- 1. A is normal.
- 2. A is unitarily diagonalizable.
- 3. $\sum_{i,j=1}^{n} |a_{ij}|^2 = \sum_{i=1}^{n} |\lambda_i|^2$.
- 4. There is an orthonormal set of n eigenvectors of A.

Proof. By the Schur factorization, there exist a unitary matrix U and an upper-triangular matrix T such that:

$$A = UTU^*.$$
(3)

Let us show 1 to 2. To show A is unitarily diagonalizable, we only need to show T is diagonal. Since A is normal, we have

$$TT^* = U^*AUU^*A^*U = U^*AA^*U = U^*A^*AU = U^*A^*UU^*AU = T^*T.$$
(4)

This implies that T is normal. Since T is triangular, the homework question implies that T is diagonal.

Let us now prove 2 to 4 and leave the others as exercise. From the second argument,

$$A = UTU^*, \tag{5}$$

where T is diagonal and $U = [u_1, ..., u_n]$ is unitary. It follows that,

$$AU = UT.$$
 (6)

This is equivalent to $Au_i = \lambda_i u_i$ for all *i*, i.e., u_i are the orthonormal eigenvectors.

3 Hermitian

Definition 3.1. A matrix A if $A^* = A$, where $A^* = \overline{A}^T$.

Theorem 3.2. A is Hermitian if and only if at least one of the following holds:

- 1. x^*Ax is real for all $x \in \mathbb{C}^{n \times n}$.
- 2. A is normal and all the eigenvalues of A are real.
- 3. S^*AS is Hermitian for all $S \in \mathbb{C}^{n \times n}$.

Proof. Let us first prove the first statement. Take the complex conjugate of x^*Ax , we have $(x^*Ax)^* = x^*A^*x$, since $A = A^*$, x^*Ax is real for all x. Now suppose x^*Ax is real for all x., we have

$$(x^* + y^*)A(x + y) = (x^*Ax) + (y^*Ay) + (x^*Ay + y^*Ax),$$
(7)

is real for all x, y. The first two terms of 7 are real; we conclude that the sum of the last two terms is real. Now let $x = e_k$ and $y = e_j$, this implies that $a_{kj} + a_{jk}$ is real, i.e., $img(a_kj) = img(a_{jk})$.

This 3.2.
Suppose A is Hemitian,

$$(x^{*}Ax) = x^{*}A^{*}x = x^{*}Ax \Rightarrow real.$$

2. =) (Hw)
 \in
Assume A is normal & all eigenvalues are real.
Since A is normal,
 $\Rightarrow A = UDU^{*}$, U is unitary, $D = \begin{pmatrix} x_{1} \in I^{R} \\ \vdots \\ y_{n} \in J^{R}. \end{pmatrix}$
 $A^{*} = UDU^{*}U^{*} = UDU^{*} \Rightarrow A.$
 $\Rightarrow A = UDU^{*}U^{*} = UDU^{*} \Rightarrow A.$

Let $x = ie_k$ and $y = e_j$, this implies that $ia_{kj} + ia_{jk}$ is real, i.e., $real(a_{kj}) = real(a_{jk})$. It follows that $a_{kj} = a_{jk}$, or, A is Hermitian.

The second argument. Let us assume A is normal and all eigenvalues are real. By Theorem 2.2, A is unitary diagonalizable., i.e., there exist unitary matrix U and diagonal matrix $D = diag(\lambda_1, ..., \lambda_n)$ such that $A = UDU^*$. Now take the complex conjugate; we have $A^* = UD^*U^*$. Since D is real, this implies $A = A^*$.

The last statement is trivial.

Theorem 3.2 implies the following important result.

Theorem 3.3 (Spectral Theorem). Let $A \in \mathbb{C}^{n \times n}$. Then A is Hermitian if and only if there is a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a real diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that $A = UDU^*$.

Proof. Suppose A is Hermitian. By Theorem 3.2 A is normal, and all the eigenvalues of A are real. It follows that, A is unitary diagonalizable., i.e., there exist unitary matrix U and a real diagonal matrix $D = diag(\lambda_1, ..., \lambda_n)$ such that $A = UDU^*$. The other direction is trivial.

Theorem 3.4. Every matrix $A \in \mathbb{C}^{n \times n}$ is uniquely determined by its Hermitian form x^*Ax . Specifically, A = B if and only if $x^*Ax = x^*Bx$ for all $x \in \mathbb{C}^n$.

Proof. Homework exercise.

We now discuss another important result of the Hermitian matrices. It is called the variational characterization of eigenvalues.

Theorem 3.5 (Rayleigh Ritz). Let $A \in \mathbb{C}^{n \times n}$ be Hermitian, and denote all eigenvalues of A as $\lambda_1 \leq \ldots \leq \lambda_n$. Then, we have,

1. $\lambda_1 x^* x \le x^* A x \le \lambda_n x^* x$. 2. $\lambda_{max} = \lambda_n = \max_{x \ne 0} \frac{x^* A x}{x^* x} = \max_{x^* x = 1} x^* A x$. 3. $\lambda_{min} = \lambda_1 = \min x \ne 0 \frac{x^* A x}{x^* x} = \min_{x^* x = 1} x^* A x$.

Proof. Since A is Hermitian, it admits the unitary diagonalization $A = UDU^*$, where U is unitary and $D = diag(\lambda_1, ..., \lambda_n)$. Here we assume $\lambda_1 \leq ... \leq \lambda_n$. For $x \in \mathbb{C}^n$, we have,

$$x^*Ax = (U^*x)^*D(U^*x) = \sum_{i=1}^n \lambda_i |(U^*x)_i|^2,$$
(8)

where $(U^*x)_i$ is the *i*-th entry of the vector (U^*x) . We then have,

$$\lambda_{\min} \sum_{i=1}^{n} |(U^*x)_i|^2 \le x^* A x \le \lambda_{\max} \sum_{i=1}^{n} |(U^*x)_i|^2.$$
(9)

Since U is unitary,

$$\sum_{i=1}^{n} |(U^*x)_i|^2 = x^*x.$$
(10)

It follows that,

$$\lambda_1 = \lambda_{\min} x^* x \le x^* A x \le \lambda_{\max} x^* x = \lambda_n \tag{11}$$

The estimation is sharp, for if x satisfies $Ax = \lambda_1 x$, the equal sign holds. The other side is similar.

-		
 L		
L		

The 3.3.
Suppose A K Hermitian.

$$\Rightarrow A re normal with vert eigenvalues.
A = UDUX (W/c spectral than for wormal matrix)
b D is vert.
The other divection
The other divection
The other divection
M. Since A is Hermitian.
A = UDU3, U is unitary, D = $\begin{pmatrix} \lambda_1 & \lambda_2 \\ & \lambda_3 \end{pmatrix}$.
M. Since A is Hermitian.
A = UDU³, U is unitary, D = $\begin{pmatrix} \lambda_1 & \lambda_2 \\ & \lambda_3 \end{pmatrix}$.
For any $x \in \mathbb{C}^{h}$
 $x^{2}A x = x^{2} UDU^{3} x = (U^{2}x)^{2} D(U^{2}x)$
 $y = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$ $y^{2}Dy = (\frac{y_{1}}{2}..., \frac{y_{n}}{2}) \begin{pmatrix} \lambda_{1}y_{1} \\ ..., \lambda_{n} \end{pmatrix}$.
 $= \begin{pmatrix} y_{1} \\ z \\ z \\ z^{2} \end{pmatrix}$. $y^{2}U^{2} = \lambda_{1} \begin{bmatrix} y_{1} \\ ..., y_{n} \end{bmatrix}$.$$

$$\mathcal{R}_{\min} = \left| (\mathcal{Y}_{X}) \right|_{\mathcal{L}}^{k} \times A_{X} \leq \mathcal{R}_{\max} = \left| (\mathcal{Y}_{X}) \right|_{\mathcal{L}}^{2}$$
$$= \mathcal{R}_{\max} \times^{k} \times .$$

Because
$$\bigcup^{4}$$
 is unitary, by Thm 2.1,

$$\sum_{i=1}^{n} |(\bigcup^{4} x)_{i}|^{2} = (\bigcup^{4} x)^{*} \bigcup x$$

$$= x^{*} \times$$
Now we have $x^{*}Ax \leq \lambda_{\max} x^{*} \times$.
(ase 1, $x = 0$, $=) \odot \leq 0$
(ase 2. $x \neq 0 =) x^{*}x \neq 0$

$$=) \qquad \frac{\chi^{*}A\chi}{\chi^{*}\chi} = \frac{\chi^{*}\lambda_{max}\chi}{\chi^{*}\chi} = \lambda_{max}\frac{\chi^{*}\chi}{\chi^{*}\chi} = \lambda_{max}$$

$$\begin{split} \mathcal{N}_{\text{max}} &= \begin{array}{c} \max \\ \chi^{*} \Delta \chi \\ \chi^{*} \chi \end{array} &= \begin{array}{c} \max \\ \chi^{*} \Delta \chi \\ \chi^{*} \chi \end{array} &= \begin{array}{c} \max \\ \chi^{*} \Delta \chi \\ \chi^{*} \chi \end{array} \\ \chi^{*} \Delta \chi \\ \chi^{*} \chi \end{array} &= \begin{array}{c} \max \\ \chi^{*} \Delta \chi \\ \chi^{*} \chi \\ \chi^{*} \chi \end{array} \\ \chi^{*} \Delta \chi \\ \chi^{*} \chi \\ \chi^{*} \chi \end{array} \\ \chi^{*} \Delta \chi \\ \chi^{*} \chi \\$$

Thus 3.4. If $x^{t}Ax = x^{t}Bx$ for all $x \in lR^{n}$ $E > x^{t}Cx = 0$, $\Rightarrow C = 0$. (heals 'f $C = \begin{pmatrix} 0 & l \\ -l & 0 \end{pmatrix}$, $x \in lR^{n}$.

> Unitary => normal. Hermitian => normal

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \text{ is normal, but not } \cup \text{ or } H.$$

$$\underbrace{\text{Surrwory}}_{1, \dots, M} = \underbrace{\text{Urr}}_{1, \dots, M}$$