A — Ag|| = ogx+1. We have,

n n—k n
A— A, = Z Jiuivf = Z Ji+kui+kvf+k + Z 51'111'?7;,
i=k+1 =1 i=n—k+1
where 6; = 0, 4; are orthonormal to all u;yx, and v; are also orthonormal to all v;4;. The
summation is then an SVD of A — Aj. Since ||A — Ag|| is equal to the first singular value of its
SVD, we have ||A — Akl = og+1-

Assume not, i.e., assume there is B € R"™*" with rank(B) = k such that |A—B|| < ||[A—Ag|| =
Ok+1. For any w € R™, we have ||(A — B)w|| < ox41||w||. It follows that, for any w € null(B),
we have,

(A = Bjw|| = [[Aw]| < ggq1[[w]]. (1)
Now for any w € V41 = span{vy,va, ..., V11 }, we claim that ||Aw]|| > og41||w||. Since w € Vi1,
there exist cy, ..., cx+1, such that w = fill c;v;. It follows that
kt1 kt1

1wl = Y cidvil| = leiloi = op [[wll, (2)

i=1 i=1

where the last inequality is due to the orthogonality of v; and o1 > ... > 0§ 11.

The Rank theorem indicates that dim(null(B)) = n — k, however dim(Vy41) = k + 1. We then
have dim(null(B)) + dim(Viy1) > n. Since null(B) and Vji1 both are subspace of R™, this

implies that there exists w # 0 such that w € null(B) N Vi4+1. However, and cannot hold
simultaneously, which is the contradiction.

O
Corollary 3.2.1. Suppose A, B € R™*" and rank(B) < k < rank(A) = r. We then have:
A= B| = [|A— Ayl| = ok
Proof. Let rank(B) = k — j, 0 < j < k, by Eckart-Young, we have |4 — B|| > ||A — A,—j|| =
Ok—j+1 > Opp1 = || A — Agl]. O



3.3 Eckart-Young theorem (Frobenius)

Definition 3.3. The Frobenius norm of A € R™*" is:

m n
2
Z @i

i=1 j=1

[AllF =

Theorem 3.4. Frobenius norm can be calculated in the following way,
2 2
1AIF = ot
i

Corollary 3.4.1. Let the SVD of A be A = UXV! and U = [uy,...,u,), V = [v1, ..., v,], and
the diagonal entries of ¥ are o1, ...,0,. Let Ap = Zle aiuivf, we have,

1A= AllE =) ot

i=k+1

Theorem 3.5 (Courant Fisher min max). For A € R™*", the singular value o; of A satisfy:
o = max min || Av||,
VCR™,dim(V)=k wveV|v||=1

= min ma; Av|l.
Tk VCR™ dimV=n—k vev,||v)|(|;:1 H H

Proof. Let us prove the first one first. Let V be any k— dimensional space. Since dim(span{vg, ...,v,}) =
n —k+ 1, V intersects span{vg, ..., v,} nontrivially. Let v be a unit vector in the intersection,

i.e., there exist ¢, ..., ¢, such that, v = >, ¢;v;. Moreover, ||v]| = >, |¢;| = 1. We have,

Av = Y, cioju,, it follows that, ||Av]| = >°1 , |eiloil|uil] < ok. This implies that for any

V' of dimension k, there exists v such that [|Av|| < oy, i.e., minyey, |1 [[Av|| < 0. Now we

need to find a V such that the equality sign holds, i.e., ||Av|| = ox. We claim that V' can be
span{vi, ..., v;}, i.e., VNspan{vg, ..., v, } = span{vi}. Now let v = vy, it follows that || Av| = o%.

The claim is proved, i.e., maximizing over all V', we can obtain the equal sign.

The second one can be derived similarly. Let V' be any (n — k)— dimensional subspace of
R™ it intersects Vi1 := span{vi,...,vx4+1} nontrivially, i.e., there exists unit vector v in the
intersection. It follows that, there exist ¢y, ..., cp1 such that v = Zf;rll ¢;v;. We have Av =
Zfill cioju;, it follows that, ||Av|| > ogy1. This implies that for any V' of dimension n — k,
there exists v such that [|Av[| > op41, i.e., max,cy,|jp|=1 [[Av|| > ox41. The equality holds when
V = span{vki1,...,vn} and v = vgy. O

Theorem 3.6 (Weyl). Let A, B € R™*" and denote the singular values as o;(A4) and o;(B).
We then have:

Girj-1(A+ B) < 0i(A) + 0y(B). (3)

Proof. Let V4, and Vg be the subspace of R™ of dimensions n—k and n—1[, which are orthogonal
to the first £ and [ right singular vectors of A and B respectively. Let W = V4 N Vg, we have
dim(W) > n — k — 1. Tt follows that,

max Av+ Byl = max Avl| +||Bvl| < o + o141.
e [Av Bull = _max[A0] + [ Boll < o + on



By Curant-Fisher,

Okti+1(A+ B) = max ||Av+ Bv|| < max |[Av+ Bv| = ogs1 + 0141-

min
VCR"™,dimV=n—k—lvev,||v||=1 veW,[lv]|=1

O]

Weyl’s inequality will help us prove the Eckart-Young for the Frobenius norm.

Theorem 3.7 (Eckart-Young Frobenius). Suppose A, B € R™*™ and rank(B) = k < rank(A) =
r. We then have:

1A= BlIF = A= Allf = Y of.
i=k+1

That is Ay, is the best rank k approximation to A in the L? sense.
Proof. Let X = A— B and Y = B and apply Weyl’s inequality
oi+k(A) < 0i(A = B) + op41(B) = 0i(A — B),
where is last equal sign is due to rank(B) = k. Apply Corollary it follows that,

1A — Akl
r r—k r—k min(m,n)
=Y oA =) 0l (A) <) dH(A-B)< Y of(A-B)=|A- B}
i=k+1 i=1 i=1 i=1

O

A direct consequence of the Eckart-Young for the Frobenius norm is the proper orthogonal
decomposition (POD).

3.4 Proper orthogonal decomposition (POD)

Given A = [y1,%2, ..., yn] € R™*™ and a set of orthonormal vectors Q = |1, ..., 71] € R™*¥_ one
wants to solve the following problem:

n k
ffgnz lyi =Y < wirzj > ). (4)
i=1 i=1

We claim that the equationis equivalent to the matrix form,

n k
Do llyi = <wixs >’ = A~ QQ Allp. (5)

i=1 j=1

Denote the matrix as columns, i.e., [|[A — QQ'Allr = ||[y1 — QQTy1,...,un — QQ'yn]||F; and
denote y; — QQTy; as z; € R™, it follows that,

n m n n
Il — QR w1, s yn — QQ'Wll[F =D Y 25 =Y llzill* = Y llys — QQ"wi1*.
=1 j=1 1=1 i=1

It is not hard to see QQ'y; = Z?:l < y;,x; > xj. The claim is proved. Apply the Eckart-Young
theorem for the Frobenius norm; we then have the POD theorem.



Theorem 3.8. Given A = [y1, 42, ..., yn] € R"™*™ with rank r. For any k£ < r, we consider,

n k
Hgnz lye = > < wiraj > a1, (6)
i—1 j=1

where Q = [x1,...,2] € R™*¥ is a set of orthonormal vectors. The minimum is given by the
left singular vectors of A, which are also called proper orthogonal modes. Denote the singular
values of A as 0;, the minimum is equal to Y ;_, 41 01-2 .

Proof. The only statement left to prove is QQT A = A if Q = [uy, ..., ux] and uy, are the singular
vectors. We have,

k
QQTA = [u1, ug, ..., ug][ur, ug, ..., up) A = ZUszA
=1



