1. A is normal.
2. A is unitarily diagonalizable.
3. $\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}$.
4. There is an orthonormal set of n eigenvectors of A.

Proof. By the Schur factorization, there exist a unitary matrix U and an upper-triangular matrix T such that:

$$
\begin{equation*}
A=U T U^{*} . \tag{3}
\end{equation*}
$$

Let us show 1 to 2 . To show A is unitarily diagonalizable, we only need to show T is diagonal. Since A is normal, we have

$$
\begin{equation*}
T T^{*}=U^{*} A U U^{*} A^{*} U=U^{*} A A^{*} U=U^{*} A^{*} A U=U^{*} A^{*} U U^{*} A U=T^{*} T \tag{4}
\end{equation*}
$$

This implies that T is normal. Since T is triangular, the homework question implies that T is diagonal.
Let us now prove 2 to 4 and leave the others as exercise. From the second argument,

$$
\begin{equation*}
A=U T U^{*}, \tag{5}
\end{equation*}
$$

where T is diagonal and $U=\left[u_{1}, \ldots, u_{n}\right]$ is unitary. It follows that,

$$
\begin{equation*}
A U=U T \tag{6}
\end{equation*}
$$

This is equivalent to $A u_{i}=\lambda_{i} u_{i}$ for all i, i.e., u_{i} are the orthonormal eigenvectors.

3 Hermitian

Definition 3.1. A matrix A if $A^{*}=A$, where $A^{*}=\bar{A}^{T}$.
Theorem 3.2. A is Hermitian if and only if at least one of the following holds:

1. $x^{*} A x$ is real for all $x \in \mathbb{C}^{n \times n}$.
2. A is normal and all the eigenvalues of A are real.
3. $S^{*} A S$ is Hermitian for all $S \in \mathbb{C}^{n \times n}$.

Proof. Let us first prove the first statement. Take the complex conjugate of $x^{*} A x$, we have $\left(x^{*} A x\right)^{*}=x^{*} A^{*} x$, since $A=A^{*}, x^{*} A x$ is real for all x. Now suppose $x^{*} A x$ is real for all x., we have

$$
\begin{equation*}
\left(x^{*}+y^{*}\right) A(x+y)=\left(x^{*} A x\right)+\left(y^{*} A y\right)+\left(x^{*} A y+y^{*} A x\right) \tag{7}
\end{equation*}
$$

is real for all x, y. The first two terms of 7 are real; we conclude that the sum of the last two terms is real. Now let $x=e_{k}$ and $y=e_{j}$, this implies that $a_{k j}+a_{j k}$ is real, i.e., $\operatorname{img}\left(a_{k} j\right)=\operatorname{img}\left(a_{j k}\right)$.

Thu 3.2.
Suppose A is Hermitian,

$$
\overline{\left(x^{*} A x\right)}=x^{x} A^{x} x=x^{x} A x \Rightarrow \text { real. }
$$

$2 \quad \Rightarrow \quad(\mathrm{HW})$
\Leftarrow
Assume A is normal \& all eigenvalues are real.
Since A is normal,

$$
\begin{aligned}
& \text { Since A is normal, } \\
& \Rightarrow A=U D U^{*}, U \text { is unitary, } D=\left(\begin{array}{l}
\lambda_{1} \in \mathbb{R} \\
\ddots \\
\ddots
\end{array} \pi_{n} \in \mathbb{R} .\right. \\
& A^{*}=U D^{*} U^{*}=U D U^{*}=A .
\end{aligned}
$$

$\Rightarrow \quad A$ is Hermitian.
3. $\Rightarrow \checkmark$ (by the Definition)
$\Leftrightarrow \quad$ Take $S=I$.

Let $x=i e_{k}$ and $y=e_{j}$, this implies that $i a_{k j}+i a_{j k}$ is real, i.e., $\operatorname{real}\left(a_{k j}\right)=\operatorname{real}\left(a_{j k}\right)$. It follows that $a_{k j}=a_{j k}$, or, A is Hermitian.
The second argument. Let us assume A is normal and all eigenvalues are real. By Theorem 2.2, A is unitary diagonalizable., i.e., there exist unitary matrix U and diagonal matrix $D=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that $A=U D U^{*}$. Now take the complex conjugate; we have $A^{*}=U D^{*} U^{*}$. Since D is real, this implies $A=A^{*}$.
The last statement is trivial.
Theorem 3.2 implies the following important result.
Theorem 3.3 (Spectral Theorem). Let $A \in \mathbb{C}^{n \times n}$. Then A is Hermitian if and only if there is a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a real diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that $A=U D U^{*}$.

Proof. Suppose A is Hermitian. By Theorem 3.2, A is normal, and all the eigenvalues of A are real. It follows that, A is unitary diagonalizable., i.e., there exist unitary matrix U and a real diagonal matrix $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that $A=U D U^{*}$. The other direction is trivial.

Theorem 3.4. Every matrix $A \in \mathbb{C}^{n \times n}$ is uniquely determined by its Hermitian form $x^{*} A x$. Specifically, $A=B$ if and only if $x^{*} A x=x^{*} B x$ for all $x \in \mathbb{C}^{n}$.

Proof. Homework exercise.
We now discuss another important result of the Hermitian matrices. It is called the variational characterization of eigenvalues.
Theorem 3.5 (Rayleigh Ritz). Let $A \in \mathbb{C}^{n \times n}$ be Hermitian, and denote all eigenvalues of A as $\lambda_{1} \leq \ldots \leq \lambda_{n}$. Then, we have,

1. $\lambda_{1} x^{*} x \leq x^{*} A x \leq \lambda_{n} x^{*} x$. $\quad X^{*} A x$ is real (Thm3.2)
2. $\lambda_{\text {max }}=\lambda_{n}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x}=\max _{x^{*} x=1} x^{*} A x$.
3. $\lambda_{\text {min }}=\lambda_{1}=\min x \neq 0 \frac{x^{*} A x}{x^{*} x}=\min _{x^{*} x=1} x^{*} A x$.

Proof. Since A is Hermitian, it admits the unitary diagonalization $A=U D U^{*}$, where U is unitary and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Here we assume $\lambda_{1} \leq \ldots \leq \lambda_{n}$. For $x \in \mathbb{C}^{n}$, we have,

$$
\begin{equation*}
x^{*} A x=\left(U^{*} x\right)^{*} D\left(U^{*} x\right)=\sum_{i=1}^{n} \lambda_{i}\left|\left(U^{*} x\right)_{i}\right|^{2} \tag{8}
\end{equation*}
$$

where $\left(U^{*} x\right)_{i}$ is the $i-$ th entry of the vector $\left(U^{*} x\right)$. We then have,

$$
\begin{equation*}
\lambda_{\min } \sum_{i=1}^{n}\left|\left(U^{*} x\right)_{i}\right|^{2} \leq x^{*} A x \leq \lambda_{\max } \sum_{i=1}^{n}\left|\left(U^{*} x\right)_{i}\right|^{2} . \tag{9}
\end{equation*}
$$

Since U is unitary,

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left(U^{*} x\right)_{i}\right|^{2}=x^{*} x \tag{10}
\end{equation*}
$$

It follows that,

$$
\begin{equation*}
\lambda_{1}=\lambda_{\min } x^{*} x \leq x^{*} A x \leq \lambda_{\max } x^{*} x=\lambda_{n} \tag{11}
\end{equation*}
$$

The estimation is sharp, for if x satisfies $A x=\lambda_{1} x$, the equal sign holds. The other side is similar.

Thu $3 \cdot 3$.
suppose A is Hermitian.
$\Rightarrow A$ is normal with vent eigenvalios,
The 2-2.
$A=U D U^{*}$ (b/c spectral the for normal matrix)
$\rightarrow D$ is real.

The other fivection

Thu 3.5 (Rayleigh Ritz).
19. Since A is Hermitian,

$$
\begin{aligned}
& \text { Since } A \text { is Hermitian, } \\
& A=U D \cup^{*}, \quad \cup \text { is unitary, } D=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right) \quad \lambda_{1} \leqslant \lambda_{1} \leqslant \ldots \leqslant \lambda_{n} .
\end{aligned}
$$

For any $x \in \mathbb{K}^{n}$

$$
\begin{aligned}
& x^{*} A x=x^{*} \underbrace{U D U^{*}}_{A} x=\left(U^{*} x\right)^{*} D\left(U^{*} x\right) \\
& y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \\
& y^{*} D y=\underbrace{\left(\bar{y}_{1} \ldots \bar{y}_{n}\right.}_{y^{*}}) \\
&=\left(\begin{array}{c}
\lambda_{1} y_{1} \\
\lambda_{1} y_{2} \\
\cdots \\
\lambda_{n} y_{n}
\end{array}\right) \\
& \sum_{i=1}^{n} x_{i} \bar{y}_{i} y_{i}=\sum_{i=1}^{n} \lambda_{i}\left|y_{i}\right|^{2} \\
& x^{*} A x=\sum_{i=1}^{n} \lambda_{i}|\underbrace{\left(U^{*} x\right)_{i}}_{y_{i}}|^{2} \text { th entry of } U^{*} x .
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{\min } \sum_{i=1}^{n}\left|\left(U^{*} x\right)_{i}\right|^{2} * A x & \leqslant \lambda_{\max } \sum_{i=1}^{n}\left|\left(U^{*} x\right)_{i}\right|^{2} \\
& =\lambda_{\max } x^{*} x .
\end{aligned}
$$

Because U^{*} is unitary, by the 1.1,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\left(U^{*} x\right)_{i}\right|^{2} & =\left(u^{*} x\right)^{*} u x \\
& =x^{*} x
\end{aligned}
$$

Now we have $\quad x^{*} A x \leq \lambda_{\text {max }} x^{*} x$.
case $1, \quad x=0, \Rightarrow 0 \leqslant 0$
Case 2. $\quad x \neq 0 \Rightarrow x^{*} x>0$

$$
\operatorname{mix}_{\substack{x \neq 0 \\
x \in \mathbb{L}^{n}}} \begin{aligned}
& x^{*} A x \\
& x^{*}
\end{aligned}
$$

Now if we take X sit. $A X=\lambda_{\text {max }} X$.

$$
\Rightarrow \quad \frac{x^{*} A x}{x^{*} x}=\frac{x^{*} \lambda_{\max } x}{x^{*} x}=\lambda_{\max } \frac{x^{*} x}{x^{*} x}=\lambda_{\max } .
$$

$\Rightarrow \quad$ The estimation is sharp.
Or

$$
\max _{\substack{x \neq 0 \\ x \in \mathbb{C}^{n}}} \frac{x^{x} A x}{x^{x} x}=\lambda_{\max } .
$$

$$
\begin{aligned}
\lambda_{\text {max }}=\max _{\substack{x \neq 0 \\
x \in \mathbb{R}^{n}}} \frac{x^{*} A x}{x^{*} x} & =\max _{\substack{x \geq 0 \\
x \in \mathbb{C}^{n}}} \frac{x^{*}}{\sqrt{x^{*} x}} A \cdot \frac{\frac{x}{\sqrt{x^{*} *} x}}{y,} \\
& =\max _{y^{*} y=1 .} y^{*} A y .
\end{aligned}
$$

Thu 3. 4.
If $\quad X^{t} A X=X B X \quad$ for all $X \in \mathbb{R}^{n}$
$\Leftrightarrow \quad x^{t} c x=0, \quad \Rightarrow C=0$.
Check if

$$
C=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad x \in \mathbb{R}^{n} .
$$

Unitary \Rightarrow normal.
Hermitian \Rightarrow normal
$A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$ is normal, but not U or H.
Summary

1. $U^{*} T \cup,\left\{\begin{array}{l}T \text { upper triangular } \\ U \text { is unitary. }, \forall A \in \mathbb{C}^{n \cdot n .} . ~\end{array}\right.$
2. $\cup^{*} D \cup, D=\left(\begin{array}{lll}\lambda_{1} & & \\ & \\ & & \\ \lambda_{n}\end{array}\right), \quad, A$ is normal $\in \mathbb{C}^{\text {ni }}$,

3, $\cup^{*} D \cup, \lambda_{i}$ ane real. , A is Hermitian.

