1. A is normal.
2. A is unitarily diagonalizable.
g lai P = 0 Nl

4. There is an orthonormal set of n eigenvectors of A.

w

Proof. By the Schur factorization, there exist a unitary matrix U and an upper-triangular matrix
T such that:

A=UTU*. (3)

Let us show 1 to 2. To show A is unitarily diagonalizable, we only need to show T is diagonal.
Since A is normal, we have

TT* = U*AUU*A*U = U*AA*U = U*A*AU = U*A*UU* AU = T*T. (4)

This implies that 7' is normal. Since T is triangular, the homework question implies that T is
diagonal.

Let us now prove 2 to 4 and leave the others as exercise. From the second argument,
A=UTU*, (5)
where T is diagonal and U = [ug, ..., u,] is unitary. It follows that,
AU =UT. (6)

This is equivalent to Au; = A\;u; for all 4, i.e., u; are the orthonormal eigenvectors.

3 Hermitian

Definition 3.1. A matrix A if A* = A, where A* = AT,

Theorem 3.2. A is Hermitian if and only if at least one of the following holds:

1. 2* Az is real for all x € C™"*",
2. A is normal and all the eigenvalues of A are real.

3. S*AS is Hermitian for all S € C**".

Proof. Let us first prove the first statement. Take the complex conjugate of x*Ax, we have
(z*Az)* = 2*A*x, since A = A*, x* Az is real for all x. Now suppose z* Az is real for all z., we
have

(" +y)A(z +y) = (2" Az) + (y"Ay) + (27 Ay + y" Az), (7)

is real for all z,y. The first two terms ofare real; we conclude that the sum of the last two terms
is real. Now let « = e;, and y = e;, this implies that ay; + a;i, is real, i.e., img(arj) = img(a;ji).
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Let x = ie, and y = e;, this implies that iay; +iajy is real, i.e., real(ay;) = real(a;i). It follows
that ai; = aji, or, A is Hermitian.

The second argument. Let us assume A is normal and all eigenvalues are real. By Theorem
A is unitary diagonalizable., i.e., there exist unitary matrix U and diagonal matrix D =
diag(A1, ..., \p) such that A = UDU*. Now take the complex conjugate; we have A* = UD*U*.
Since D is real, this implies A = A*.

The last statement is trivial. O

Theorem implies the following important result.

Theorem 3.3 (Spectral Theorem). Let A € C"*". Then A is Hermitian if and only if there is
a unitary matrix U € C"*" and a real diagonal matrix D € R™*" such that A = UDU*.

Proof. Suppose A is Hermitian. By Theorem A is normal, and all the eigenvalues of A are
real. It follows that, A is unitary diagonalizable., i.e., there exist unitary matrix U and a real
diagonal matrix D = diag(\1, ..., Ay) such that A = UDU*. The other direction is trivial. [

Theorem 3.4. Every matrix A € C"*" is uniquely determined by its Hermitian form z*Azx.
Specifically, A = B if and only if 2*Ax = 2*Bx for all x € C".

Proof. Homework exercise. O

We now discuss another important result of the Hermitian matrices. It is called the variational
characterization of eigenvalues.

Theorem 3.5 (Rayleigh Ritz). Let A € C"*" be Hermitian, and denote all eigenvalues of A as

A1 < ... < A\y. Then, we have,
JAy S \[QU\\ (Tl/\\ﬂ\}\):)
1. Mizte < x*Azx < \,x*z. 2%

*

2. AMpaz = An = MaXyg xfzf = Maxyxp—1 L AL.

. * .
3. Amin = A1 = minzx # 05”1:?[”5 = Mingrp—1x*Ax.

Proof. Since A is Hermitian, it admits the unitary diagonalization A = UDU*, where U is
unitary and D = diag(A1, ..., \,). Here we assume \; < ... < \,. For € C", we have,

v*Ax = (U*z)*D(U*z) = > N|([U )i, (8)
=1
where (U*z); is the i—th entry of the vector (U*z). We then have,
Amin 3 _|(U*2)i|* < 2" Az < Apaa Y _ |(U*2)i[*. (9)
=1 =1

Since U is unitary,
Y |z = a*a, (10)

It follows that,
M = Mnin® 2 < 2¥Ax < MpazZTz = My, (11)

The estimation is sharp, for if z satisfies Az = Az, the equal sign holds. The other side is
similar. O
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